

Conflicting Agents in Distributed Search

Youssef Hamadi
Publishing Systems and Solutions Laboratory
HP Laboratories Bristol
HPL-2001-222
September 18th , 2001*

E-mail: yh@hplb.hpl.hp.com

distributed
constraint
satisfaction,
distributed
AI, search,
collaborative
software
agents,

We extend here the work on interleaved distributed graph
based backjumping, IDIBT/GBJ by considering conflicting
variables. The resulting method IDIBT/CBJ combines
distributed and parallel exploration with more efficient
backward phases. We take advantage of our asynchronous
framework to implement a more refined and efficient
update of detected conflicts. Finally, directed k-consistency
is added to our new method which gives IDIBT/CBJ-DkC.
We show that this last method extends cooperation in the
system.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

Conicting Agents in Distributed Search

Youssef Hamadi

Hewlett-Packards Labs

Filton Road, Stoke Gi�ord, Bristol BS34 8QZ, United Kingdom

yh@hplb.hpl.hp.com

September 10, 2001

Abstract

We extend here the work on interleaved distributed graph based backjumping, IDIBT/GBJ [Ham01,
Ham99] by considering conicting variables [Pro93]. The resulting method IDIBT/CBJ combines dis-
tributed and parallel exploration with more eÆcient backward phases. We take advantage of our asyn-
chronous framework to implement a more re�ned and eÆcient update of detected conicts. Finally,
directed k-consistency is added to our new method which gives IDIBT/CBJ-DkC. We show that this last
method extends cooperation in the system.

Keywords: Distributed Constraint Satisfaction, Distributed AI, Collaborative Software
Agents, Search

1 Introduction

The constraint satisfaction problem (CSP) is a powerful framework for general problem solving. It involves
�nding a solution to a constraint network; i.e., �nding values for problem variables subject to constraints that
are restrictions on which combinations of values are acceptable. This formalism has been extended to tackle
distributed problems. In the distributed constraint satisfaction paradigm (DCSP) a problem is distributed
between autonomous agents which are cooperating to compute a global solution. The raise in application
interoperability combined to the move towards decentralized decision process in complex systems raise the
interest for distributed reasoning. In this work we show how to enhance eÆciency of distributed search.

The basic method to search for solution in a constraint network is depth-�rst backtrack search (DFS)
[GB65], which performs a systematic exploration of the search tree until it �nds an assignment of values
to variables that satis�es all the constraints. DFS has been extended to parallel-DFS to speed-up the
resolution process [RK93]. Interestingly parallel-DFS showed that under some assumptions, speed-up could
be superlinear.

In [Ham01] we have presented Interleaved Distributed Intelligent BackTracking an algorithm performing
graph-based parallel-DFS in DCSPs. Our algorithm interleaves the exploration of subspaces within each
agent. Between distinct agents parallelism is achieved since they can consider distinct subspaces at the same
time. Experiments showed that 1) insoluble problems do not greatly degrade performance over a single
exploration and 2) on problems with nonuniform search space, IDIBT/GBJ allows superlinear speed-up over
a single exploration of a distributed search space.

Here we extend this algorithm to act like the well known sequential conict-directed backjumping (CBJ)
[Pro93]. Interestingly we can take advantage of the asynchronous relation between subproblems by doing a
�ne and very cost e�ective update of conict-sets. Finally, a particular property of CBJ allows the detection
of directed k-inconsistencies between subproblems. We add this last feature to our method.

In the following, we �rst give a basic de�nition of the CSP/DCSP paradigm, completed by a brief dis-
tinction between parallel and distributed search. Then, we present DisAO a distributed variable ordering
method, and we describe and analyze IDIBT/CBJ and IDIBT/CBJ-DkC. Afterwards, we give an experi-
mentation with random DCSPs and N-queens problems, followed by a general conclusion.

1

2 Background

2.1 Constraint satisfaction problems

A binary constraint network involves a set of n variables X = fX1; : : : ; Xng, a set of domains D =
fD1; : : : ; Dng where Di is the �nite set of possible values for variable Xi and C the set of binary con-
straints fCij ; : : :g where Cij is a constraint between i and j. Cij(a; b) = true means that the association
value a for i and b for j is allowed. Asking for the value of Cij(a; b) is called a constraint check. G = (X ; C)
is called the constraint graph associated to the network (X ;D; C).

A solution to a constraint network is an assignment of the variables such that all the constraints are
satis�ed. The constraint satisfaction problem (CSP) involves �nding a solution in a constraint network.

2.2 Distributed constraint satisfaction

A distributed constraint network (X ;D; C;A) is a constraint network (binary in our case), in which variables
and constraints are distributed among a set fAgent1; : : : ; Agentmg of m autonomous sequential processes
called agents. Each agent Agentk \owns" a subset Ak of the variables in X in such a way that A =
fA1; : : : ; Amg is a partition of X . The domain Di (resp. Dj), the constraint Cij (resp. Cji) belongs to the
agent owning Xi (resp. Xj)

1. In the present work, we limit our attention to the extreme case, where there
are n agents, each only owning one variable, so that A = X . Thus, in the following, Agenti will refer to
the agent owning variable Xi. Of course, the assignment of a single variable can relate the solution of an
embedded large subproblem and in fact, each inter-agent constraint can represent a large set of constraints.

Initially, the graph of acquaintances in the distributed system matches the constraint graph. So, for an
agent Agenti, � is the set of its acquaintances, namely the set of all the agents Agentj such that Xj shares
a constraint with Xi. The distributed CSP (DCSP) involves �nding a solution in a distributed constraint
network.

2.3 Communication model

For a DCSP, we assume the following communication model [YH96] (in every way classical for distributed
systems). Agents communicate by sending messages. An agent can send messages to other agents if and
only if it knows their address in the network. The delay in delivering messages is �nite. For the transmission
between any pair of agents, messages are received in the order in which they are sent. Agents use the
following primitives to achieve message passing operations:

� sendMsg(dest;\m") sends message m to the agents in dest.

� getMsg() returns the �rst unread message available.

2.4 IDIBT: Distributed and Parallel search

Parallel backtrack search is used to speed-up the resolution process [RK93, Kor81]. Distributed backtrack
search faces a situation where the whole problem is not fully accessible; resolution is enforced by collaboration
between subproblems.

Both framework use several processing units. In parallel search, N processors concurrently perform
backtracking in disjoint parts of a state-space tree. In distributed search, distinct subproblems are spread
on several processing units and backtracking is performed by the way of collaboration.

Part a) of �gure 1 presents an example of parallel exploration. Here, the problem is duplicated on two
processors P0 and P1. P0 is in charge of the subspace characterized by X1 = a, P1 explores the remaining
space. During the computation, message passing is useless. However, since a processor can exhaust its task
before another (good heuristic functions, �ltering, . . .), dynamic load balancing is used [RK93]. Usually, an
idle unit asks a busy one for a part of its remaining exploration task.

1We suppose that the constraint network is such that (X ; C) is a symmetric graph.

2

X2 X3

X4

X1
A0

A1 A2

A3

X1

S S S S
(a)

(b)

X2

X3

X4

P1P0

Figure 1: Tree searches: (a) parallel search, (b) distributed search

Part b) of the �gure presents a distribution of this 4-variables problem between four autonomous agents.
Here, state-space exploration uses local resolution for each subproblem with negotiation on the shared con-
straints.

To add parallel search in our distributed framework, we must divide a search space in independent parts.
In each part a distributed conict-directed backtrack search will take place. In the system, we will have two
kind of agent with distinct behaviors.

� a Source agent, which will partition its search space in several subspaces called Context

� the remaining agents which will try to instantiate in each context.

There is no duplication of processing units here. Agents will successively consider search in the di�erent
contexts. This interleaving will be achieved by message passing operations. The context of resolution added
within each message will allow an agent to successively explore the disjoint search spaces. Since distinct
agents can simultaneously consider and operate in di�erent context, IDIBT realizes a parallel exploration of
the search space too. In [Ham01, Ham99], we showed that 1) insoluble problems do not greatly degrade per-
formance over a single-context exploration and 2) superlinear speed-up can be achieved when the distribution
of solution is nonuniform.

3 Conicting Agents in Distributed Search

Before presenting our new methods, we recall here the di�erent features of the IDIBT algorithm.
IDIBT mixes parallel and distributed search. It realizes a DFS between the agents of a distributed CSP.

DFS is a general complete resolution technique widely used for its storage eÆciency. Given a variable and
value ordering, it generates successive assignments of the problem variables. It tries to extend a partial
assignment by taking the next variable in the ordering and by assigning it a value consistent with previously
assigned variables. If no value can be found for the considered variable, the algorithm backtracks.

IDIBT/GBJ use the principles of Dechter's GBJ [Dec90]. When an assignment cannot be extended, it
goes back to the nearest connected agent in the system. With our IDIBT/CBJ scheme, this behavior will
be more re�ned. Each agent will only consider conicting agents when backtracking. By this way, it will
always address a subset of connected agents.

Our framework is totally asynchronous but we need an ordering between related agents to apply the
backtracking scheme which ensures completeness. In the following we present our distributed ordering
method followed by the IDIBT search process.

3

3.1 Distributed Agent Ordering

The practical complexity of a search process is highly dependent on user's heuristic choices such as value/variable
ordering. Usually these heuristics take advantage of domain-dependent knowledges. Each agent can use par-
ticular heuristics in the exploration of its subproblem. But in the DCSP, agents must collaborate to use
an eÆcient ordering in the distributed search process. We present here DisAO, a generic method for a dis-
tributed computation of any static agent ordering. With this algorithm, agents cooperatively build a global
ordering between the subproblems. This ordering de�nes a hierarchical relation between the agents.

3.1.1 Algorithm

In our system, each agent locally computes its position in the ordering according to the chosen heuristic.
Concretely, each agent determines the sets �+ and ��, respectively children and parent acquaintances, w.r.t.
an evaluation function f and a comparison operator op which totally de�ne the heuristic chosen. This is done
in the lines 1 to 2 of Algorithm 1. Notice that the evaluation function f can involve some communication
between the agents. To avoid a complex communication behavior, it is better to use heuristics for which the
associated function f involves only local communications between neighbor agents.

Algorithm 1: Distributed variable ordering
begin

% � split;
1 �+ ;; �� ;;

for each Agentj 2 � do

if (f(Agentj) op f(self)) then �+ �+ [fAgentjg;
2 else �� �� [fAgentjg;

% �� ordering;
3 max 0;

for (i = 0; i < j�+j; i++) do
m getMsg();
if (m = value:v; from:j) then

if (max < v) then max v;

max ++;
sendMsg(��, \value:max; from:self");
sendMsg(�+, \position:max; from:self");
for (i = 0; i < j��j; i++) do

m getMsg();
if (m = position:p; from:j) then Level[j] p;

Order �� according to Level[] ;
4 Extend �� ;

end

After that, agents know their children (�+) and parents (��) acquaintances. During the search, they
will send assignment value to children, and in case of dead-end, they will backtrack to the �rst agent in
��. So, we need a total ordering on ��. This is done in the second part of Algorithm 1 (lines 3 to 4).
Agents without children state that they are at level one, and they communicate this information to their
acquaintances. Other agents take the maximum level value received from children, add one to this value,
and send this information to their acquaintances. Now, with this new environmental information, each agent
rearranges (total order) the agents in its local �� set by increasing level. Ties are broken with agent tags.
Finally, for �tting each total order ��, the constraint graph is extended with zero or more additional edges
(lines 4). These new edges are tautological constraints. Their purpose is the enforcement of completeness
by local search space initialization in the forward exploration phases (see section 3.4). We do not present
details about this computation here. In summary, each agent communicates its ordered �� set to its parents.
These agents can locally modify their sets by adding lower (resp. higher) agents in their �� (resp. �+).
This process is repeated until stabilization; i.e., no more � modi�cation.

Figure 2 gives an illustration of this distributed processing for the max-degree variable ordering heuristic.
On the left side of the �gure a constraint graph is represented. For achieving the max-degree heuristic,
Algorithm 1 must be called by each agent with the function f(Agenti) = j�ij (where �i is the set of

4

acquaintances of Agenti) and the comparison operator op =0<0. In case of ties, this operator can break them
with agent tags.

X2

X3

X4

X6

X1

X5

X7

DCSP:

X7

X1

X2

X4 X5

X2

X1

X2

X4

X2

X6

level 2

level 3

level 4

X3

max−degree ordering:

level 1

Figure 2: Distributed variable ordering

Once Algorithm 1 has been applied, the static variable ordering obtained is the one presented on the right
side of Fig. 2. Arrows follow the ordering relation, which represents the assignment transmission order of the
search procedure. The link between Agent4 and Agent3 comes from the interconnection of Agent7's parents.
Agent7 will go back to X3 then to X4 if Agent3 has no remaining solution. During forward exploration, a
change in X4 will be reported to X3 and to X7. These agents will then get back their whole search space.

3.1.2 Analysis

In the worst case, w.r.t. a fully connected network with n agents, the split of � uses O(n). The exchange
of value among the path of n agents use O(n2) messages; i.e., level one agent sends n� 1 messages, level 2
agent n � 2 and so on. These messages can overlap, this bring O(n) local operations for performing these
transmissions. The transmission of position messages is similar but from the top to the bottom. The
extension of the ordering in the hierarchy adds no link but requires O(n2) message to exchange �� sets.
According to that, DisAO uses O(n) local operations and O(n2) messages in the worst case2.

Property 3.1 ()
8Ai, if 9Aj ; Ak such that Aj ! Ai and Ak ! Ai, then 9Aj ! Ak or 9Ak ! Aj .

We have Aj ! A1; Ai and Ak ! A2; Ai with A1 2 ��(Ai) and A2 2 ��(Ai). By de�nition we have
f(A1)opf(A2) or f(A2)opf(A1) then by �� extension we have A2 ! A1 or A1 ! A2. We can follow the
previous reasoning by considering Ai = A1 or Ai = A2.

Property 3.2 ()
For a problem P = (X ;D; C;A), if (X;C) is connected, the directed graph computed with DisAO has an
unique agent such that �� = ;.

The proof is straight forward, if we consider 3.1. In a DisAO ordering, there is a unique source and the
hierarchy is made of subproblems (involving several agents) organized in a global tree.

Finally, we can remark that in the resulting ordering, at a particular level, unconnected agents are
independent. Connected ones are linked by tautological constraints. This means that their information
will just initialize the search space without loosing current assignment. Hence, in each level, agents can
perform parallel computations at the same time. This observation will be important when we will consider
the complexity of distributed search.

2Of course for prede�ned applications, the DisAO pre-processing step could be avoided.

5

3.2 IDIBT/CBJ: Using Conicts Between Agents

While jumping back, Dechter's GBJ is directed by topology. With IDIBT, we have the same behavior with
the only di�erence that sometime topology is extended to join asynchronous behavior and completeness.
Prosser's CBJ is directed by conicts. This sequential algorithm stores with each variable i a \conict-set"
which keeps the subset of the past variables in conict with some assignment of i. When a dead end occurs,
CBJ jumps back to the deepest variable h in conict with i. If a new dead end occurs, it jumps back to
g, the deepest variable in conict with neither h or i. Finally, each time CBJ jumps back from i to h, the
variables j such that h < j � i get back their search space and an empty conict-set.

In the following we detail the adaptation of this behaviour in a distributed framework. Like we did
before with the adaptation of Dechter's GBJ, our algorithm enhances the sequential CBJ scheme by saving
the maximum of previous work between agents.

3.2.1 Principles

Each agent will maintain a conict-set which will be used during backjumping. But here, during a jump
from i to a conicting agent h our distributed framework can easily preserve previous work. While CBJ
proactively reinitialize the search space and conict-set of each variable j such that h < j � i, IDIBT/CBJ
will do nothing. In fact, these updates are reduced and delayed as follow.

Our strategy is that when a value is addressed to i by an agent j, the receiver can selectively prune its
conict-set to keep conicts unrelated with the new information from j. The elements of the local conict-set
are ordered (<o) thanks to DisAO (see section 3.1). These positions are computed from the bottom to the
top. For each conicting agent h, we have two con�gurations:

� j <o h, the conict with h is still valid. According to that the corresponding pruning in the local
search space can be kept. Indeed, h is located in a position higher than the location of the sender.
According to that, the new value for j cannot cancel previous decisions about the current search space
(remaining values and conict-set). This argument is correct if we consider the following. A jump back
initially occur to the deepest variable in conict, here that mean the highest agent in the ordering. So
conicts detected from h are unrelated to j since h is always checked before j when the agent tries to
get an assignment.

� h <o j, here the deletion of values raised by h's value are not independent from j's values. The local
search space can recover these values and h is removed from the conict-set.

To implement the previous, each agent records for each member of the conict-set the corresponding
pruning in the local search space.

This conservative behavior generalizes the observation made by Prosser in [Pro93] for the sequential
CBJ. In this paper the author remarks that during the reinitialization phase of its procedure (following a
backjump from i to h), it may be the case that max-list(conf-set[j])< h, in which case we can continue to
believe the current pruning for j. In the sequential framework, we would have to examine all future conict
sets whenever backjumping takes place. This could be expensive. Here the asynchronism in the system allow
us to implement eÆciently a generalization of the previous. Of course such generalization could be made for
sequential CBJ3.

This improvement makes IDIBT/CBJ close to backmarking [Gas77, LHB94, Ham99] and in a limited way
close to dynamic backtracking [Gin93]. The previous behavior could be enhanced by cutting dependencies
between variables during the detection of conicts. Nevertheless, this behavior should be costly since the
pruning made according to a particular acquaintance could not be used for successive tests.

3.2.2 Algorithm

The global scheme of the search process is the following (see algorithm 2 and data structure below). In the
initialisation phase (lines 1 to 3), the source agent divides its search space in NC subspaces. Remaining
agents will use the same space D in each context. In each context c each agent initializes its conict-set and

3Personnal communication to P. Prosser, summer 1998.

6

assign its variable. Each timestamp counter valueCptc is then set to one. After that, each agent informs its
children of its chosen value (message content starting by \infoVal").

Interactions start at line 4. Here each incoming message is interpreted in a particular context c (lines 5
and 6).

An \infoVal" message from acquaintance j is processed as follow (line 7). First the reported value is
stored in value[j]c then the associated timestamp valueCpt[j]c is incremented. Finally the agent tries to
get a value compatible with the new message. If a compatible value is found, an \infoVal" message with
context c informs children of the new choice4. If no value satis�es the constraints with the agents in ��, a
backtrack message is sent in context c to the nearest conicting agent (message content starting by \btSet"
in line 8). This message includes the computed conict-set and beliefs about the timestamps of its members
valueCpt[conflictSetc]c.

The receiver of the backtrack message (line 9), checks its validity by comparing its timestamp with the
reported one and by checking that shared acquaintances are reported with the same timestamps too (function
contextConsistency). In case of di�erent values, this means that the sender and/or the receiver have not
yet received some information. Backtrack decision could then be obsolete or badly interpreted.

When the comparison matches, reported conicts are merged with the local ones. The current value
myV aluec is added to the pruned values for the included agents; i.e., the corresponding pruning in the local
search space. Then, if the agent can �nd a compatible myV aluec in the remaining search space, this value
is addressed to children in line 10. If such a value cannot be found, we must consider two cases. The �rst
one is an agent without possibility for backtracking (empty conict-set, line 11). This agent has detected
problem insolubility in the subspace c. A message noSolution in context c is sent to a System agent. This
extra agent stops the distributed computation in context c by broadcasting a stop message in the whole
multi-agent system. With this information agents can stop the processing of context c messages. If all the
context have no solution, the computation is �nished. In addition, it can also stop the computation when
a solution is found. A global state detection algorithm [CL85] is used to detect whole satisfaction. Global
satisfaction occurs when in a particular context c, agents instantiated according to parent constraints are
waiting for a message (line 5) and when no message with context c transits in the communication network.

If there exists a conicting agent for backtracking, the agent address a backtrack message to the nearest
agent in the augmented conict-set (line 12). Now the sender is waiting for an incoming message, but if the
goal is to maximize satisfaction in the system, the agent could get back its initial local search space and a
value compatible with previous ones. This simple addition is a simple way toward a max-sat strategy.

Primitives and data structures
IDIBT/CBJ uses the following structures and methods:

� NC is the number of contexts. self is the agent running the algorithm, Dself;c is its domain in context
c.

� myV aluec current value in the context c. myCptc current instantiation number in context c. This
value will be used as a timestamp in the system.

� value[]c stores parent acquaintances values in context c. valueCpt[]c stores for each parent the current
instantiation number, in the right context.

� conflictSetc, this set records the conicting acquaintances in context c.

� updateSpace(j; c), according to an infoVal message from j, implements in context c the selective update
of the search space described above.

� getV alue(type; c), returns the �rst value inDself;c compatible with agents in ��, starting atmyV aluec
5.

During this search, conflictSetc is updated. If a compatible value is found, myCptc is incremented.

4Of course, current value myV aluec can already satisfy the constraints with j, in which case, information of children is
useless.

5The search for a new compatible value starts from the current value for keeping the maximum of previous work. For
ensuring completeness, the values added by updateSpace that are before myV aluec in Dself;c are put at the end of Dself;c.

7

� �rst(S) returns the �rst element of an ordered set S. With our application, returns the nearest agent
in S. merge(s1;s2) takes two ordered sets and returns their ordered union.

� contextConsistency(set; reportedV alueCpt; c), set contains an ordered list of agents, reportedV alueCpt
contains for each agent in set timestamps computed by the sender of the current message. This func-
tion ensures that, �rstly reported timestamp for self is the good one; i.e., equal to myCptc, secondly
that for the shared acquaintances agents, reported timestamps are the same than in valueCpt[]c. This
mechanism ensures that agents have the same beliefs about the shared parts of the system.

� The previous sendMsg function becomes sendMsg(dest;m; c), which sends message m to the agents
in dest in context c.

Algorithm 2: IDIBT/CBJ

begin

1 if (�� = ;) then Split domain D in Dself;1 .. Dself;NC ;
for (1 � c � NC) do

if (��! = ;) then Dself;c D;
conflictSetc ;;

2 myV aluec getValue(info, c);
myCptc 1;
sendMsg(�+, \infoVal:myV aluec; from:self", c);

3 endc false;

4 while (9cjendc = false) do
5 m getMsg();
6 c m:context;

if (m = stop) then endc true;
7 if (m = infoVal:a; from:j) then

value[j]c a;
valueCpt[j]c ++;
updateSpace(j,c);
myV aluec getValue(c);
if (myV aluec) then

sendMsg(�+, \infoVal:myV aluec; from:self", c);

else

8 sendMsg(first(conflictSetc), \btSet:conflictSetc; Values:valueCpt[conflictSetc]c", c);

9 if (m = btSet:set; Values:reportedV alueCpt) then
if (contextConsistency(set, reportedValueCpt, c)) then

conflictSetc merge(set; conflictSetc);
myV aluec getValue(c);
if (myV aluec) then

10 sendMsg(�+, \infoVal:myV aluec; from:self", c);

else

11 if (conflictSetc = ;) then
sendMsg(system, \noSolution", c);
endc true;

else

12 sendMsg(first(conflictSetc), \btSet:conflictSetc; Values:valueCpt[conflictSetc]c", c)

end

3.3 Directed k-consistency

CBJ has been extended to achieve directed k-consistency [Pro93]. We can extend our algorithm to IDIBT/CBJ-
DkC as follow. This will allow us to present an example of cooperation between several search processes.

During backjumping, when an agent i address a conict-set fh = v(h)g to h, that mean that the value
v(h) is incompatible with any value of the domain of i. This value is arc-inconsistent and can be de�nitively

8

removed from the domain of h. Here the asynchronism can make the backjump obsolete; i.e., h has a new
value. But this information is still useful and v(h) must be removed6.

To illustrate directed k-inconsistency, consider a con�guration where an agent j exhausts its domain and
constructs an ordered conict-set fi = v(i); h = v(h)g. That mean that each value v(j) is inconsistent with
v(h) or v(i). Consider now that i has no conict with its ��. Now, assume that each new value addressed
from i to j brings a new backjump to i. At the end, i exhausts its search space too and backjump to h which
can de�nitively remove v(h) from its domain.

Within IDIBT several DFS search are parallelized (see section 2.4). Each agent interleaves explorations
and each k-inconsistency detected in a particular context can bene�t to other contexts. This sharing makes
IDIBT very close to cooperative frameworks [HH93, HW93]. But while classical cooperative frameworks
have to su�er from overheads to communicate useful informations, here the interleaving within each agent
makes sharing very eÆcient.

To implement the previous within IDIBT, we have to add the following line
9:1 if(jsetj = 1) remove(Dself ; set(self))
where set(self) represents the reported value.

3.4 Analysis

Completeness

Property 3.3 ()
When an agent Ai changes its instantiation, agents Aj such that 9Ai ! Aj will reconsider their whole search
space.

The proof is direct if we consider the algorithm 2. When an agent changes its value, �+ agents receive
it. These agents can keep their current instantiation or change it, but they always resume their local search
space since the conict-set is deleted from the sender location to the nearest agent. By propagation of
instantiations between agents, 3.3 is veri�ed.

Property 3.4 ()
If Ai changes its instantiation according to a btSet message initially upcoming from Aj , each agent Ak

included in the conict-set of agent Aj has exhausted its search space.

This last property is obvious. Properties 3.1, 3.3 and 3.4 ensure completeness of the exploration. They
prove that according to the DisAO computed ordering, backjumping between agents is made in an exhaustive
way.

Termination/Correctness
Termination is ensured by search exhaustivity and by the fact that DisAO orders are acyclic. The use of

a state detection algorithm [CL85] which stops the system when any context c is stuck on a solution gives
correctness. Interestingly the use of several context within IDIBT do not signi�cantly change the overhead
brought by the Chandy's method. In fact it is easy to generalize the method to manage the monitoring of
the di�erent context without raising the message passing overhead; i.e., each monitoring message includes
the status of the di�erent contexts.

Complexity
Search complexity is exponential in the number of variables. But in a distributed execution, rooms are

open to use the relative independence between subproblems. This can enhance complexity results. In the
following, levelj represents the set of agents with a computed level j and h the highest level in the ordering.

6Since IDIBT transmits timestamps instead of beliefs about assigned values, the sender adds the value which has to be
deleted each time it address a singleton-conict-set.

9

Definition 3.1 ()
A DisAO ordering is called additive if 8b 2 levelj j 1 � j � h, 6 9 agents a; a0 2 leveli with 1 < i � h j a! b

and a0 ! b.

Theorem 3.1 ()
A DCSP P with domain sizes d, using an additive DisAO ordering has a worst case time complexity,

O(
hY

l=1

jlevellj � d)

To prove that we must remark that with an additive ordering, during backtracking, the union of two ��

set do not include two agents at the same level. Then a backtracking occurs between distinct level and at
each time considers at most d values. The whole problem is solved by considering at each level combinations
of values. Since at each level, agents are independent, the number of possibilities is made by the sum of
domains size.

When the ordering produced by DisAO is not additive, the complexity of a backtracking depends on the
size of the longest path between agents. In the worst case we have an O(dn) complexity. We must remark
here that DisAO was not made to construct additive hierarchies; its purpose was to add more parallelism
by extracting subproblems independence. Nevertheless, we think that it must be possible to embolden
parallelism while maximizing the additive property.

4 Conclusion

This work extends previous work on graph based backjumping. It detects conicts between agents. Inter-
estingly the distributed framework allows us to make eÆcient update of conicts. The work was extended
to achieve directed-k-consistency. With this last version, our algorithm extends the cooperation. In multi-
context search, dkC can bene�t to disjoint search spaces. We are currently doing experiments with all these
methods. First results are encouraging.

References

[CL85] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed
systems. TOCS, 3(1):63{75, Feb 1985.

[Dec90] R. Dechter. Enhancements schemes for constraint processing: backjumping, learning and cutset
decomposition. AI, 41(3):273{312, 1990.

[Gas77] J. Gaschnig. A general backtracking algorithm that eliminates most redundant tests. In IJCAI,
volume 1, page 457, 77.

[GB65] S. W. Golomb and L. D. Baumert. Backtrack programming. Journal of the ACM, 12:516{524, 65.

[Gin93] M. L. Ginsberg. Dynamic backtracking. JAIR, 1:25{46, 1993.

[Ham99] Y. Hamadi. Traitement des probl�emes de satisfaction de contraintes distribu�es. PhD thesis, Uni-
versit�e Montpellier II, 1999. (in french).

[Ham01] Y. Hamadi. Interleaved backtracking in distributed constraint networks. In IEEE, editor, 13th
International Conference on Tools with Arti�cial Intelligence, page (to appear), 2001.

[HH93] T. Hogg and B. A. Huberman. Better than the best: The power of cooperation. In Lynn Nadel and
Daniel Stein, editors, 1992 Lectures in Complex Systems, volume V of SFI Studies in the Sciences
of Complexity, pages 165{184. Addison-Wesley, Reading, MA, 1993.

10

[HW93] T. Hogg and C. P. Williams. Solving the really hard problems with cooperative search. In Proceed-
ings of the 11th National Conference on Arti�cial Intelligence, pages 231{236, Menlo Park, CA,
USA, July 1993. AAAI Press.

[Kor81] W. Kornfeld. The use of parallelism to implement a heuristic search. In Patrick J. Hayes, editor,
Proceedings of the 7th International Joint Conference on Arti�cial Intelligence (IJCAI '81), pages
575{580, Los Altos, CA, 24{28 August 1981. William Kaufmann.

[LHB94] Q. Y. Luo, P. G. Hendry, and J. T. Buchanan. Strategies for distributed constraint satisfaction
problems. In Proc. of the 13th Int. Workshop on DAI, pages 207{221, Jul 1994.

[MPI94] Message Passing Interface Forum MPIF. MPI: A message-passing interface standard. Int. Journal
of Supercomputer Applications, 8(3/4), 1994.

[Pro93] P. Prosser. Domain �ltering can degrade intelligent backjumping search. In IJCAI, pages 262{267,
1993.

[RK93] V. N. Rao and V. Kumar. On the eÆciency of parallel backtracking. IEEE Transactions on Parallel
and Distributed Systems, 4(4):427{437, Apr 1993.

[YH96] M. Yokoo and K. Hirayama. Distributed breakout algorithm for solving distributed constraint
satisfaction problems. In ICMAS, pages 401{408, Dec 1996.

11

