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Abstract

We chose cylindrical cameras for our work in reconstructing
a scene that surrounds the camera positions. While previ-
ous algorithms for calibration exist, we found that improve-
ments were needed to give reasonable results for our data,
especially in the determination of the relative scale of trans-
lations between the cylinders.
One approach to determining camera motion is from cor-

responding elements in the images, for example points or
lines. One class of solutions is based on �nding a transfor-
mation that yields coplanarity of certain vectors. This type
of solution is not limited to any particular form of cam-
era. This algorithm adapts to omnidirectional imagers with
minor modi�cations in the constraint matrices. But the al-
gorithm can only determine �ve degrees of freedom. A scale
arbitration algorithm must determine the sixth degree of
freedom, the relative lengths of the translation.
While robust algorithms have been proposed for determin-

ing the relative scale, we found that standard robust statis-
tics were insu�cient for registering our cylindrical camera
locations. Thus we introduce a new scale arbitration algo-
rithm that takes into account the con�dence with which a
point has been triangulated using a previous camera pair. It
then decides how to use the point to determine scaling for
future camera pairs. This issue arises in standard rectilin-
ear images as well, and our con�dence metric adapts to any
imager and other solution methods.
We also address consistent illumination of cylindrical im-

ages and an ambiguity that can arise in the rotation and
translation direction computations.

1 Introduction

Computing the relative motion of a camera between the ac-
quisition of two or more images is one of the classic problems
in computer vision [2, 4, 7, 18]. Such algorithms are often
the �rst stage in reconstructing a dense model of the scene.
Many scene reconstruction algorithms rely on camera cali-

bration to yield su�cient information for precise reconstruc-
tion of 3D geometry. One such approach is the technique
of voxel coloring [20]. This technique has been extended
to handle arbitrary camera placement [3] and to encompass
surrounding geometry [21]. However, the fundamental re-
quirement of calibrated cameras remains constant through
the variations on the algorithm.
One approach to determining camera motion is from cor-

responding elements in the images, for example points or
lines. There are algorithms to estimate the relative motion
between two images from correspondence data, but these
algorithms are limited to recovering �ve degrees of free-
dom [4, 7]. In order to register the pairwise (if two-view
geometry descriptors are used) relative motions during ac-
quisition of a sequence of images into a single coordinate

system, the scale of each translation must be determined.
One method of measuring the relative scale is to triangulate
the points in the reference image pair and the points in the
new image pair (presumably one image is shared between the
pairs), then scale the new calculation of the points into the
previous one. Proceeding along the sequence in this manner,
the initial estimate will encompass six degrees of freedom of
each of a set of cameras (or a single camera at multiple time
steps) within a single coordinate system. Once a common
coordinate frame is determined, an optimization procedure
can re�ne this estimate into an optimal arrangement under
some error metric. However, the search space can be of very
high dimension if many images are used, and thus the qual-
ity of the initial estimate is very important to the success of
the optimization procedure.
It requires only two points shared in three images to de-

termine a scale factor for the relative translation of all three
images, but commonly multiple points are used [13]. We
found that standard robust statistics were insu�cient for
registering the relative scale of our data, a set of cylindrical
images. Thus we introduce a new scale arbitration algo-
rithm that accounts for the likelihood that a point has been
accurately triangulated by a previous camera pair. It then
decides how to use the point to determine scaling for future
camera pairs. This issue arises in standard rectilinear images
as well, and our algorithm can be used for any imager.
We also address other issues in the processing pipeline we

use to prepare cylindrical images for dense reconstruction.

1.1 Overview of our algorithm

Assume for a moment that we have correctly identi�ed
(noisy) correspondences across three images, and that we are
ready to determine a scale factor that will register the third
camera location into the coordinate system de�ned by the
�rst camera location, with the second camera location set
to some standard distance, and that we measured the third
camera location relative to the second to within the scale of
the translation. We register the two transformations with
the following algorithm.

1. Triangulate the points seen in the �rst two images to
form a reference point set. Assign a con�dence metric
to all points.

2. Triangulate the points in the second and third images,
including at least two points that were in the reference
point set. Assign a con�dence metric to all points.

3. Find the two points with the highest product of the
con�dence metrics from the two triangulations.

4. Register the second point set using these two points to
set the scale.

5. For points in both the new and reference sets, update
the estimated positions of the triangulated points in



the reference set if (and only if) the con�dence metric
is greater in the new set.

This algorithm is applied for each new image, with the ref-
erence point set growing as new points are added from new
images.
The basis for our algorithm is the simple observation that

triangulation from two rays works best when the two rays
are nearly perpendicular. Thus our con�dence metric for a
point reects the angle at which the two rays (nearly) in-
tersected. We choose the absolute value of the sine between
the two rays, but obtain similar results using one minus the
cosine. To reect the performance of triangulation in both
sets, we use the product of the two con�dence scores (where
a missing point has zero con�dence). We have not found a
threshold for con�dence in either set or in the product to be
necessary to achieve good performance. The two points with
the greatest con�dence should provide the best estimate of
the relative scaling between the two points sets, and thus
between the translations measured for the two image trans-
formations. We can then update the reference point set for
processing of the next image in the sequence by replacing
the point locations of those point triangulated with greater
con�dence in the new point set.

1.2 Organization of the manuscript

Section 2 summarizes the geometric imaging model we use
for our cylindrical camera and the geometric and photomet-
ric calibration process. We summarize previous solutions for
the scaling problem and introduce our new scaling algorithm
in Section 3. We conclude with discussion of our technique
and its application to rectilinear images and other scaling
algorithms in Section 5.

2 Imaging Model and Calibration

The imaging takes place within a camera-centric coordinate
system (Figure 1). For each camera location, we must also
measure the position and orientation of the camera-centric
system with respect to the global coordinate system. Pixel
coordinates (u; v) are calculated from the world-space point
[ xw yw zw ]T with the following set of equations based on
the geometry in Figures 1, 2, and 3.
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The vertical component uses the standard perspective
projection equations with focal length f , image center Cv,
image height in pixels Nv, and image height in millimeters
dy. One di�erence from Tsai's camera model [22] is that the
distance is expressed as distance in the xy-plane, and the
height is the z coordinate. We use a single-parameter (de-
noted �) radial lens distortion model, but since the imaging
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Figure 1: Diagram of the camera coordinate systems. The
camera y axis is not shown, but is derived by the right-hand
rule. The image coordinate origin is at the top of the cylinder
and has a y coordinate of 0:0.
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Figure 2: The typical perspective projection situation for
cameras applied to the vertical component of the cylindrical
imaging system. We use a single-parameter \radial" distor-
tion model, which is restricted to vertical distance since the
CCD is linear. The pixels are numbered from 0 at the top
to Nv � 1 at the bottom.

device is a linear CCD, the \radial" distance is really only
the vertical distance from the center. Our vertical �eld of
view was approximately 78� and every pixel is in the hor-
izontal center of the �eld of view; thus we �nd one radial
term to be a su�cient model for distortion.

The rotating head of the camera enables the linear CCD
to acquire the same type of image at every step around the
cylinder. Thus basic trigonometry determines the horizontal
image coordinate using the number of pixels Nu around the
cylinder. Cylinder skew � is non-zero when the linear CCD
is not parallel to the cylinder axis, but rather leans along
the direction of the (positive or negative) horizontal tangent
to the cylinder.

Eccentricity Er accounts for the fact that the camera lens
may not be mounted on the camera and tripod assembly
such that the center of projection lies on the cylinder axis.
This is shown in Figures 2 and 3 with the center of projection
o�set from the axis in the imaging direction (Er > 0), but
the o�set could occur in the opposite direction (Er < 0).

We did not include a parameter to account for an angular
di�erence between the direction of the rays and the cylinder
normal [11]. We found this parameter to be unnecessary
with our images. In fact, we �nd the skew parameter to be
negligible as well.



0
N -1uf

Cylinder
axis

camera y  axis

camera x  axisEr

COP

Path of COP

Figure 3: The imaging geometry in the horizontal direction
of the cylinder. The quantities labeled in slanted typeface
indicate intrinsic parameters of the camera that must be de-
termined during calibration. Other quantities can be stated
from manufacturing speci�cations. The pixels are numbered
from 0 to Nu � 1, with the camera x axis intersecting the
border of the �rst and last pixels.

2.1 Calibration procedure

Once we understand the imaging geometry, we can now set
about the task of determining the parameters of the model.
We require three camera constants as inputs:

� the number of pixels horizontally, Nu

� the number of pixels vertically, Nv

� the height of the imaging array in millimeters, dy

We have a set of �ve intrinsic parameters to generate as
output. These are assumed to be the same for all images.

� the focal length f

� vertical image center pixel Cv

� eccentricity Er

� radial distortion parameter �

� cylinder skew parameter �

For each image, the calibration algorithm must determine six
extrinsic parameters (three rotation DOFs and three trans-
lation DOFs). The initial estimates for the intrinsic param-
eters are derived from manufacturer's speci�cations. We use
the essential matrix method as adapted to cylindrical images
by Kang and Szeliski [13] to compute an initial estimate for
the extrinsic parameters of the second and succeeding cylin-
ders; the �rst cylinder is assigned an orientation coincident
with the world orientation and at the world origin.

2.1.1 Adapted Eight-Point Algorithm

The calibration algorithm we use takes as input 2D coordi-
nates of corresponding points in some number of the input
images. We speci�ed our correspondences manually, but an
automatic tracking algorithm could be used as well [13].
The Eight-Point Algorithm [14] computes the essential

matrix which maps points in one image to epipolar lines in
another image, on which the corresponding point must lie.

The analogous situation for cylindrical imaging surfaces is
that the coordinates should lie on an epipolar curve [11, 16].
But the Eight-Point Algorithm expresses only the copla-
narity of three vectors: the two rays that correspond to the
two pixels (emanating from the respective centers of pro-
jection) and the ray that points from one center of projec-
tion to the other. Kang and Szeliski [13] give the new con-
straint equation for cylindrical images (which we convert to
the imaging geometry we use).
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and similarly for the corresponding (primed) point. They
also caution that the vector [u; v; w]T should be normalized
to reduce the sensitivity of the constraint matrix, similar to
Hartley's transformation for the original Eight-Point Algo-
rithm [8]. We solve the resulting linear system for the ele-
ments of E. This procedure is wrapped inside a RANSAC [5]
to identify outliers in the correspondence data. This assumes
that we will have su�cient inliers for a minimal solution and
that those points will constitute at least one sample set in
the RANSAC procedure.

2.1.2 Decomposing E

There are four possible ways to decompose E into a rota-
tion and translation that would yield the given essential ma-
trix [7]. These can be determined using the singular value
decomposition (SVD) of the essential matrix, E = U�V T .
The direction of translation is given to within a sign by the
left singular vector in the column of U associated with the
smallest singular value (which should be zero, since the es-
sential matrix is rank-2). Independent of the correct sign,
the rotation is given by either UWV T or UW TV T , where

W =

"
0 �1 0
1 0 0
0 0 1

#
:

Only one of these four possibilities will reconstruct the points
in front of both cameras. We found that this decomposition
did not successfully identify any solution as reasonable for
some matrices and SVDs. The problem comes from the fact
that the essential matrix has one unique singular value, and
thus a family of SVDs. Using the Numerical Recipes [19]
SVD computation gave us matrices that had U and V matri-
ces with determinants of �1. Zucchelli and Christensen [23]
parameterize the matrix W with the signs of the determi-
nants:

W =

"
0 1 0
�1 0 0
0 0 det(V ) � det(U)

#

But this method did not work for all our data. Indepen-
dently, we had already adapted the algorithm by forcing the
signs of the determinants to be +1 by negating the entire
matrix U or V (or both) when the respective determinants
are �1. This is equivalent to the original formulation if the
determinants of U and V have the same sign, and equivalent
to negating W when the signs of the two determinants dif-
fer (as the method of Zucchelli and Christensen does). This
yields a reasonable decomposition for all our image pairs.



The remaining step, determining the scale of the transla-
tion, will be discussed in Section 3.

2.1.3 Parameter re�nement

Starting with the initial estimate, we re�ne all extrinsic
and intrinsic parameters using the coplanarity constraint de-
scribed above. The cost function for each image of a point
seen in a pair of images is the distance from the epipolar
plane.

Cost(i; j; k) = (Tk�Tj)�(R
T
j Ray(uij ; vij)�R

T
kRay(uik; vik))

�i;j;k = wi � (Cost(i; j; k))
2 (1)

This sum is taken over all points i and all cylinders j
and k that see point i, subject to j < k. Thus each unique
point-cylinder-cylinder tuple contributes only once to the
error computation. We have also introduced a weighting
factor, wi. Each distance is squared and weighted by the
angle between the baseline used for triangulation and the
ray emanating from the �rst cylinder.

wi = 1� cos�

The \�rst" is chosen as the cylinder with the lower identi�-
cation number of the two, and the ID numbers are assigned
in the order in which the cylinders were acquired. Trian-
gulation is well-known in computer vision to be numerically
sensitive. This weighting function decreases the importance
of correspondences for which the two lines of sight are nearly
parallel to the baseline used for triangulation, which is a con-
�guration that is numerically unstable. This is the observa-
tion that sparked our new scaling determination algorithm.
We use Powell's multi-dimensional optimization method

with an exhaustive 1D search in the inner loop. This algo-
rithm does require numerous function evaluations and thus
is computationally expensive, but it is unlikely to get caught
in a local minimum that is not the global minimum.

2.2 Photometric correction

One signi�cant assumption of many scene reconstruction
algorithms is that all surfaces are di�use. The rotating-
head camera requires approximately 90 seconds to capture
a panorama with about 30 degrees of overlap. We thus had
two conicting goals: to shoot when few non-static objects
(people and strong shadows) were in the environment and
to shoot in constant illumination. We chose to acquire im-
age in the early morning and provide a software correction
for illumination change and to acquire multiple panoramas
from a single location in order to paint out any non-static
elements.
We used a light meter, we found that the light changed al-

most linearly near sunrise (Figure 4). We adjusted the expo-
sure value between photographs and use the following linear
brightness correction function within a single panorama.

maski(�) = 1 + � �
(Nu � 1� i)%Nu

Nu

where % indicates the modulus operator. The correction is
performed on each color channel and clamped to the appro-
priate range. The variable i indicates the horizontal pixel
coordinate and ranges from 0 to Nu � 1. The parameter �
was experimentally determined to be 0.87 for our data.
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Figure 4: Light meter readings during the time of the
panorama acquisition. The horizontal axis indicates time
relative to sunrise. We started shooting just before sunrise
and took 30 minutes to acquire the ten clean cylinders.

Lens vignetting results in inconsistent colors for surfaces
near the camera positions. To correct vignetting, a cosine-
fourth function is a common model for the light fall-o�, al-
though we and others [1] have found it is not always a su�-
cient model. We use a tangent-squared correction instead.

maskj() = 1 +
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� 1

�
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�
2j
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Again, each channel is corrected separately and clamped.
The variable j indicates the vertical pixel coordinate and
ranges from 0 toNv�1. The parameter  was experimentally
determined to be 0.61 for our data.

3 Scale Arbitration Algorithm

As noted earlier, only two points across three images are
required to estimate the scale factor that registers the pair-
wise translations between camera locations. So the simplest
algorithm is to �nd two such points, triangulate them from
the �rst two and last two images, then use the distance be-
tween them in each reconstruction space to determine the
relative scale of the two spaces. These reconstruction spaces
include the camera locations. First, we summarize previous
algorithms to improve upon this basic algorithm, then we
examine the problem we faced in our cylindrical image set,
and �nally introduce our new algorithm.

3.1 Previous Scale Determinations

One can use absolute measurements to determine the true
scale of a reconstructed data set, such as using a motion
platform to control the precise translation distance between
image locations [15]. One could also use known 3D points
or a prior scene model [10] to arrive at a Euclidean recon-
struction (true scale).
Since relative scale is all that is necessary, one can �x the

scale of the second and succeeding translations by using the
estimated 3D locations from the �rst pair of images. This is
essentially switching to a 3D-from-2D calibration method for
the third and later images [2, 18]. In a similar manner, one
can �nd a scale factor that minimizes the distance between
corresponding points in 3D or in image space [6, 17], for the



best �t half of the points [13], or by using a robust statistic
such as a least median error metric [12]. A trade-o� between
the distance of the baseline and the number of shared corre-
spondences can be established between two frames [17], but
requires making assumptions about the camera motion.

3.2 Issues in Scale Arbitration

The problem in determining scale is that the algorithm must
rely on the accuracy of the points that actually determine
the scale factor (i.e. but not outliers). We found that with
the 3D points somewhat sparse in regions of the volume
surrounding the cameras, there were many more outliers
than inliers when triangulating the points. This problem
is compounded when the two view rays are nearly paral-
lel, which results in an ill-conditioned triangulation prob-
lem. For an omnidirectional imager, this situation can arise
for any translation. For standard rectilinear imagers, this is
most likely to arise when the motion has a strong component
perpendicular to the image plane and the points are concen-
trated in the center of the image. In either situation, the
points are di�cult to accurately locate in 3D. The error can
grow large quite quickly when the two rays are nearly paral-
lel, and thus it becomes di�cult to bound the error created
by comparing the distances to determine a relative scale. It
is this di�culty we seek to overcome.

3.3 New Scaling Algorithm

We introduce a con�dence metric into the scaling algorithm
that indicates the certainty with which a point was triangu-
lated and indicates which points in a set we can use to de-
termine the scale with the most con�dence. The con�dence
metric is simply the absolute value of the sine between the
two view rays. This vanishes when the view rays are parallel
and reaches 1.0 when the view rays are perpendicular, which
is the best situation for triangulation from two rays [7].
We integrate this metric into the scaling algorithm to pro-

duce the following scale arbitration algorithm.

1. Compute an initial reference point set using the �rst
pair of images. Compute the con�dence metric for all
points.

2. For each successive cylinder

(a) Triangulate the points seen in the new image pair,
which consists of one previous image and one new
image.

(b) Compute the con�dence metric for the new trian-
gulation of the points.

(c) Find the two points with the highest product of
the con�dence metrics from the two triangula-
tions. These two points must have a positive con-
�dence.

(d) Determine the scale of the second camera trans-
lation using these two points.

(e) For each point in the new point set

i. If the point does not exist in the reference
set, insert it.

ii. If the point does exist and has higher con�-
dence in the new set is greater, update the
point location and its con�dence metric.

When we multiply two con�dence values together, the
range is still [0.0,1.0]. It will be 1.0 if we have complete
con�dence in both triangulations of the point and degrades
to zero as one or both triangulations are computed with
more and more parallel view rays. When we update the
computed positions and the con�dence metric, we do not
use the product of the old and new metrics, just the greater
of the old and new. This completes the processing for the
current frame, and we proceed to the next frame.
In processing omnidirectional sequences, we can hope to

�nd most points occurring in every image. If this is the case
(as it is in our data), we can compute every transforma-
tion relative to the �rst image, rather than computing each
transformation relative to the most recent image. This opens
the possibility of extending the scale arbitration algorithm.
If we record the con�dence values for the two points that
were used for determining the scale, we can go back to each
image and see if we can improve on that con�dence metric
with points that were triangulated (again) after the image
was originally processed. In fact, this can be applied to any
image sequence in which points are tracked through many
images. The longer a point stays in the image, the more
chances it has to be triangulated accurately from a varying
camera pose. In the case of sequential processing where each
frame is processed relative to the last, updating the scale of
a translation several frames back in the sequence will cause
a ripple e�ect of translations up to the current frame.
As a �nal post-process we optimize the scale factors for the

second and succeeding images using the cost function (Equa-
tion 1) that we use in the �nal stage of optimizing the full
extrinsic parameter set. This allows a bit of re�nement using
the fact that many points are seen in more than three cylin-
ders, so the scale factors can be re�ned between all cylin-
ders at once, rather than the pairwise manner in which they
were initially estimated. We use the Levenberg-Marquardt
optimization procedure [19]. We can guide the optimization
process by using the con�dence values to derive an estimated
variance for each parameter.

4 Results

We acquired ten panoramas (Figure 5). The images have
approximately 2500 pixels around the cylinder and 884 pixels
vertically. We manually identi�ed edges that appeared in the
overlap region for each cylinder and measured the distance
between the edges to the nearest whole pixel. This number
gave us Nu for each cylinder, and we cropped the images
at the measured length. For certain cylinders, there were
objects that were imaged that were either moving at the
time of the imaging, or were not present for other cylinders.
We acquired multiple cylinders from a single camera location
in order to have enough data to \paint out" these objects;
they would violate an important assumption made in the
reconstruction process: that the scene is static.
Table 1 compares the three algorithms to the ground

truth. In some sense, this is an impossible comparison, since
the direction of translation is not perfectly computed. How-
ever, it does provide a useful view of the performance of the
various algorithms. The results are shown only for the sec-
ond and succeeding cylinders. The �rst cylinder is placed at
the origin, and the �rst cylinder is assigned a distance. We
used the true distance for the �rst cylinder (from the tape
measurements), but could also have used 1.0.
The decomposition of the essential matrix uses a unit

length vector to describe the translation, so the scale fac-
tors shown here represent the actual or estimated distance



Figure 5: A cylinder from our data set. Top: before photometric correction. Note the vignetting at the top and bottom of the
image, and the vertical seam just right of the center. This is the rotated image to align the �rst pixel with the world x axis,
so the linear illumination change creates a seam at the pixel which was originally the �rst pixel. Bottom: after photometric
correction (and still rotated).

of the translation. The table lists the true cylinder distances,
the estimated distance from the robust algorithm that uses
50% of the points, the con�dence metric from our algorithm,
the estimated distance from our algorithm, the relative er-
ror in the estimated scale (computed as the estimated length
divided by the true length), and the result from an optimiza-
tion pass that uses our algorithm as input and optimizes the
distances for the second and succeeding images. The ground
truth was acquired with a tape measure. We give only the
scale (distance) of translation, not the translation, since our
algorithm is computing only the scale of translation. The
direction of translation and the rotation are identically com-
puted for all methods with the adapted Eight-point Algo-
rithm.
The table shows that the previously described robust al-

gorithm failed badly on certain cylinders. This occurs be-
cause the assumption made in the robust statistics is that a
certain percentage of the data (in this case, 50%) is within
a tolerance of the correct answer (in this case, point loca-
tion). This assumption is likely to hold when many points
are uniformly sampled in the imaged volume. The imaging
geometry of the cylinders and the lack of reasonable track-
ing targets available in certain regions of the scene (e.g. in
the highly repetitive brick structure and in the sky) pre-
vented this assumption from being valid on our data. Thus
our new algorithm, which attempted to �nd the best two
(i.e. minimum number of necessary) points, outperformed
the previous algorithm.
This di�erence is shown graphically in Figure 6, in which

the xy positions of the camera locations are plotted. Note
that the robust algorithm placed most of the cameras very
near the origin, although the shape of the point set is similar
(in the geometric sense) to the shape of the point set that

depicts the new algorithm before optimization.
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Figure 6: Plot comparing the xy positions of the camera lo-
cations. The robust algorithm yields a geometrically similar
layout, but most points are clearly poorly scaled and left
near the origin. The new algorithm and the optimization of
its result much more closely match the true arrangement.

The relative length is consistently below 1.0 for the new
algorithm; that is, the new algorithm underestimates the dis-
tances. The error after the optimization pass correlates well,
however, with the con�dence metric, except for cylinder #5.
This indicates that on the whole, our algorithm has done a
good job of characterizing which points are the most reliable
for determining scale. The optimization procedure yields a



Cyl# Correct scale Robust statistics Conf New Algorithm Relative Length Optimized Relative Length
2 7.007 8.742 0.670 6.981 0.996 6.648 0.949
3 10.625 1.565 0.542 9.854 0.927 9.930 0.935
4 14.091 1.245 0.101 13.233 0.939 12.886 0.914
5 14.395 1.381 0.746 12.198 0.847 13.035 0.905
6 18.736 1.410 0.145 18.354 0.980 17.602 0.939
7 19.912 1.675 0.231 18.648 0.937 18.713 0.940
8 15.101 0.789 0.166 13.152 0.871 14.044 0.930
9 9.256 0.797 0.712 6.756 0.730 8.868 0.958

Table 1: Results comparison of the algorithms. For each cylinder, we give the correct scale, the result from the previous
robust algorithm, the con�dence metric from our new algorithm, the estimated scale from our new algorithm, the relative
error (estimated scale divided by true scale) and the result of an optimization using our algorithm's output for input. We give
the scale (in meters), not the direction of translation, since that is all the new algorithm computes. Except for cylinder #5,
the con�dence correlates well with the relative error.

mixed result; it tends to smooth the relative error distribu-
tion rather than simply pull the less-accurately estimated
cylinders towards the correct scale. Since each cylinder's
transformation is computed relative to the �rst cylinder,
there is no cascading e�ect from a previously scaled cylin-
der. (Cylinder #4's low con�dence has no e�ect on cylin-
der #5's lower accuracy.) An early implementation which
also allowed the scale factor of the �rst cylinder to be modi-
�ed had marginally better success. We are still investigating
these phenomena.

5 Discussion

The success of this method comes from not assuming a per-
centage of the data will be reliable. We have demonstrated
an improvement by not relying on anything more than the
minimum number of necessary reliable points to exist in
the data, and providing a method to identify those reliable
points.
The assumption made in this method is that correspon-

dences truly represent a single 3D point. If correspondences
errors occur in points that are near the initial camera po-
sition and thus have signi�cant disparity over the �rst few
frames, this method will still label those points as reliable
for determining scale. Such an error could be detected by
checking the consistency of the optical ow against the mea-
sured camera velocity, but this would still be unlikely to lead
to satisfactory performance.
While it is true that many algorithms would have di�-

culty with this scenario, our algorithm as stated thus far
would in fact be more prone to error since it relies on only
two points. This would suggest that a weighted least squares
method (perhaps using this metric in combination with met-
rics regarding the con�dence in assigning the correspon-
dence) would outperform this method. In fact, we imple-
mented a weighted least-squares algorithm using just our
con�dence metric as the weights. The results are shown in
Table 2. On this data set (with no outliers in the correspon-
dence data), both methods should and do perform well. We
argue that this demonstrates the usefulness of the metric,
and that it should be adapted to a robust method that uses
all points according to a con�dence metric, such as weighted
least-squares. We also compare against a method in which
the scale is recomputed using only those points which are
within three standard deviations of the mean of the estimate
computed from all points. this two-pass method should be
more robust, and it does improve signi�cantly the estimate
for the scale of the �nal cylinder, with mixed results on the

other cylinders. Note that since we are determining the sixth
degree of freedom, we expect that outliers will have already
been removed in the determination of the �rst �ve degrees
of freedom; however, the scale can be prepared for outlier
removal to fail in the earlier processing.
The certainty for triangulation could be characterized by

the size of the intersection of two solid angles which rep-
resent the certainty of the pixel locations. One could use
the volume or the largest diameter of this intersection as a
measure of certainty. We �nd that we get good performance
from simply using the sine of the angle. Whether a sim-
ilar measure such as the volume of the intersection would
more precisely indicate con�dence and lead to better scale
estimates remains to be seen.
This con�dence metric can be applied to non-cylindrical

imaging systems. It does not rely on the imaging geom-
etry; like the adapted Eight-Point Algorithm, it uses only
vector operations which can be de�ned for any imaging sys-
tem. This metric could in fact be incorporated into the
other algorithms for determining the motion of the second
and succeeding images from a sequence. For example, in
the methods where the complete projection matrix is deter-
mined from the 3D triangulated points as computed from
the �rst two images [2, 18], a weighted least squares solution
could be implemented using this con�dence metric as the
weight. Similarly, an image-plane distance metric to mini-
mize reprojection error of points [6, 17] could be converted
into a weighted metric. Further, in such a method, the con-
�dence in triangulation could be converted into a variance
on the point location, and the distance error could in fact
be considered to be zero if its projection falls within that
variance.
We have thus far assumed the variance on all the cor-

respondence coordinates is identical; however, if it is not,
then this information can be used to derive more speci�c
con�dence measures. We could also take into account the
distance from the cameras the point is. The angular error
is �xed, best it is multiplied by the moment arm from the
camera to the point. This would help minimize the angular
error in reprojection [9].
The novel feature of this algorithm is in its method of se-

lecting the best points to use for determining the scale. By
doing this, it avoids making any assumption about the per-
centage of accurately triangulated points. This enabled the
new algorithm to produce a much more accurate initial es-
timate for the relative scale of translations between camera
locations for our image sequence. The risk it takes is that
the outliers in the correspondence will not have been identi-
�ed during the computation of the essential matrix. Given



Cyl# Correct scale Conf New Algorithm Rel. Length WLS Rel. Length Two-pass Rel. Length
2 7.007 0.670 6.981 0.996 6.934 0.990 6.983 0.997
3 10.625 0.542 9.854 0.927 9.990 0.940 9.826 0.925
4 14.091 0.101 13.233 0.939 13.041 0.925 13.256 0.941
5 14.395 0.746 12.198 0.847 12.207 0.848 11.907 0.827
6 18.736 0.145 18.354 0.980 17.722 0.946 18.453 0.985
7 19.912 0.231 18.648 0.937 19.502 0.979 19.095 0.959
8 15.101 0.166 13.152 0.871 13.681 0.906 13.803 0.914
9 9.256 0.712 6.756 0.730 4.909 0.530 7.010 0.757

Table 2: Comparison of new method using only two points versus new metric used as the weight in a weighted least-squares
algorithm, and in a two-pass algorithm that computes the mean and standard deviation of the estimated scale using all
(weighted) points, then removes those points more than three standard deviations from the mean and recomputes the estimate
with the remaining points. Since there are no outliers in the data, we expect and see few di�erences in the results.

our success in solving this part of the problem, we feel con�-
dent that our method will correctly identify the scale factor
necessary to register the data.
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