

Measuring the Entropy of Large Software Systems

Greg Snider
HP Laboratories Palo Alto
HPL-2001-221
September 10th , 2001*

entropy,
software
systems,
structure,
metric

How does one measure a large software system to determine if
it is "well-structured"? This report proposes a metric for doing
just that, based on the concept of entropy from information
theory. A tool that automatically extracts the metric from
source code was built and used to compare two large software
systems (each about 500,00 lines of source code): a commercial
application that has existed and been heavily modified for
several decades; and a recent rewrite of the same system that
aimed at producing a well-structured system. The rewritten
system was shown to have much lower entropy in each of its
subsystems, compared to the legacy system, as well as much
lower entropy overall.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

1 Problem

A common goal of software architecture is to maximize cohesion within modules and minimize
coupling between modules—systems meeting those goals are said to be well-structured. The
problem is: how can you measure the degree of conformance of a large software system to the
principles of maximal cohesion and minimal coupling? The size of large software systems makes
manual evaluation impractical, and subjective evaluations are vulnerable to bias [1].

An automatic tool for performing such measurements has at least three areas of application in
building and maintaining large software systems:

• Comparisons—if one if forced to choose between two implementations of a software
system with essentially the same functionality, choosing the better structured one
would probably provide lower costs of maintenance and extension.

• Evolution—as large software systems grow, their structure is subject to degradation.
Measurement provides and means for detecting such degradation so that countermea-
sures can be initiated.

• Restructuring—a measurement tool can provide restructuring guidance to minimize ad
hoc decision making.

2 Background—Software Metrics

Software metrics are indirect measurements of selected “quality” attributes of a software product
or process that are used to either (1) estimate the presence or value of the desired attribute, which
is difficult to measure directly, from real-world inputs that are relatively easy to measure; or (2)
make predictions of the future value of the desired attribute based on inputs and parameters that
can be specified in the present. The expectation is that metrics can provide useful feedback to
software designers as to the impact of decisions made during coding, design, architecture, or spec-
ification; without such feedback, many decisions must be ad hoc.

As shown in figure 1, a software metric requires [2]:

(1) A specification of raw inputs to be measured (e.g. lines of source code, historical defect
rates).

(2) A model that maps inputs and parameters to the metric (e.g. defect rate = f(lines of source,
historical defect rate)).

(3) A specification of parameters for adjusting the model.

(4) A specification of the metric’s meaning—that which is to be measured or predicted (e.g.
the defect rate of a software system).
1

(5) A means of comparing the metric with other measurables to empirically validate the met-
ric’s usefulness. If this cannot be done, the metric is “metaphysical.”

The track record of software metrics has been generally poor [3,4,5]—Sheppard and Ince [2] pro-
pose three reasons for this:

• A metric lacks clear definitions of terms. For example, “complexity” and “quality” are
too ill-defined to be useful.

• The metric’s theoretical basis is overly ambitious, inconsistent or unconvincing.
• The metric lacks empirical validation, has conflicting empirical results, or makes pre-

dictions no more powerful than those produced by the infamous “lines of code” metric
(which is generally used as a “null hypothesis” in evaluating other metrics).

3 Prior Work

Popular metrics which are suspect or largely discredited for one or more of the reasons mentioned
in the previous section include Halstead’s Software Science [6], McCabe’s cyclomatic complexity
[7], Henry’s information flow [8], Emerson’s cohesion [9], Yau and Collofello’s stability [10], and
others. Metrics with better acceptance include the function point metric [11] (which is primarily
aimed at predicting development effort from specifications and measuring productivity), and met-
rics which focus on intermodular connections [12].

These results suggest that expectations for software metrics must be tempered: a precision tool
capable of measuring desired quality properties is not likely to be created in the near future (and
may be fundamentally impossible[13]). The most that can be expected is a coarse, automated tool
that can provide feedback useful to designers. Software is still largely an art, not a rigorous engi-
neering discipline, and ultimately one is forced to rely on designers’ experience, talent and judge-
ment.

4 Measuring Structure

We wish to construct a software tool which measures the degree of conformance that a software
system has to the architectural principles of high intra-module cohesion and low inter-module

model

parameters

inputs

output

real world

compare

FIGURE 1. A metric requires (1) inputs measured from the “real world”, (2) a model, (3) parameters to
adjust the model, (4) a predictive output, and (5) a means of validating the output by comparing it with
measurement from the real world..
2

coupling. The input to the model is the source code of the system to be measured. The output is a
numeric measure of the degree of conformance.

The proposed metric is based on the concept of entropy from information theory [14]. Although
entropy is capable of providing a theoretical lower bound on the amount of information contained
within “messages,” it is not always computable, and even when it is, it does not prescribe a
scheme for achieving that lower bound. Nevertheless, the concept forms the core of the metric:
the entropy of system structure is not computed directly, but estimated based on encoding
schemes that follow the spirit of Huffman codes.

The following assumptions are used in the construction of the metric:

(1) Since engineers work with source code when modifying a system, we are interested in the
structure of the application at the lexical level.

(2) We are more interested in analyzing global relationships than local ones.

(3) The more dependencies a module has on other parts of the system, the harder it is to mod-
ify.

(4) “Remote” dependencies are more expensive (in terms of comprehensibility) than “local”
dependencies (restatement of cohesion and coupling principle).

The following subsections construct the five parts of the metric as shown in figure 1. We assume
for simplicity of explanation that the software to be evaluated is written in the C language, but the
techniques described here may be applied to software written in any language.

4.1 Inputs

The primary lexical abstraction in C is the symbol (also called name or identifier). A symbol is a
character string that has the properties of: scope (global, file, parameter or block) which partially
defines the namespace for that symbol; type, which is constructed from the built in types and the
pointer, struct, union, array and enum operators; and storage class (auto, extern, register, static,
typedef). Following the assumptions above, we restrict our focus to dependency relationships of
symbols with global and file scope. These will be referred to as global symbols and include:

• function names.

• global variables1.
• global struct and union type names.
• fields of global structs and unions.

Since we are interested in the large-scale structure of a software system, symbols that are strictly
local in nature are excluded:

• parameter names.
• variables local to a function.

1.A global array is treated like a global scalar in that the index is ignored.
3

4.2 Model

The inputs of the metric are transformed to a model for analysis. The model proposed is a directed
graph composed of two different types of nodes—leaf nodes and interior nodes—and two differ-
ent types of edges—structural edges and dependency edges.

A leaf node corresponds to a global symbol, or set of global symbols, in the source code. Function
names, global variables, and global struct names each get a leaf node, while fields are collected
with the leaf node of the enclosing struct name (since fields are already collected lexically, there is
little to be gained by representing them separately).

An interior node corresponds to either: (1) an aggregate of leaf nodes (i.e. a .c file or .h file); or
(2) an aggregate of other interior nodes (such as a directory, or a subset of a directory distin-
guished by a naming convention).

Structural edges, attached to interior and leaf nodes, create a tree that corresponds to the directory
and file structure (and possibly file naming conventions) of the source. Note that a structural edge
may connect two interior nodes, or an interior node with a leaf node, but may never connect two
leaf nodes. Figure 2 shows an example of a model with interior nodes, leaf nodes and structural
edges (but no dependency edges).

A dependency edge interconnects two leaf nodes and represents a dependency that one symbol
has on another. Two types of dependencies [15] will be considered:

• Service dependencies—if a function, A, invokes another function, B, and A depends
upon B’s correct implementation, then A has a service dependency on B. This is repre-
sented by a directed edge from A to B. For simplicity, all function calls will be
assumed to represent service dependencies (although there are cases where this is not
true), and indirect invocations (e.g. traps, interrupts) will be ignored.

• Data dependencies—if a function references a non-function global symbol, it has a
data dependency on it. Global variables of type struct (or pointer to struct) have a data
dependency on the struct symbol. Functions with a return type of struct (or pointer to
struct) or with parameters of type struct (or pointer to struct) parameters have a data
dependency on the struct symbol.

= directory
or file group

= file

= global

FIGURE 2. Structural edges relating interior and leaf nodes. Leaf nodes are represented by filled
circles.

symbol
4

Other dependencies, such as environmental dependencies, are not considered because of the diffi-
culty of extracting them from source code.

Figure 3 shows an example of service dependency edges that result from A calling B, and B call-
ing C and D in the source code.

Figure 4 shows an example of data dependency edges that result from a shared variable, V, refer-
enced by functions A, B, and C.

A larger example is shown in figure 5.

A B C D

FIGURE 3. Service dependencies: A calls B, B call C and D

= structure edge

= dependency edge

V

A B C D

FIGURE 4. Data dependencies. A, B, and C all reference global variable V.

= structure edge

= dependency edge

V

5

4.3 Output

Information theory deals with the efficient transmission of messages from a sender to a receiver.
The receiver must have some knowledge about the messages to be sent, e.g. whether the messages
contain text, graphics, or other information, along with the encoding scheme used to send them.
This common knowledge between the sender and receiver, the context, is open to negotiation
prior to transmission—the receiver must have some knowledge about the messages to be sent; it is
the sender’s job to tell the receiver through messages what the receiver doesn’t know.

What is the context for the model in this paper? We assume the receiver knows only the following
about a software system:

(1) Source tree layout (this corresponds to the nodes and structural edges of the graph
described in the previous section).

(2) The symbols contained within each file (this corresponds to the leaf nodes of the graph).

(3) An encoding scheme for describing the dependency edges.

What the receiver desires to learn, through efficiently encoded messages, is the system’s set of
service and data dependencies. A message is defined to be the precise description of the depen-
dencies a single leaf node (function) has on the rest of the system. The encoding scheme for the
messages is derived from the statistics of the software system itself in such a way as to minimize

the average length of the messages to be sent1. Note that this scheme requires that a message be

foo.h: struct foo {struct foo *next; int value;};

foo.c: #include “foo.h”
set_value(struct foo *foo, int val) {foo->value = val;}

bar.c: #include “foo.h”
struct foo bar;
main() {set_value(&bar, 5);};

bar.c foo.c

bar main() foo set_value()

directory

foo.h

FIGURE 5. Structure and dependency graph for a small program residing in
three source files in a single directory.
6

sent once and only once for each leaf node in the graph representing the system. It will be argued
here that the shorter the average message length, the more the system adheres to the objectives of
cohesion and coupling.

The structural metric to be derived from the model, call it µ, addresses the following question:

What is the average number of bits needed to describe the dependencies a function has on the
rest of the system?

In other words, what is the average length of a message? Part of the rationale for asking this ques-
tion follows from assumption 2—the more dependencies a module has on its environment, the
more bits are needed to describe those dependencies, and hence the more difficulty there is in
understanding that module.

As a simple example, consider a system consisting of F functions (all residing in a single source
file) and E dependencies. This will map to a graph with F leaf nodes, 1 interior node (representing
the source file), and e dependency edges (figure 6):

Assuming that the leaf nodes in this example are numbered from 0 to f-1, it’s clear that each edge
can be uniquely described by a simple binary encoding of its source and destination nodes:

bits per edge ≈ 2 log2 F

Since there are e/f dependency edges per node on average, the number of bits per node required to
specify the dependencies is:

µ = bits per function avg ≈ 2 (E/F) log2 F

So far so good—increasing the number of dependencies increases the value of µ, in line with
assumption 2. But the example is a lexically unstructured system—we can lower the value of µ
significantly by exploiting the lexical structure of a system (if it exists). The trick is to specify the
target of each dependency edge relative to the tree formed by the structural edges: since the objec-
tive is to minimize the number remote connections relative to the number of local connections,
fewer bits may be used to specify the total connectivity.

1. Information theory requires that the message source be ergodic—that its statistics be stationary and independent of
initial state. The model here assumes that this is at least plausible for this problem since some natural languages,
such as English, have been shown to be approximately ergodic.

. . .

F structure edges

E dependency edges

FIGURE 6. Graph of a simple system in a single source file combing structure edges and dependency
(service and data) edges.

F leaf nodes
7

First, some definitions:

F: number of leaf nodes in graph of system

E: number of dependency edges in graph.

edges(f): number of dependency edges sourced by
leaf f.

dist(f1,f2): distance between leaf f1 and leaf f2
(= length of edge (f1, f2)). Distance is
defined as being the minimum number
of interior nodes that must be traversed
to trace a path from f1 to f2.

psrc(e): probability that a leaf sources e edges.

pdist(d): probability that two random leaves will be a distance of d apart

pedge(d): probability that a dependency edge will be
of length d

loc(f): lines of code in leaf function f.

Hsrcs: entropy of count of edges sourced by leaf.

Hedge: entropy of specifying edge destination
if source is known.

µ: entropy of message describing a leaf.

Transmitting the dependency edges requires F messages, one message for each leaf node. Since
the receiver already knows the source structure, the messages can be sent sequentially in, say, lex-
icographic order, e.g.:

{ leaf(0), leaf(1), leaf(2), ... }

Each message is just a list of the dependency edges sourced by the leaf associated with that mes-
sage. For example, a message for leaf node f could be of the form:

message(f) = { edgef,1, edgef,2, edgef,3, ... , edgef,n }

An edge can be specified by a (source node, destination node) tuple, but since the messages are
sent in the order of the leaves, the source node may be factored out and inferred from the mes-
sage’s position in the sequence, and therefore does not need to be explicitly sent. It is sufficient to
encode the number of edges included in the message so that message boundaries may be identi-
fied. For example, the message for leaf node f could be encoded as:

message(f) = {edges(f), dest1, dest2, dest3, ... , destn }

The entropy of such a message (the average number of bits needed per message) is thus

µ = Hsrcs + (E/F) Hedge

where

Hsrcs = - Σ psrc(e) log2 psrc(e)
8

with the summation over e from 0 to the maximum number of edges sourced by any leaf in the
graph; and

Hedge = Σ pedge(d) log2 (F pdist(d))

with the summation over d from 1 to the maximum path length in the graph.1 Note that by
assumption 3, pedge is not uniform.

4.4 Parameters

One shortcoming of the metric described so far is that is does not take the size of functions into
account when computing the system entropy—there is an implicit assumption that functions are
small relative to the system as a whole, and that the internal complexity of a function is of no con-
sequence. Unfortunately, this makes it possible to subvert the metric by expanding functions
inline in the functions from which they’re called. This can be overcome somewhat by refining the
specification of a dependency edge’s endpoints to include not only the function, but the line num-
ber within the function as well. This does not change the number of bits needed to specify the des-
tination of an edge, since, in C anyway, a function may only be entered through its first line. The
source of an edge, though, would require the additional specification of the line within the source
function where the dependence occurs. If we assume that the receiver is informed of the number
of lines of code in each function before transmission of the dependency messages, and that all
source lines within a function are equally likely to be the source of a dependency, the entropy of
an edge would become:

Hedge = Σ pedge(d) log2 (F pdist(d)) + (1/F)Σ log2(loc(f))

where the second term is the average number of bits needed to specify the line within the source
function that sources the edge.

4.5 Experimental Result

Large software systems typically comprise multiple source files. These files are individually com-
piled and linked together to form a single executable. Two tools implementing the algorithms
described here have been built—a “dependency compiler” which reads a source file and produces
an “object” file which describes the non-local symbols within the source, and the dependencies
that each symbol has on other symbols; and a “dependency linker” which takes the “object” files
as input to create a single dependency graph that represents the entire program. This dependency
graph can then be analyzed to compute the program entropy. The flow of information through this
tool is shown in figure 7.

1. The expression log2 (F pdist(d)) is simply the entropy of specifying a destination at distance d where all such desti-

nations at that distance are equally likely. The equation for Hedge follows from the independence of the multiple
edge description message sources (one source for each distance).
9

The entropy tool was used to compare two large software systems, A and B, of nearly the same
size (about 500,000 lines of source code) and functionality. Interestingly, both systems produced
dependency graph with almost the same number of leaves (15,667 for System A, 15,468 for Sys-
tem B). System A is a large commercial program that has existed for more than two decades, and
has been modified by hundreds of engineers over its lifetime in a time-constrained environment.
System B is essentially a recent rewrite of the functionality of System A that aimed at producing a
well-structured system. Most engineers who were allowed to examine both systems had the sub-
jective impression that system B was better structured than system A.

Each system could be naturally decomposed into seven subsystems. The entropy of each system
as a whole was measured, as well as the entropy for each of the seven subsystems. The results,

source files

graph
analysis

dependency
compiler

dependency
linker

entropy

FIGURE 7. Source files of a program are individually fed through a “dependency” compiler to produce
“object” files which are linked together to form a dependency graph, which is then analyzed to
compute the program entropy.

dependency
graph
10

shown in figure 8, agreed well with the subjective impression that System B was better structured
(had less entropy) than System A.

References

[1] L. Strigini, “Limiting the dangers of intuitive decision making,” IEEE Software, January 1996.

[2] M. Shepperd and D. Ince, “Derivation and Validation of Software Metrics,” Clarendon Press,
Oxford, 1993, pages 60-63.

[3] T. Bollinger, “What Can Happen When Metrics Make the Call,” Transactions IEEE Software,
vol 12, no 1, Jan 1995.

[4] C. Jones, “Software Metrics: Good, Bad, and Missing,” Computer, vol 27, no 9, Sept 1994.

[5] M. Shepperd and D. Ince, “Derivation and Validation of Software Metrics,” Clarendon Press,
Oxford, 1993, chapters 2, 3, and 8.

[6] M. H. Halstead, “Elements of Software Science” Elsevier-North Holland, 1977.

[7] T. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering, vol 2, no
4, 1976.

120

100

80

60

40

20

bits / symbol
Entropy

System 1 2 3 4 5 6 7

system A system B

FIGURE 8. Comparison of System A (an old, heavily-modified, legacy system) and System B (a recent
rewrite). Each system was composed of the same seven subsytems. The entropy of each subsystem in
System B was significantly lower than the corresponding subsystem in legacy System A. System B also
had lower entropy as a whole.

subsystems
11

[8] S. Henry, “Software metrics based on information flow,” IEEE Transactions on Software
Engineering, vol 7, no5, 1981.

[9] T. Emerson, “A discriminant metric for module cohesion,” Proceedings of 7th International
Conference on Software Engineering, 1984.

[10] S. Yau and J. Collofello, “Some stability measures for software maintenance,” IEEE Trans-
actions on Software Engineering, vol 6, no 6, 1980.

[11] C. Behrens, “Measuring the productivity of computer systems development activities with
function points,” IEEE Transactions on Software Engineering, vol 9, no 6, 1983.

[12] D. Troy and S. Zweben, “Measuring the quality of structured designs,” Journal of Systems
and Software, vol 2 no 2, 1981.

[13] N. Fenton, “Software measurement: a necessary scientific basis,” IEEE Transactions on Soft-
ware Engineering, vol 20, no 3, March 1994.

[14] L. Strigini, “Limiting the dangers of intuitive decision making,” IEEE Software, January
1996.\

[15] J. Pierce, “An Introduction to Information Theory: Symbols, Signals and Noise,” Dover Pub-
lications, 1980.

[16] P. Janson, “Operating Systems: Structures and Mechanisms,” chapter 10, Academic Press,
1985.
12

13

	1 Problem
	2 Background—Software Metrics
	FIGURE 1. A metric requires (1) inputs measured from the “real world”, (2) a model, (3) parameter...

	3 Prior Work
	4 Measuring Structure
	4.1 Inputs
	4.2 Model
	FIGURE 2. Structural edges relating interior and leaf nodes. Leaf nodes are represented by filled...
	FIGURE 3. Service dependencies: A calls B, B call C and D
	FIGURE 4. Data dependencies. A, B, and C all reference global variable V.

	4.3 Output
	FIGURE 5. Structure and dependency graph for a small program residing in three source files in a ...
	FIGURE 6. Graph of a simple system in a single source file combing structure edges and dependency...

	4.4 Parameters
	4.5 Experimental Result
	FIGURE 7. Source files of a program are individually fed through a “dependency” compiler to produ...
	FIGURE 8. Comparison of System A (an old, heavily-modified, legacy system) and System B (a recent...

