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1 Problem

This paper addresses the problem of automated design of a computer system for an embedded application.
The computer system to be designed consists of a VLIW processor and/or a customized systolic array,
along with a cache subsystem comprising a data cache, instruction cache and a second-level unified cache
(figure 1). The VLIW processor connects via a single port to the instruction cache and through one or more
ports to the data cache. The systolic array reads and writes data only through ports to the unified cache. If
the VLIW and systolic array are both present, the systolic array is configured as a slave to the VLIW and is
controlled through a local memory; the VLIW invokes the systolic array through a procedure-call-like
mechanism, and hence the VLIW and systolic array never execute instructions concurrently.

The goal of this research is to develop techniques for automating the design of such a system, making the
appropriate trade-offs between cost and performance to produce a system that would be competitive with
one produced by a human designer. There are at least two anticipated benefits to this automation:

• Thoroughness of exploration. The complex interactions between the components of such a system
will force a human designer to rely on judgement and experience in designing them, possibly elimi-
nating interesting configurations, and making “tuning” of the system, for either cost or perfor-
mance, difficult.

• Time-to-market. Automating the system design might deliver a product more quickly, freeing up
engineers for other tasks.

There are three aspects of automated design: (1) design space exploration (called “spacewalking” in this
paper) to determine the “optimal” system configuration; (2) synthesis of design points (e.g. to the gate or
transistor level); and (3) evaluation of design points to determine their performance. This paper covers
only “spacewalking”—evaluation and synthesis issues are being investigated by other members of the
Compiler and Architecture Research Group [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].
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FIGURE 1. Configuration of embedded computer system to be automatically designed. If both the
VLIW processor and systolic array are present, the systolic array is controlled by the VLIW. The
goal is to automatically design each of the components in this figure along with the interconnect.
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2 Spacewalker Structure

Spacewalker is a program that explores a large architectural space, attempting to create a set of “good”
architectures for a given application. “Goodness” implies intelligent trade-offs between cost of implemen-
tation of the architecture in silicon, and the performance of the application running on that implementation.
Its primary input is the embedded application written in C, and its primary output is a set of pareto-optimal
systems for that application. In the course of walking the design space, spacewalker relies upon a number

of other programs known as evaluators (figure 2):

• vliw_synthesis. Accepts a high-level description of a VLIW processor and generates (1) a target
model for the Elcor compiler; and (2) a VHDL description of the hardware to implement that pro-
cessor.

• impact. Used to perform the initial passes of compilation, and also to simulate execution of the
application to derive execution statistics.

• elcor. A parametric compiler which maps the output of the Impact compiler onto a VLIW model
(generated by vliw_synthesis).

• instruction format optimizer. Custom crafts an instruction format for a compiled application to
reduce code size. When this is used, vliw_synthesis must be re-invoked to create the appropriate
instruction decode logic for the VLIW.

• eas. Assembler.

• eld. Elcor linker; links separately compiled procedures and computes code size.

• memory_synthesis. Synthesizes models of the caches.

• Cheetah simulator. Estimates effect of caches on system performance.

• systolic_preprocess and systolic_compile. Transforms systolicizable C code into a hardwired sys-
tolic array implementing the same functionality.

• systolic_synthesis. Generates the VHDL description of the array created by systolic_compile, along
with performance and cost statistics.

Results from the evaluators are stored in a persistent cache on disk.

Spacewalker

Persistent Cache
vliw_synthesis Impact Elcor . . .

evaluators

application

FIGURE 2. Spacewalker invokes several evaluators for creating and evaluating system
configurations and saves the result in a persistent cache.

systems
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3 Design Space Parameters

The architectural space explored by spacewalker is defined by the target application and by a set of param-
eters, which are subdivided into VLIW parameters, memory parameters and systolic parameters.

3.1 Application

Applications must be written in C. If the application contains code that might be mapped onto a systolic
array, that code must be separated out into a distinct function (extraction of systolicizable loop nests has
not been automated). Only one systolicizable code fragment, and hence only one systolic array, can be
implemented for a given application, although this could be extended in the future.

3.2 VLIW parameters

VLIW machines are specified by the following parameters:

1. Predication. Either supported by both hardware and compiler or by neither.

2. Speculation. Either supported by both hardware and compiler or by neither.

3. Registers. Spacewalker may specify the number of registers in each of the register files: gpr (integer
register file; minimum registers = 16), fpr (floating point; min = 12), pr (predicate; min = 6), pred
(predicate register file, currently fixed at 256 registers because of compiler limitations), and btr
(branch target registers; min = 3).

4. Function Units. Four different types of function units are available: integer, floating point, memory
and branch. In so-called homogeneous machines, each instance of a function unit is fully functional
and identical to all other instances of that type on a given VLIW machine. In heterogeneous
machines, each function unit instance of a given type is custom crafted to contain only a subset of
all possible operations associated with that type. For example, an application requiring no floating
point divides, infrequent floating point multiplies, and frequent floating point adds might be
mapped onto a heterogeneous VLIW with two floating point function units where one unit supports
multiplication and addition, the second supports only addition, and neither supports division at all.
Heterogeneous machines allow for cheaper hardware to be built, tuned for a given application. The
algorithm used for creating heterogeneous machines will be covered later when VLIW walking is
discussed.

5. Literal Widths. Spacewalker may specify the widths of wide literals for each of three types: memory
literals, branch literals, and integer data literals.

The following parameters were also exposed by the compiler and synthesis software, but time did not per-
mit exploring them:

1. Compound Memory Ops. Spacewalker may explore the trade-offs between supporting only simple
loads (with latency n) vs. compound loads (with latency n+1). A given system will support only
simple loads or only compound loads, never both.

2. Exposed Branch Latency. To compare instruction units with low latency and slow clock with i-units
with longer latency and faster clock. It is assumed in this case that arithmetic and memory latencies
are independent of clock.

3. Opcode Emulation. Allows the compiler to emulate certain opcodes in order to trade-off code size
and execution time for simpler hardware.
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3.3 Cache Parameters

Each of the three caches, level 1 data cache, level 1 instruction cache, and level 2 unified cache, are inde-
pendently specified with the following parameters:

1. Ports. (must be 1 for instruction cache).

2. Size. (must be a power of 2)

3. Line_size. (must be a power of 2)

4. Associativity.

The instruction cache and second level unified cache also require a fifth parameter known as “dilation”
which is used to improve the estimates of cache performance. This will be discussed later in the section on
memory walking.

3.4 Systolic Parameters

The following parameters (along with the application’s systolicizable nested loop code) specify a systolic
array:

1. Shape. Limited to 1 and 2 dimensional arrays. The number of processors in each dimension must be

equal to 2i3j5k for non-negative integers i, j, k.

2. Bandwidth. The maximum allowable bandwidth between the systolic array and the second level cache,
in units of words / cycle.

3. Mapping direction. This may vary from 1 to the loop nest depth of the nested loop executed on the sys-
tolic array.

4 Spacewalking Strategy

The goal of spacewalking is to generate custom embedded systems that jointly minimize both cost and exe-
cution time of the target application. The designer of an embedded system may have an upper bound on
cost and/or an upper bound on the execution time—if a cost upper bound exists, the designer may want the
fastest machine that does not exceed that cost; if an execution time upper bound exists, the designer proba-
bly wants the cheapest machine that meets that execution time bound. Spacewalker produces a set of
pareto-optimal machines and defers the final cost / execution-time trade-off to the user.

Spacewalking is done using a divide-and-conquer approach: the VLIW space, systolic space, and memory
space are walked independently, and the results of each walk are then combined to produce a final system
walk (only combinations of pareto-optimal subsystems need be considered). Although in principle it would
seem more efficient to walk the spaces concurrently, (for example, as coroutines that fed each other useful
information to help prune the search space), in practice there does not appear to be much that can be gained
by doing that. The reason? VLIW walking dominates computation time by a large margin, so there is little
to be gained by pruning the search spaces of memory and systolic. On the other hand, walking the memory
and systolic spaces first could help prune the VLIW walk when, for example, there is a known user con-
straint on either cost or performance for the system, but this has not been explored.

The system spacewalking steps are basically as follows:

1. Do a walk of the systolic design space if the application contains a systolicizable loop nest.
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2. Do a walk of the memory design space. This involves doing walks of the data cache, instruction
cache, and second level unified cache, and then composing them to produce a set of pareto-optimal
memory systems.

3. Do a walk of the VLIW design space.

4. Do a system ‘walk” by composing the results of the systolic, VLIW and memory walks, and doing
further refinements of the resulting systems.

5 Systolic Walk

If systolic source code for the application is present and systolic searching is enabled, spacewalker will do
an exhaustive walk over the parameters shape, mapping_direction and bandwidth. Evaluating a single sys-
tolic configuration requires running systolic_preprocess, systolic_compile and systolic_synthesis to pro-
duce the cost and performance data. The results of this walk are used to create s Paretos, where s is the set
of all legal values of memory ports that the systolic array has to the second level cache. Figure 4 shows an
example pareto for an application implementing a digital filter.

6 Memory Walk

The memory system is broken into five components: RAM, ROM, first level data cache (dcache), first
level instruction cache (icache), and second level unified cache (ucache). RAM and ROM are ignored dur-
ing the memory walk for the following reasons:

• ROM—we assume ROM contains the executable image of the application. The size of this image is
a function of the application and the VLIW processor, so the area required for this is computed dur-
ing the VLIW walk. In the context of spacewalking, ROM is more logically a part of the VLIW than
a part of the memory system.

4 6 8 10 12 14 16 18
1000

1500

2000

2500

3000

3500

4000

4500
systolic: 1 ports

Area (mm2)

E
xe

cu
tio

n 
T

im
e 

(c
yc

le
s)

(1 x 1, 1 port, dir=2)

(1 x 1, 1 port, dir=1)

(2 x 1, 1 port, dir=2)

(2 x 1, 1 port, dir=1)

(3 x 1, 1 port, dir=1)

FIGURE 4. Pareto from a systolic walk. The design space (walked exhaustively) included all
arrays containing up to three processors, 1 port to the second level unified cache, and all possible
mapping directions. Systolic arrays evaluated but eclipsed by the pareto arrays are not shown.
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• RAM—this holds the data for the application. We assume that the size of the data area is indepen-
dent of architecture (may not be true for VLIW vs. VLIW/systolic) and therefore ignore it.

This leaves the three caches to be explored. The model used by spacewalker is shown in the following fig-
ure:

The memory system walk involves the following steps:

1. Do an exhaustive walk over the dcache design space, attempting to jointly minimize cache area and
cache misses that an application would incur in accessing that cache. (The caches are walked
exhaustively due to the design of the Cheetah cache simulator. Cache simulation requires the gener-
ation of an execution trace followed by processing of that trace in the simulated cache. Trace gener-
ation consumes much more time than cache simulation, so Cheetah generates the trace only once
and then simulates the entire cache design space in parallel.) A critical assumption in doing cache
evaluations in this walk is that the cache access pattern by the VLIW, and hence the behavior of the
cache, is independent of the VLIW design. This walk will produce a set of paretos, one pareto for
each possible value of the cache ports parameters (figure 6).

2. Do an exhaustive walk over the icache design space, again jointly minimizing cache area and
misses. The modeling of this cache is more complex than it is for the dcache, since the cache behav-
ior is clearly dependent on the VLIW which accesses it: for example, a VLIW which requires a
wider instruction word will require more bandwidth from that cache. This effect is indexed with an
additional cache parameters called “dilation” which is defined to be the code size of the application
on the candidate VLIW divided by the code size on a reference VLIW, and then quantized to a fixed
quantization scale. The dilation is needed by the Cheetah simulator to fold in the effect of the VLIW
instruction format when estimating cache performance, without having to do a separate instruction
cache simulation per VLIW design. This walk produces a set of paretos, indexed by the quantized
dilation.

3. Do an exhaustive walk over the ucache design space. Since this cache is accessed by the dcache,
icache and systolic array, this walk will produce a three-dimensional set of paretos indexed by the
number of dcache ports, the number of systolic ports, and the quantized dilation.
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FIGURE 5. Memory system model
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4. Create a three-dimensional set of memory system paretos indexed by dcache ports, ucache ports,
and quantized dilation. A (dcache, icache, ucache) tuple may be composed if they share common
dcache posts, icache ports and dilation indices. Figure 6 illustrates this composition.

7 VLIW Walk

All VLIW walks involve specifying and synthesizing different VLIW machines and then evaluating the
performance of the application on those machines through compilation. The performance estimation is
orders of magnitude more expensive in terms of CPU time than the VLIW specification, synthesis and cost
evaluation, so it becomes important to limit the number of machines whose performance is evaluated.

7.1 Application Characterization

Before beginning a VLIW walk, the application is first characterized by performing the following steps:
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FIGURE 6. Compatible subsystems from dcache paretos, icache paretos and ucache paretos are
composed to create sets of memory paretos.
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1. A reference VLIW is constructed and the application is compiled onto it. This supplies the refer-
ence code size needed for determining the dilation parameters used in modeling the icache and
ucache.

2. A histogram of all the literal values in the program is built. This histogram is later used to help opti-
mize the instruction format design.

3. The dynamic and static opcode usage is measured. This is useful later in constructing heteroge-
neous function units.

4. A table is constructed of (frequency, critical path length) data for each exit from a hyperblock
within the program. This table can be used during the walk to estimate the performance of machines
that have not yet been evaluated.

5. The application is partially compiled and simulated using the Impact compiler to produce an inter-
mediate representation (IR) annotated with execution statistics. The transformations performed by
Impact are independent of the VLIW parameters, except for predication and speculation. This phase
is performed only four times for an application, once for each combination of (predication, specula-
tion).

7.2 VLIW Specification and Synthesis

Specification of a homogeneous VLIW requires only specification of the parameters mentioned in section
3.2:

• predication

• speculation

• integer units

• floating point units

• memory units

• branch units

• integer registers

• floating point registers

• predicate registers

• branch registers

Heterogeneous VLIWs require more detailed specification of each instance of a function unit. In the heter-
ogeneous space, a function unit of a given type (say, floating point) consists of one or more opgroups,
where an opgroup implements a subset of the operations possible for that type. For example, one floating
point opgroup might implement add and subtract, another might implement multiply.

Constructing a set of function units for a heterogeneous VLIW relies upon the dynamic opcode statistics
generated by the application characterization step. The following algorithm was used to add a function unit
of a given type (such as a floating unit) to a VLIW:

addFunctionUnit(vliw) {
for each opgroup

tally instances of that opgroup in existing function units in the vliw
find opgroup with largest neediness
threshold = largest_neediness * .75
8



create an empty function unit
for each opgroup type

if neediness(opgroup type) > threshold
add opgroup to function unit

add function unit to vliw
}

neediness(opgroup) {
if dynamic_usage(opgroup) > 0 && instances(opgroup) == 0

return infinity
else

return dynamic_usage(opgroup) / (instances(opgroup) + 1)
}

Note that if an application never uses any of the functionality within an opgroup, that opgroup never gets
instantiated, otherwise the number of instances of an opgroup is roughly proportional to dynamic usage of
operations implemented by that opgroup. This simple algorithm offers many opportunities for improve-
ment.

7.3 VLIW Evaluation

The performance of an application on a VLIW can be evaluated by compiling it onto the VLIW and then
simulating its execution. This is done in several phases:

• Phase 1: The desired VLIW architecture is specified and synthesized with an unoptimized instruc-
tion format.

• Phase 2: The appropriate IR produced by the application characterization step (depending on the
desired values of predication and speculation) is compiled with the Elcor compiler onto the desired
VLIW target architecture.

• Phase 3: An optional phase (enabled or disabled by the spacewalker user) that takes the output of
phase 2, creates an optimized instruction format, and resynthesizes the VLIW so that the correct
instruction decode logic will be synthesized. This generally produces a VLIW that consumes more
area than the original, but this is counterbalanced by the fact that the new VLIW requires less code
size (and hence less ROM area) because of the optimized encoding.

• Phase 4: The compiled application is assembled and linked to determine the application’s code size
(and ROM area) as well as an estimate of the number of cycles needed to execute it (assuming per-
fect caches that never miss).

Since Elcor is a research compiler, its execution time is orders of magnitude longer than a production com-
piler, and phases 2, 3 and 4 are very expensive in terms of CPU cycles (phase 1 is relatively fast). It’s pos-
sible to replace phases 2, 3 and 4 with a much faster estimation phase that produces a rougher estimate of
the number of cycles needed to execute the application. This is done by invoking the Elcor compiler with a
special flag that causes it to generate a table of the resource bound path lengths (rbpl) for each hyperblock
exit in the program. Performance is then estimated from this table along with the (frequency, critical path
length) table built during application characterization using the following algorithm (called the RECMII/
RESMII estimator):

estimated_cycles = 0
for each hyperblock exit in the application

estimated_cycles += frequency(exit) * max(critical_path_length(exit), rbpl(exit))
9



7.4 Vliw walking heuristics

With the preliminaries out of the way, the walk begins. A core assumption driving the design of the walk is
that evaluating the cost of a machine (VLIW architecture) takes much less computation than evaluating the
performance of an application on that machine—as a result, cost is treated as though it comes free, and the
word “evaluation” is used in the remainder of this section to mean the evaluation of the performance of an
application on a machine.

The following subsections describe the walking heuristics that were explored. In these descriptions, the
following terms are used:

• k-neighbor. A k-neighbor of a VLIW machine is another VLIW machine that has at least 1, and up
to k, parameters that are incrementally larger than in the first machine. For example, if machine A
has one more integer function unit than machine B, and the two machines are otherwise identical,
then A is a 1-neighbor of B (it is also a 2-neighbor, 3-neighbor, ...). For register files, “incrementally
larger” is with respect to a quantum not necessarily equal to 1. For example, if the quantum for inte-
ger register files were 8, machine A would be a 1-neighbor of machine B if it had 8 more integer
registers than B and the machines were otherwise identical.

• -k-neighbor. A machine that has at least 1, and up to k, parameters that are incrementally smaller
than another machine.

• candidates. A set of unevaluated VLIW machines that will be evaluated during the course of a walk.

7.4.1 Pareto Descent

The pareto descent walk attempts to stay close to the pareto by confining its exploration to the neighbor-
hoods of known, so far, pareto points:

pareto-descent(k) {
candidates += cheapest vliw
loop {

remove cheapest from candidates
evaluate it
if vliw is a pareto point

candidates += k-neighbors of vliw
} until candidates is empty

}

7.4.2 Parallel Pareto Descent

Basically this the same as Pareto Descent modified to exploit parallelism. Spacewalker can distribute mul-
tiple machine evaluations across a network and have them execute concurrently, greatly speeding up the
walk.

parallel-pareto-descent(k) {
candidates += cheapest vliw
loop {

remove all candidates and evaluate in parallel
for each evaluated vliw

if vliw is a pareto point
candidates += k-neighbors of vliw

} until candidates is empty
10



}

7.4.3 Delft

The Delft heuristic takes multiple sweeps across the design space, from cheap machines to expensive
machines and back again, putting more emphasis on minimizing cost or performance, depending on the
direction of the sweep. In the following pseudocode, when attempting to find a neighbor with better qual-
ity, neighbors are evaluated one at a time, in no particular order, until one with better quality if found:

delft-walk() {
current = most expensive vliw
for (exponent = 1; exponent <= 3; exponent += 0.5) {

do until current == NULL // reduce sweep
current = -1-neighbor with better reduce-quality

do until current == NULL // extend sweep
current = 1-neighbor with better extend-quality

}
}

reduce-quality(vliw) {
return 1 / (cost(vliw) * cycles(vliw)exponent)

}

extend-quality(vliw) {
return 1 / (cost(vliw)exponent * cycles(vliw))

}

7.4.4 Parallel Delft

This is the Delft walk modified to exploit parallelism:

delft-walk() {
current = most expensive vliw
for (exponent = 1; exponent <= 3; exponent += 0.5) {

do until current == NULL // reduce sweep
evaluate all -n neighbors in parallel
current = best -1-neighbor with better reduce-quality, if any

do until current == NULL // extend sweep
evaluate all 1-neighbors in parallel
current = best 1-neighbor with better extend-quality

}
}

7.4.5 Estimated Parallel Pareto Descent

A modification of Parallel Pareto Descent. Instead of evaluating all machines, the performance of some
machines is estimated using the RECMII/RESMII estimator when appropriate. It is considered appropriate
only when a machine to be estimated is a 1-neighbor of a previously evaluated machine, and differs from
that machine only in terms of the number of integer, floating point or memory function units.

estimated-parallel-pareto-descent(k) {
candidates += cheapest vliw
11



loop {
remove all candidates and estimate (if possible) or evaluate in parallel
for each estimated vliw

if performance was estimated and bad-machine(vliw)
discard vliw

else if vliw is a pareto point
candidates += k-neighbors of vliw

} until candidates is empty

badMachine(vliw) {
vliw2 = -1-neighbor(vliw) that has 1 less function unit of some type
if estimated_cycles(vliw2) <= estimated_cycles(vliw)

return true;
else

return false
}

7.4.6 Conjugate Gradient

Conjugate Gradient is a heuristic for minimizing continuous functions, and has been adapted here to
attempt to minimize a discrete function.

conjugate-gradient-walk() {
candidate = cheapest vliw
gradient = f(candidate)
conjugateGradient = gradient
loop {

compute f(candidate) in parallel
update conjugateGradient
candidate = bestMachine along conjugateGradient vector

} until hit local minimum
}

Two different functions, f, were explored:

• f(vliw) = cycles(vliw)

• f(vliw) = cost(vliw) * cycles(vliw)

7.4.7 Estimated Conjugate Gradient

This is a modified conjugate gradient where RECMII/RESMII estimates are used instead of actual evalua-
tions where feasible when computing the “partial derivatives” of the gradient.

8 System Walking

System walking involves composing subsystem paretos from the subsystem walks and doing additional
evaluation of the costs of gluing the subsystems together. Pareto composition is done by taking the “cross
product” of compatible Pareto machines (where compatibility is determined by the cache porting parame-
ters, s and d, and by the dilation parameter) to construct a system Pareto. Points in the System Pareto are
constructed by adding the costs and cycles of the subsystems that comprise them (figure 7). Once this
12



Pareto has been constructed, the costs and performances of each point are corrected by the following two
operations:

• Cost is recomputed by performing synthesis on each complete machine. This allows us to finally
compute the cost of interconnecting the subsystems.
13



• The cycles needed for the systolic interface code on the VLIW is computed.
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Additional refinement of the VLIW components was planned but not implemented. These refinements
were to include:

• Additional macrocell elimination to reduce register file porting.

• Exclusion based port minimization—adding additional exclusions to reduce porting.

• Exclusion-based instruction format design tuning—adding exclusions to reduce instruction width.

• Additional consideration of opcode emulation.

• Trade-offs between simple and compound memory ops.

9 Experiments

Since the systolic and cache design spaces are walked exhaustively, VLIW walking is the chief walking
component to be evaluated. The approach taken was an empirical comparison of several walking heuristics
on two very simple applications, strcpy (which initializes a 1024 character array and copies it to another
array) and fir_ij (which implements a finite impulse response filter using a window size of 32 on vectors of
length 128). More complex applications would have been desirable, but the long compilation times for the
current implementation of the compiler make this infeasible (for example, compiling strcpy requires about
a minute of CPU time on an HP 700 series workstation, while fir_ij requires about 10 minutes).

For each application, a pseudo-exhaustive walk was executed to provide a baseline set of evaluations for
comparing the different heuristics (an exhaustive walk would be preferred but was infeasible because of
the size of the design space and the long evaluation times). For strcpy, a 3-neighbor pareto descent walk
was used; for fir_ij, a 2-neighbor pareto descent was used. It’s difficult to know apriori what a good
“pseudo-exhaustive” walk would be, but the k-neighbor walks seemed intuitively appealing, and it was
found at the conclusion of the experiments that there was only one pareto point found by any of the heuris-
tics that was not also found by the baseline walk, so this decision was probably not unreasonable. The
baseline was modified before analysis to include the union of all walks. Of course there may be interesting
areas of the design space that were unexplored by any of the heuristics, but short of a true exhaustive walk
there’s no way of knowing for sure.

The primary goal of the experiments was to compare the quality and efficiency of the different walk heu-
ristics. Efficiency was measured in terms of wall clock time. Comparing quality was much more difficult
because it’s not clear what an objective measure of that might be. For this report, the quality of a walk, Q,
was defined to be:

Q = area(walked pareto) / area(baseline pareto)

although many other reasonable metrics are possible.
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9.1 Design Space Limits

The actual design space explored for each application is shown in the following table:

9.2 Walk Quality

The results of executing all of the walks on fir_ij are shown in figure 8. In each plot, the red dots represent
the union of all experiments done—the baseline—and the blue circles represent the pareto points found by
a given walk. Each figure also shows the quality, Q, of that walk, as well as the number of machines that
were evaluated during the walk. The number of evaluations does not translate to wall clock time, however,
because some of the walks executed evaluations in parallel across a network.

The highest quality walks was the Parallel Pareto Descent (Q = .999) of 1-neighbors. It was anticipated
that a 1-neighbor walk might miss some pareto points because of complex interactions between the VLIW
parameters (e.g. increasing the number of integer function units might not help unless the number of inte-
ger registers were increased as well). However, the 1-neighbor walk did not miss any pareto points found
by the 2-neighbor walk (the same was true for the strcpy walk, not shown).

Using the RESMII/RECMII estimator reduced the number of evaluations and walk time (compare the 204
evaluations of the Parallel Estimated Pareto Descent with the 467 evaluations of the Parallel Pareto
Descent) but the quality of the walks using the estimator was considerably lower.

Design Space for Experiments

total machines: 94,080 17,640

parameter strcpy fir_ij

predication 0, 1 0, 1

speculation 0, 1 0, 1

integer function units 1, 2, 3, 4, 5, 6, 7, 8 1, 2, 3

floating pt. function units 1, 2, 3, 4, 5 1, 2, 3, 4, 5

memory units 1, 2, 3, 4 1, 2

integer registers 16, 24, 32, 40, 48,
56, 64

16, 24, 32, 40, 48,
56, 64

floating pt. registers 16, 24, 32, 40, 48,
56, 64

16, 24, 32, 40, 48,
56, 64

predicate registers 256 256

branch registers 8, 12, 16 8, 12, 16
16



FIGURE 8. VLIW walks

Pareto Descent (1-neighbors)
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9.3 Walk Efficiency

Walk time spanned multiple days for some of the heuristics, during which processor load varied. In order
to correct for this somewhat, a model was build that considered the maximum amount of evaluation paral-
lelism available at every step in the walk, and (with the assumption that all evaluations required the same
amount of processing time) computed the relative wall clock time each heuristic would require as a func-
tion of the number of CPUs available for use across a network (figure 9).

9.4 Heterogeneous vs. Homogeneous Function Units

Heterogeneous machines were expected to offer better cost / performance ratios, and this was the case (fig-
ure 10). Heterogeneous function units cut the cost sometimes more than half for a given performance level.
The highest achievable performance of the heterogeneous machines did not approach that of the homoge-
neous (12x vs. a 17x speedup) but this is probably to a large degree due to the very simple heterogeneous
construction algorithm used.

# CPU’s

Space-
Walk
Time

5 10 15

100

200

300

400

Parallel Pareto Descent Walk (1-Neighbors), Q=.999

Parallel Conjugate Gradient Walk, Q=.969
Parallel Delft Walk, Q=.978

Delft Walk, Q=.971

Pareto Descent Walk (1-neighbors), Q=.988

FIGURE 9. Relative execution times of walks on fir_ij.

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

Area (mm2)

R
el

at
iv

e 
S

pe
ed

up

homogeneous

0 20 40 60 80 100 120
0

2

4

6

8

10

12

14

16

18

Area (mm2)

R
el

at
iv

e 
S

pe
ed

up

heterogeneous + homogeneous

FIGURE 10. Comparison of VLIW walks with heterogeneous versus homogeneous function units.
Heterogeneous function units offer reduced cost for a given performance level.
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9.5 Compiler Monotonicity

In principle, if the Elcor compiler is provided two VLIW target architectures, one a superset of the other,
on which to compile an application, the performance of the application on the more powerful architecture
should be no worse (and hopefully better) than on the weaker. But since compilers solve NP-complete
problems and cannot find optimal solutions, they will sometimes fail to achieve this ideal. Figure 11 shows
a study the monotonicity of performance as a function of the number of resources, assuming a fixed clock
rate, for the Elcor compiler based on all of the strcpy and fir_ij experiments.

9.6 Cost Sensitivity

Figure 12 shows the percent increase in the cost of a VLIW when incrementally increasing each of its
resources for the fir_ij application. Figure 13 shows the same plots when considering the cost of both the
VLIW and the ROM needed to hold the application’s code. These show how supplying additional registers
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FIGURE 11. Monotonicity of performance as a function of resources for the Elcor compiler. The
effect of increasing VLIW resources on the performance of the application, assuming constant
clock speed. Each plot shows the number of experiments on fir_ij and strcpy where incrementally
increasing a resource caused the estimated performance to improve or stay constant (the part of
the bar above the x-axis) and the number of experiments where performance declined (the part of
the bar below the x-axis). The small numbers below the bars in the 6 right-most plots show the
baseline. For example, the left-most bar in the “Int Units” plot shows that when the number of
heterogeneous integer units was increased from 1 to 2, there were about 500 experiments where
performance stayed the same or got better, and about 50 experiments where performance got
worse. With an ideal compiler, performance should never get worse because of the addition of
more functionality.
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can, in the right situations, increase the VLIW cost but reduce the total cost by reducing code size (presum-
ably through reduced register spill).
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FIGURE 12. The effect of increasing VLIW resources on the cost of the VLIW for the fir_ij
application. Each plot shows the (min, mean, max) percent increase in the VLIW cost when
incrementally increasing a resource. The small numbers below the bars in the 6 right-most plots
show the baseline. For example, the left-most bar in the “Int Units” plot shows when the number
of (heterogeneous) integer function units was increased from 1 to 2, this resulted in a a 10%
increase in VLIW cost when averaged over all experiments.
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FIGURE 13. The effect of increasing VLIW resources on the cost of the VLIW + ROM for the
fir_ij application. Compare with figure 12.
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9.7 Performance Sensitivity

Increasing the number of VLIW resources should speed up (or at least not slow down) an application,
assuming a fixed clock speed. Figure 14 shows the effect of incrementally adding resources on the perfor-
mance of fir_ij. Note the diminishing returns for this application as resources continue to be added.

10 Conclusions

The experiments conducted were, for pragmatic reasons, conducted on only two, very small applications,
so making extrapolations is difficult. Only the following conclusions are offered:

• Parallelism can be effectively exploited in spacewalking by distributing evaluations across a net-
work of processors.

• Heterogeneous function units offer significantly reduced cost for a given performance level. There
are likely further optimizations possible from improving the heterogeneous function unit construc-
tion algorithm.

• The RECMII / RESMII estimator could not be successfully exploited in these experiments.

• Selection of an appropriate walking policy depends upon (1) the desired quality (Q) of the walk; (2)
the calendar time available for performing the walk; and (3) the number of networked computers
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FIGURE 14. The effect of increasing VLIW resources on the performance of fir_ij. Each plot
shows the change in the number of cycles needed to execute the application as a result of
incrementally increasing a resource (negative changes are desirable). The small numbers below
the bars in the 6 right-most plots show the baseline. For example, the left-most bar in the “Int
Units” plot shows when the number of (heterogeneous) integer function units was increased from
1 to 2, this resulted in a reduction of 4000 cycles for executing the application.
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available for executing the walk. Figure 15 shows the quality / execution time trade-offs for a net-
work of ten processors. In this scenario, Parallel Delft would be the policy of choice if walking time
needed to be minimized, while Parallel Pareto Descent would be preferred if the maximum walk
quality were desired.
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