[cickano

Making Computers Disappear:
Appliance Data Services

John Barton, Andrew C. Huangl, Benjamin C. Ling?, Armando Fox1
Internet and Mobile Systems Laboratory
HP Laboratories Palo Alto

HPL-2001-21
January 29th, 2001*

E-mail: John_Barton@hpl.hp.com, ach@cs.stanford.edu, bling@cs.standford.edu,

fox@cs.stanford.edu

appliance,
ubiquitous
computing,
Internet,
infrastructure,
service

Digital appliances designed to simplify everyday tasks are
readily available to end consumers. For example, mobile users
can retrieve Web content using handheld devices since content
retrieval is well-supported by infrastructure services such as
transformational proxies. However, the same type of support is
lacking for input-centric devices, those that create content
and allow users to share content. This lack of infrastructural
support makes input-centric devices hard to use and less useful.

The Appliance Data Services project seeks to explore a vision of
an appliance computing world where users move data
seamlessly among various devices. Based on this vision, we
formulate three principles that guide the design of an
architecture that helps realize this vision: bring devices to the
forefront, minimize the number of device features, and place
functionality in the network infrastructure. We evaluate our
implementation of the ADS architecture based on these
principles, and build applications using the ADS framework to
evaluate the ease with which appliance computing applications
can be built using the framework. We find that it is relatively
simple to build and extend applications on ADS that make
using digital devices easier, and results in the devices
themselves becoming more useful.

* Internal Accession Date Only Approved for External Publication
1 Stanford University, Stanford, CA 94305
O Copyright Hewlett-Packard Company 2001

Making Computers Disappear: Appliance Data Services

Andrew C. Huang
ach@cs.stanford.edu

Benjamin C. Ling
bling@cs.stanford.edu

John Barton
John_Barton@hpl.hp.com

Armando Fox
fox@cs.stanford.edu

January 25, 2001

Abstract

Digital appliances designed to simplify everyday
tasks are readily available to end consumers. For
example, mobile users can retrieve Web content us-
ing handheld devices since content retrieval is well-
supported by infrastructure services such as trans-
formational proxies. However, the same type of
support is lacking for input-centric devices, those
that create content and allow users to share con-
tent. This lack of infrastructural support makes
input-centric devices hard to use and less useful.

The Appliance Data Services project seeks to
explore a vision of an appliance computing world
where users move data seamlessly among various
devices. Based on this vision, we formulate three
principles that guide the design of an architecture
that helps realize this vision: bring devices to the
forefront, minimize the number of device features,
and place functionality in the network infrastruc-
ture. We evaluate our implementation of the AD-
S architecture based on these principles, and build
applications using the ADS framework to evaluate
the ease with which appliance computing applica-
tions can be built using the framework. We find
that it is relatively simple to build and extend ap-
plications on ADS that make using digital devices
easier, and results in the devices themselves becom-
ing more useful.

1 Introduction

Digital appliances, such as digital cameras and dig-
ital photo frames, are designed to be easier-to-use,
more powerful improvements of their non-digital
counterparts. For example, digital camera users can
save a trip to the film developing studio by creating
prints on a home printer. Furthermore, digital cam-
era users can perform tasks that are unimaginable
with traditional cameras, like instantly displaying
pictures on a digital photo frame across the coun-

try. These attributes are not true only of digital
cameras. Other digital devices such as PDAs, digi-
tal audio recorders, and handheld scanners are de-
signed to have similar time-saving and performance
benefits.

Many tasks that can be performed using digi-
tal devices are made possible by infrastructure ser-
vices. One example is handheld Web browsers;
user-transparent transformation proxies allow un-
modified Web pages to be viewed on these devices
even though their small screens and low-bandwidth
connections were not originally designed for Web
browsing. Another example is TiVo™, a device that
makes recording TV shows exceedingly simple by
daily downloading TV broadcast information and
recommends shows users are likely to enjoy by cor-
relating all TiVo™ users’ feedback on the shows they
watch. The simplicity and power of these devices is
possible because they are able to leverage the com-
putational power, network bandwidth, content, and
aggregate user base of services in the infrastructure.
We capture this effect by saying that these devices
are “infrastructure enabled”.

In the past, several factors prevented digital de-
vices from gaining widespread popularity; one of
these factors was high prices. Today, prices are
dropping to a level where everyday consumers can
afford to replace their traditional appliances with
new, digital counterparts. Therefore, digital de-
vices should enable all consumers to accomplish tra-
ditional and advanced tasks more easily and in a
shorter amount of time.

However, in reality, users are often unable to
accomplish even the simplest tasks with their new
digital devices. Dan Carp, CEO of Kodak™, identi-
fies usability as the main hindrance to widespread
acceptance of digital cameras [1]:

The industry has made picture-taking
more difficult and more complicated by
cramming onto digital cameras more
features, more buttons and more bells

and whistles than most people want or
need... The one lesson that 100 years of
consumer marketing should have taugh-
t us: In the picture business, simple
trumps megapixels, every time.

Therefore, despite a digital device’s powerful fea-
tures and low price, the user-experience turns many
consumers away.

This usability problem does not end with the de-
vice. To extract the data from these devices, user-
s must often deal with installing, configuring, and
learning how to use new software on their PCs or
handheld devices. For example, when mobile user-
s enter a collaborative setting where they want to
share information, they often need to reconfigure
the network settings on their mobile devices (e.g.,
laptop, PDA, etc.). In these situations, the user-
s take steps to gain full network connectivity even
when all they want to do is move data from a lap-
top to a shared wall monitor, or save meeting notes
posted to a digital whiteboard onto their PDAs. To
the experienced user, these steps may not be a prob-
lem; however, for everyday users, installing, config-
uring, and upgrading software, along with learning
how to use the software itself can be extremely dif-
ficult.

One reason users must deal with PC software
and go through numerous steps to accomplish even
simple tasks is that input-centric devices, those that
create digital information, lack infrastructure sup-
port. We hypothesize that the utility of input ap-
pliances and the ease with which users are able to
operate them will be greatly improved if they too
were infrastructure enabled.

Hence, although digital appliances are designed
to be easier to use and more powerful, the devices
and the supporting services have the exact oppo-
site attributes; they are more difficult to use and
have too many features. Thus, such devices are
unable to achieve the status of “consumer devices”
and the appliance computing world is still unreal-
ized.

To address the deficiencies in appliance devices,
we introduce the Appliance Data Services (ADS)
project. The goal of ADS is to identify principles
that make appliance computing possible and build
a testbed for exploring the validity of those princi-
ples.

2 An Appliance Computing World

Typically, people express high-level tasks in terms of
concrete artifacts (e.g., digital devices, Web pages,
wall monitors, etc.) and the data residing on them:
“I want to display the notes I’ve taken on my PDA

on this wall monitor to share with the others in the
meeting” or “I want to put this picture that I took
using my digital camera on my Web page.” Our
vision, which describes an important aspect of an
appliance computing world, is based on this obser-
vation:

Vision: An appliance computing world is
one in which people move data effortlessly
among artifacts to accomplish a variety of
simple and advanced tasks.

In the ADS project, we attempt to systematically
explore this appliance computing vision by:

1. making observations on attributes that are in-
herent in an appliance computing world;

2. identifying the principles that underlie these
attributes; and

3. building a framework based on these princi-
ples to produce a testbed for exploring their
effectiveness.

In the following subsections, we will use an ex-
tended example to help make our discussion of the
appliance computing vision more concrete; this ex-
ample will be based on the process of taking pictures
and developing film. We wish to emphasize that our
focus is on all digital devices, and not just cameras;
using a concrete example simply makes the discus-
sion easier.

2.1 Bring devices to the forefront

If appliance computing is to become a reality, the
number of steps required to perform a high-level
task should be few and the individual steps kept
simple. A key observation that provides insight in-
to making the steps simple is this: people find it
easier to use concrete artifacts to move data. This
observation suggests that an appliance computing
world has the following attribute:

Attribute 1: People move data using
concrete artifacts.

Most people do not understand how a 35mm film
camera works or how the film is developed; however,
they have a mental model of pictures being “stored”
on the film and being able to take the film to a
studio to have photos produced from the film. In
this example, the camera and the film are tangible
artifacts that produce and store pictures.

In a digital world, tangible artifacts include digi-
tal cameras, flash memory cards, wall-mounted dis-
plays, and Web pages. In these examples, the users
perceive the data as residing on artifacts that are
concrete and permanent, which makes the tasks in-
volving these artifacts easier to reason about.

One reason digital devices are hard to use is
that they force users to perform too many steps
on objects they do not really understand. Today,
to perform many basic tasks, users must think in
terms of computers and their digital representation
of the data. Extracting information from a digital
device usually requires interacting with a PC. Fur-
thermore, once the data is extracted, moving the
data to the desired destination involves interacting
with more computers. Continuing with our exam-
ple, posting a picture on a Web page requires the
user to know the server on which the page is hosted.
As another example, placing notes on a wall mon-
itor requires the user to know to which computer
the monitor is attached.

The user not only has to deal with file locations,
but possibly also file format conversions. File for-
mat conversions are even harder to reason about for
some users who are unaware that files have differen-
t formats. One real-life example is posting images
produced by an HP Capshare™ handheld scanner
onto the Web. This particular scanner produces
TIFF files; therefore, to view scans on the Web, the
user must convert the scans into either JPEG or
GIF. A user focused on Web publishing should not
be required to fix the broken icon that results from
trying to display the TIFF file on a Web page.

To allow people to focus on their tasks, the ap-
pliance they use should be sufficient to complete
the task. For example, a mobile user who has taken
notes on his Handspring Visor™ should be able to
easily display his notes on any given digital display
in a meeting room. It should not be necessary to
use a secondary computer, like a PC, to complete
the desired task:

Principle 1: Bring devices to the fore-
front.

This idea of bringing devices to the forefront and
pushing the experience of using computers into the
background is related to Mark Weiser’s vision of
ubiquitous computing where devices and comput-
ers are “invisible” in that they are embedded into
the physical infrastructure [17]. It allows the user
to reason about the source and destination of da-
ta rather than the path it must take so that data
can be moved seamlessly across artifacts. To the
user, everything that occurs between the artifacts
is a “black box.”

a--

One consequence of this principle is that the tra-
ditional notion of a file should become invisible to
the user; this means that a file’s actual location and
format must be hidden from everyday users. Af-
ter all, using only simple, single-purpose data ap-
pliances, everyday users should not be expected to
deal with a file system hierarchy or incompatible
file formats. In practice, this means that file rout-
ing and format transformation are hidden from the
user.

2.2 Keep devices simple

One approach some device manufacturers have tak-
en to eliminating the experience of using a com-
puter is to push functionality onto the devices.
This observation is verified by the high-end cam-
eras that have networking and image-editing capa-
bilities. However, taking computers out of the pic-
ture by moving the computer into the device does
not solve the problem. As Alan Cooper explains,
such devices have not made tasks any easier. In
fact, they are basically hard-to-use, complex mini-
PCs [2]:

My newest camera... has a full-blown
computer that displays a Windows-like
hourglass while it “boots up”... its
On/Off switch has now grown to have
four settings... and none of my friends
can figure out how to turn it on with-
out a lengthy explanation... The camer-
a may still take pictures, but it behaves
like a computer instead of a camera.

Cooper’s observations suggest that devices must
be easy to use if they are to be used by everyday
consumers at all. In terms of our appliance comput-
ing vision, devices must be simple so that the steps
required to accomplish a task can be made simple.

Attribute 2: Devices are simple, single-
purpose appliances.

Given that devices should be kept simple, the
software and hardware placed on the device should
be kept to a minimum. For digital devices that have
analog counterparts, this means user-controllable
features outside of the feature set to which users are
accustomed should be kept to a minimum. In fact,
all the device requires is a mechanism for extracting
the data from or placing data onto the device.

Principle 2: Keep the number of user-
controllable features on devices to a min-
imum.

Besides aiding the usability issue, placing fewer
features on devices helps address the mobile device
problem of power consumption. This problem is so
serious that some device vendors find it necessary
to place sophisticated power consumption programs
on their devices [2]. Simpler devices and with few-
er computations reduce the power requirements of
devices.

2.3 Place software in the infrastructure

Up to this point, we have focused on making the
steps required to perform a high-level task simple.
This has been accomplished through removing fea-
tures from devices and eliminating the need to use
general-purpose, hard-to-use devices, namely PCs.
The question now is, what will people be able to do
with these simple devices? At the very least, users
should be able to use these devices to perform the
same tasks as their traditional, non-digital counter-
parts, if not more.

Attribute 3: People perform a variety of
traditional tasks, as well as a new set of
advanced tasks with their devices.

So where does the functionality lie to perfor-
m the high-level tasks the users demand? Many
tasks require file format conversion and data rout-
ing. More advanced tasks may require application-
level data transformations (e.g., placing a drop-
shadow on a picture) or the ability to coordinate
data from multiple devices.

As this question suggests, there is a tension be-
tween the third attribute of our vision and the first
two. We want to minimize the set of features placed
on the device, but we want to allow users to control
data movement with these devices without having
to interact with a PC. At the same time, we want
to provide users with a meaningful set of tasks that
they can perform with their devices.

One possible location for the software that
drives the high-level tasks is the user’s PC. This
software can be designed in such a way as to elim-
inate the look and feel of a PC, thus shielding the
user from the PC experience. However, this does
not relieve the user of other PC experiences such as
installing, configuring, and upgrading software.

Another possible location for placing function-
ality is the network infrastructure. By “infrastruc-
ture” we refer to the deployed collection of hard-
ware and software accessible directly or indirectly

via an Internet (usually HTTP) programmatic in-
terface. Placing software in the infrastructure has
the advantage of fully relieving the user of the PC
experience:

Principle 3: Place the software required
to accomplish tasks in the network infras-
tructure.

Taking an infrastructure-centric approach, one
where we move functionality from the PCs and de-
vices into the supporting infrastructure, has other
added benefits. Having logically centralized soft-
ware makes upgrades and administration much sim-
pler. Furthermore, availability and reliability can
more easily be reasoned about in a centralized ap-
proach. Finally, by selecting the Internet infrastruc-
ture, we are able to take advantage of the wealth of
existing Internet services.

2.4 Appliance Data Services

The ADS framework is a general application frame-
work on top of which appliance computing appli-
cations are built. The framework implements the
previously mentioned principles of appliance com-
puting:

1. Bring devices to the forefront.

2. Keep the number of user-controllable features
on devices to a minimum.

3. Place the software required to accomplish
tasks in the network infrastructure.

Clearly, other principles and challenges exist in
the creation of an appliance computing world. One
example is the challenge of actually designing easy-
to-use device and system user interfaces. Although
this area of research is beyond the current scope of
this project, part of making ADS general is design-
ing the framework such that it is amenable to new
user interfaces and usage models. The same applies
to issues such as authentication and security. While
these areas of research are not actively explored, our
design does not preclude the use of general solutions
for these problems. Furthermore, where there are
clear areas of exploration such as these, we inten-
tionally add hooks in the ADS framework so that,
for example, a new authentication module can be
plugged in.

In the following sections, we describe the AD-
S framework architecture, its current implementa-
tion, and how the framework meets the three design
principles outlined above.

3 The Architecture

Prior to entering a discussion of the ADS architec-
ture, we first describe its basic data unit. The basic
data unit is a triple, composed of a user identifier,
the command to be executed, and the data that is
to be operated on: (userid, command-tag, data).
Although each component of the triple can be of an
arbitrary type, it is simplest to begin by thinking
of the userid and command-tag as text strings. The
triple is used as the basic data unit for the following
reasons:

1. Application selection: The command-tag
names the high-level application that the user
wants to perform on the data (e.g., “Send pic-
ture to my Web site”), using a binding mecha-
nism described later. However, the command-
tag alone is not sufficient to define the appli-
cation since different users may have different
meanings for the same tag, or result in differ-
ent semantics in the interpretation of the tag
(e.g. “my Web page” maps to different URLSs
for different users). Thus, a user identifier is
required to fully specify the desired applica-
tion.

2. Access control: The user identifier is also re-
quired to determine what credentials are to be
attached to the application request. For ex-
ample, a user should be allowed to push data
into her own public_html directory, but not
necessarily those of other users. Furthermore,
some services may be accessible only to au-
thorized users. Thus, the system needs some
identifier to attach credentials to the request.

3. Other service features: Services that require
a command-tag and user identifier include
billing, security, and personalization. Al-
though we have not investigated the im-
plementation of such features, we have left
the user identifier as a necessary “hook” for
adding these capabilities later.

The remainder of this section describes the
architectural components of the ADS framework
shown in Figure 1. The architecture is split into
three main components: Data Receive stage, Appli-
cation Control stage, and Services Execution stage.
Each stage corresponds to a high-level function that
must be performed on the input data. In the follow-
ing sections, the functional and architectural roles
of each stage’s subcomponents will be described.

3.1 Data Receive

In the Data Receive stage, data is taken from var-
ious devices, collected, and sent along once a com-
plete (userid, command-tag, data) triple is received.
The components in this stage, Access Point and
Aggregator, interface with the devices the system
supports to receive data and output the completed
triple, which the ADS system can operate on.

3.1.1 Access Point

The Access Point consists of necessary hardware
and software to receive data from appliances. Ex-
amples of hardware are IR transceivers, RF bases-
tations, or cradles or cables for “docking” an appli-
ance. The software is made up of device adaptors,
which allow the Access Point to communicate with
devices speaking a particular protocol. The Access
Point can be implemented as a commodity PC out-
fitted with the appropriate hardware interfaces or
it can be designed as a special-purpose “network
appliance.”

The architectural role of the Access Point is to
address the issue of dealing with the various devices
and their communication protocols.

Role: Deals with device heterogeneity.

We make dealing with device heterogeneity simpler
by isolating this concern in this one architectural
component. Isolating device heterogeneity to the
Access Point relieves the rest of the system from
having to deal with device-specific communication
protocols, which makes building the rest of the sys-
tem simpler. The functional role of the Access Point
involves selecting the appropriate protocol for com-
municating with a particular device and communi-
cating with the device to receive its data.

The key challenge in designing the Access Point
is extensibility. This requirement arises from the
lack of standardization among device vendors and
the increase in the variety of devices being intro-
duced. One who believes standardization is right
around the corner needs only look at the continued
existence of operating system device drivers. Fur-
thermore, since general-purpose devices are often
difficult to use for everyday consumers, the trend
towards single-purpose devices is likely to contin-
ue; this only increases the number of devices ADS
must support. As long as vendors continue to use
their own protocols for the new devices that come
out, building a usable system means supporting a
sufficient number of the devices available. Thus, it
is crucial to make adding support for new devices
simple.

Command
[Canonicalizerf=— .
contd data sent to Access Point
= * + Aggregator receives data,
o which completes the triple:
Aggregator Dataflow (userid, cmdtag, data)
< : ‘ ' Access Manager A completed triple sent to
¥ Point \ Dataflow Manager
o § Ex{;g == e ;(’\ Application Canonicalizer converts
data ___ Dispatcher cmdtag to plaintext
Access / (userid, cmdtag) looked up
Point in Template Database to
; find matching application
/ * + i template
Template A application template and
Database data sent to Application
N Dispatcher when required
Devices Modular Composable Services data is received
Application Dispatcher
invokes services on data
as specified in the

I 1 I 1

application template

Data Receive Application Control

Services Execution

Figure 1: The ADS Architecture

3.1.2 Aggregator

One way to simplify adding support for new devices
is to make the Access Point stateless. A stateless
Access Point makes device adaptors easier to code
because adaptor writers do not have to worry about
state management. Furthermore, adaptors that are
stateless can more easily be made robust since they
can arbitrarily restarted.

The Aggregator manages the state in the Data
Receive stage so that the Access Point can be made
stateless. Thus, the architectural role of the Aggre-
gator is to make the Access Point more extensible:

Role: Simplifies adding support for new
devices and protocols.

The functional role of the Aggregator is to gather
data sent from the Access Point, and send the data
off once all pieces of the triple (userid, command-
tag, data) are received. The net effect of separating
the Data Receive stage into Access Point and Ag-
gregator components is to separate the two concerns
of device heterogeneity and state management.

3.2 Application Control

In the Application Control stage, the userid and
command-tag received from the Data Receive stage
are used to determine the desired application. The
data portion of the triple is then added to the list
of parameters required for the selected application.
Once all the parameters for a given application are
filled, all the data collected is sent on to the Services
Execution stage.

3.2.1 Command Canonicalizer

The Command Canonicalizer facilitates designing
devices with “no-futz,” easy-to-use user-interfaces.
Canonicalization involves converting the command-
tag from its original data type to plaintext. Giving
the system the ability to handle command-tags of
arbitrary types makes it possible to support arbi-
trary devices, even those with limited user inter-
faces.

Role: Allows devices to have simple user
interfaces.

For example, the most natural method for digi-
tal camera users to specify the command-tag might
be to record a short WAV file annotating each pic-
ture. In this scenario, the user takes a picture,
records the desired command-tag “send to my Web
site,” and pushes a button to send the data and
command-tag into an Access Point. Canonical-
ization frees the device designers from being con-
strained to relying solely on menu or other text-
based user-interface elements, thus facilitating the
most natural user interface for a no-futz, easy-to-
use experience.

3.2.2 Template Database

The canonicalized command-tag is looked up in the
Template Database to find a matching application
template. Templates define an application’s behav-
ior by describing the data required for a given ap-
plication and specifying the services to invoke on
the data. Binding command-tags to application
templates in the Template Database has the bene-
fit of minimizing device configuration and support-
ing devices with non-extensible user interfaces, thus
achieving out-of-the-box operation for devices.

Role: Minimizes device configuration.

Application templates and the command-tag
mappings are configured for a particular user in-
dependently of the user’s devices. Further, in situ-
ations where a command-tag cannot be specified,
such as may be the case for devices with non-
extensible user interfaces, the command-tag “de-
fault” can be mapped to the appropriate applica-
tion template.

Another benefit of using the Template Database
to bind command-tags to templates is that it pro-
vides a level of indirection between application se-
lection and application specification. This level of
indirection serves to separate the concerns of user-
s of ADS applications and creators of ADS appli-
cation templates. The database provides an easy
way for third-party developers to make their tem-
plates available to ADS users. Furthermore, with
the proper authentication mechanisms in place, a
third-party template provider can easily and effec-
tively restrict access to the templates it has devel-
oped.

For example, say Kodak™ wants to make a set of
ADS applications available to consumers who pur-
chase a Kodak™ camera. If the set of templates is
shipped with each camera, not only is upgrading
or adding new applications difficult, it may be pos-
sible for the template to be “pirated” and given to
users with cameras made by different vendors. With
the Template Database, the user’s act of registering
gives that user the credentials to view and select the
ADS application templates Kodak™ has develope-
d. Furthermore, upgrading applications or adding
new ones is simple since the application provider
needs only modify or add templates stored in the
Template Database rather than ship upgrades to
all subscribers.

Finally, application templates give a large de-
gree of flexibility to ADS users. While basic users
simply select from a set of templates provided by
the device vendor, advanced users can customize
applications by modifying or creating their own ap-
plication templates. In doing so, advanced users
can select the exact services and parameters to be
invoked on their data. At the same time, these users
do not have the burden of dealing with the protocol-
s required to route and transform the data among
the various services used.

3.2.3 Dataflow Manager

The role of the Dataflow Manager is to coordinate
data received from the user and to make certain
an application has all the data it requires. When
data is received from the Data Receive stage, the

Dataflow Manager uses the application template to
place the data into the proper parameter slot for
the chosen application. Once all necessary data is
received, the Dataflow Manager sends the template
and all the data to the Services Execution stage.

Role: Coordinates data input by the us-
er.

Coordinating data in this way allows users to
input the data from different devices and at differ-
ent periods of time. For example, a user who uses
a PDA to store captions for the photos taken on a
digital camera can create a Web-based photo album
by inputing the data from these two devices. As an
alternative, a user can input photos into ADS while
still on vacation to conserve the camera’s memory.
At the end of the vacation, the user can use a Web
browser to fill in the captions for all the pictures.

3.3 Services Execution

In the Services Execution stage, the Application
Dispatcher invokes the services specified in the ap-
plication template on the data it receives. The rea-
son modular composeable services are used is that
it results in applications that are flexible and whose
components are reusable. However, such a service
framework does not preclude the use of stand-alone,
monolithic applications. Such an application would
simply be a single service in the framework and
would not be invoked in conjunction with other ex-
isting services.

4 Current Implementation

In this section, we describe the current implemen-
tation status of the architecture as described in the
previous section. We begin by discussing the im-
plementation details of the Access Point, followed
by the remaining components. The reason the Ac-
cess Point is discussed separately from the remain-
ing components is that it is the only component
that does not logically reside in the centralized net-
work infrastructure. Instead, Access Points are like-
ly to be deployed as publicly-accessible Web kiosks
or as appliances within people’s homes. The frame-
work implementation discussion will be followed by
a description of two applications built on the frame-
work.

During the discussion of the implementation, it
is helpful to note that existing technologies (e.g.,
HTTP, XML, etc.) are used in ADS whenever possi-
ble. In general, these technologies allow us to lever-
age current or prior work so that we can focus on
the research agenda of ADS.

Access Point

S

Device
Adaptors

Forwarder Fiarhe

POST

Figure 2: Access Point implementation

4.1 Access Point

As stated in the architecture section, the main chal-
lenge in designing the Access Point is extensibility;
i.e., making it easy to support new devices. The
Aggregator plays an architectural role in facilitat-
ing extensibility by allowing the Access Point to be
stateless. In the implementation, we go a step fur-
ther by making each device adaptor autonomous.

4.1.1 Device Adaptors

In the Access Point implementation shown in Fig-
ure 2, autonomous, stateless device adaptors inter-
act directly with the particular devices or protocols
they were designed for. The Forwarder then has
the job of forwarding data received by the adaptors
on to the Aggregator. Autonomy in the adaptors is
achieved by eliminating the programmatic interface
between the adaptors and Forwarder, and using the
file system as the communication channel. Using
such a simple interface is possible because a device
adaptor need only notify the Forwarder whenever it
receives new data. Hence, the Forwarder need only
poll a shared directory for new files.

Using stateless, autonomous device adaptors
that are only required to write data to the file sys-
tem greatly simplifies the task of writing new device
adaptors. Adding a device adaptor to ADS does not
require any knowledge about the structure or APIs
of ADS.

4.1.2 Forwarder

When the Forwarder detects a new file in the shared
directory, it sends the data to the Aggregator using
the POST method of HTTP. The POST request
includes any meta-information available along with
an ADS-specific z-data-class header. This header
specifies the type of data being sent; i.e., userid,
command-tag, or data. Each of these components
can arrive at any time and in any order; it is the
Aggregator’s job to keep track of session state (i.e.,

current userid and command-tag) for each Access
Point.

Using HTTP POST as the API between the Ac-
cess Point and the Aggregator provides more flex-
ibility than a strongly typed API. First of all, the
HTTP POST API allows the Access Point to send
any metadata it receives from the device without
knowing what information the Aggregator can han-
dle. Secondly, this API facilitates backward com-
patibility. New Access Points send newly defined
parameters in headers or multipart MIME, while
old ones continue sending the same information as
before. Thus, only the Aggregator, rather than all
Access Points, needs to be changed to handle both
the new and old APIs.

The Access Point as described here is stateless
and configuration-less, which makes it appealing to
deploy as a publicly available kiosk, home data ap-
pliance, or Web-centric service.

4.1.3 Status

The current implementation of the Access Point
runs on an IR-equipped, commodity PC running
Windows 2000™. Device adaptors for the following
devices have been implemented:

e Palm™ WinCE™, and other devices that sup-
port the IR-FTP protocol (IR)

e HP CapShare™ handheld scanner, HP digital
cameras, and other devices that support the
HP JetSend™ IR protocol (IR)

e CardScan™ business card scanner (parallel
port or USB)

4.2 Infrastructure Components

The infrastructure components run on one or more
Linux PCs and are built on the Ninja service frame-
work developed at UC Berkeley [8]. The research
goals of Ninja include providing a framework in
which its services automatically gain the desirable
system attributes of reliability, fault tolerance, and
scalability. Ninja also provides services common-
ly found in service frameworks such as service dis-
covery, as well as other useful services such as an
XML database and distributed data structures with
transactional properties. Using Ninja allows us to
focus on building the system rather than the system
issues that are important for all large-scale systems,
but that have orthogonal solutions [6].

Each component runs as a Ninja service that
can be independently replicated and restarted. The

Access
Point

Dataflow
Manager

HTTP

Command
L+~ [Canonicalizel

Access
Point

A

HTTP

Java

Aggregator |-

HTTP

Services
Execution

Access
Point

Web
Browser

v

HTTP

Template
Database

HTTP

AT

Ninja service framework

Figure 3: Infrastructure implementation

components communicate with each other using Ja-
va, RMI, which eases the programming of these dis-
tributed services. Furthermore, Ninja places mini-
mal constraints on its services; all that is required is
that services inherit from the iSpaceService class
and implement init() and destroy() methods.

Each of the components also exports an HTTP
interface to the outside world, which makes it
possible to directly access information about each
component. For example, accessing the Template
Database via a Web browser allows the user to
view and edit command-tags mappings and tem-
plate specifications. Web access to the Dataflow
Manager allows the user to view the previously in-
put data (e.g., pictures from a digital camera) and
enter the data that is required to complete the cho-
sen high-level task (e.g., text descriptions entered
via a Web form). We choose HTTP as the external
communication protocol because Web browsers are
available on nearly every computer and HTTP has
become a de facto standard for communication on
the Internet.

The high-level organization as described above
is shown in Figure 3. The following sections de-
scribe the implementation status of each individual
component in the infrastructure.

4.2.1 Aggregator

As discussed in the architecture section, the Ag-
gregator manages state so that Access Points can
remain stateless. Since the session state of the Da-
ta Receive Stage is made up elements of the ba-
sic data unit, the Aggregator stores the current
userid, command-tag, and data for every Access
Point. Thus, each Access Point is assigned a u-
nique ID so that the Aggregator can keep track of
the data associated with each Access Point. Once
a complete triple is received, the Aggregator send-

s the triple on and clears the data field. Clearing
the userid and command-tag occurs when the user
“logs out,” which causes the Access Point to send
explicit “clear” commands for each field.

4.2.2 Dataflow Manager

The Dataflow Manager stores a table for each
(userid, command-tag) pair. The columns of the
table correspond to the parameters required by the
application specified by the (userid, command-tag)
pair. Each row of the table corresponds to a set
of parameters, or data bundle pending application
execution. When a data bundle is complete, the
Dataflow Manager sends the complete bundle and
template to the Services Execution stage.

The number of outstanding data bundles al-
lowed is specified in the template using the mazbun-
dles tag. For example, if mazbundles = 1, a piece
of data sent by the user overwrites previously sent
data if it occupies the same column. However, if
maxbundles = —1, which corresponds to unlimited
bundles being allowed, for any data that arrives that
does not have an empty slot in an existing bundle,
a new bundle is created.

4.2.3 Command Canonicalizer

Currently, for most practical purposes, command-
tags are specified via a Web form interface. Thus,
ADS receives most command-tags in canonicalized
form (i.e., plaintext). However, the current imple-
mentation of the Canonicalizer also has the ability
to handle a WAV file command-tag. The service
that converts speech to text is a Ninja service origi-
nally written for UC Berkeley’s Iceberg project [16];
the service utilizes IBM’s ViaVoice™ SDK [9] to per-
form the conversion.

Our experience using spoken command-tags is
limited since it requires using an extra device (i.e.,
digital audio recorder). Since current digital de-
vices do not have embedded audio recorders, it is
easier to select command-tags from the Web inter-
face. However, we have found that the main issue
in using speech-to-text converters is that the WAV
file must be high-quality and have low noise. Thus,
it is unlikely that recorders embedded on digital de-
vices will be used to select command-tags using cur-
rent technology. One way to address this problem
without requiring high-quality microphones to be
placed in devices is to limit the vocabulary of the
speech-to-text conversion dictionary to set of valid
command-tags.

4.2.4 Template Database

The current implementation of the Template
Database uses to file system to enable simple
(userid, command-tag) lookups. Templates are
stored in files named by command-tag under a
directory named by the userid. Thus, tem-
plate lookup is performed by following the path:
<userid>/<command-tag>.xml. In the future, an
XML database such as the Ninja framework’s
XSet [18] may be used to enable queries on the in-
formation within the templates.

The templates themselves are represented us-
ing XML. XML is a natural choice for represent-
ing structured data because of its widespread use,
which makes utilities such as XML parsers and XM-
L databases readily available. Thus, representing
our structured data using XML allows us to lever-
age the work of others, and allows our work to be
used by others.

Application templates fully describe ADS appli-
cations; it specifies the data the application requires
and the services to invoke on the data. Therefore,
building a new application on the ADS framework
using existing services simply involves creating a
new template. The general format of templates is
shown in Figure4.

In our own development and testing, we
have found it useful to use macros that de-
scribe commonly-used functions. For example,
rather than including the service description of the
StoreService in every template, we place a ref-
erence to another XML file that contains that de-
scription. The process of building applications can
be simplified even further by creating a template ed-
itor application. Such an application would present
a graphical user interface that allows its user to
choose services and set service parameters.

4.2.5 Services Execution

The Application Dispatcher reads the application
template and invokes each service on the corre-
sponding data in turn. Each service returns a re-
ceipt that contains an optional return data value
and service execution information (e.g., “success,”
errors, etc.). Although the it is not used except
by ADS developers, the receipt will eventually be
used by the Dispatcher can convey status and error
information back to the user.

Currently, the following services are available for
use in building applications:

e convert — uses the UNIX command ’convert’
to convert between arbitrary image formats

10

e scaling — scales images by a user-specified
amount

e thumbnail — re-sizes images to thumbnail size

e speech-to-text — converts WAV files into text
strings

e store — stores files on the local drive

e HTML publishing — publishes an application’s
completed HTML page to a publicly accessi-
ble page on Geocities™

As mentioned before, creating new services un-
der the Ninja framework is a relatively low-overhead
task. Thus, the programmer can focus on the ser-
vice logic rather than on distributed systems or
framework requirement issues.

4.3 Applications

In this section, we describe two appliance comput-
ing applications that exhibit various aspects of the
ADS framework. The application descriptions are
followed by a discussion of how these applications
were built using the ADS framework. These sec-
tions show that:

1. appliance computing applications greatly sim-
plify the user-experience of using digital de-
vices;

2. ADS can be used to build applications that
coordinate data from many devices; and

3. building and evolving appliance computing
applications on top of the ADS framework
is far simpler than applications built from
scratch.

4.3.1 Web Photo Album

The Web Photo Album application exhibits the po-
tential of ADS for making digital devices true con-
sumer devices by simplifying the user-experience.
In this application, the user conducts the following
steps to create a Web-based photo album using a
digital camera (note that the figures show rudimen-
tary Web interfaces for this application; they could
easily be extended, but have been kept basic for
simplicity and ease of deployment):

1. take pictures with a digital camera

Template Format Sample Template
<t enpl at e> <t enpl at e>
B <data type="[m netype of inputl]"> <data type="i mage/j peg" >
- <action desc="[output desc]"> <action desc="photo"> -
<command> <command>
<servi ce>[servi ce nane] </ service> <servi ce>ads. Scal i ngServi ce</ servi ce> -
% <net hod>[met hod nane] </ et hod> <net hod>convert </ net hod> S
2 <arglist> <arglist> g
- é <arg type="[argl type]">[argl] </ arg> <arg type="byte[]">%$6</arg> o
§ 2 <arg type="[arg2 type]">[arg2] </ arg> <arg type="String">i mage/j peg</arg> o
§ L <arg type="String">50%/ ar g> g
g </arglist> </arglist> El
<return>[return m netype]</return> <r et ur n>i mage/ j peg</return> 3
</ command> </ command> -
L </ action> <conmand> -
N </ dat a> <servi ce>ads. St or eSer vi ce</ servi ce> 0
<net hod>st or e</ net hod> 9
N <data type="[m netype of input2]"> <arglist> %
£ S <arg type="byte[]">$6</arg> =
© </ dat a> </arglist> =
</tenpl ate> </ command> -
</ action>
</ dat a>
</tenpl at e>
Figure 4: Application Template Format
2. visit a Web page to login and select the photo 4. enter descriptions of each photo via a We-
album application b page that displays the pictures received by
ADS
e — = =
e 3 .
I e I — =
{ ADS Login EEre e .
| : Fal i i
| deskcawes i Al Chaln Rarvies Plives o 'P':S. Fﬂlﬁlnﬂfﬁﬁ
s il | waks grp racsmaryctmrges B TR M
ol da om s "l o phoboalie re™ e Bevied
| iy L
L | - a
wll 1 *—
e 5 |
A0S Application Selection
Eober) s o By iodlorwre) S000 RppE Roas
| | , -
stk e bal s ma 5
- Rkl e e nEean
e
ER—— 5. click “add to photo album” and view the pub-

lished page
3. transfer the pictures by pointing the camera’s
IR transceiver to an IR-equipped Access Point T

| Pt A —
| =

W
|

Although the steps include using a Web browser,
the interfaces are exceedingly simple (e.g., login, s-
elect command, etc.). These simple interfaces allow
the pages to be served up by a kiosk-style, touch
screen Access Point so that the user-experience is
very similar to that of using an ATM machine.
Thus, during the entire process, the user never di-
rectly interacts with a “PC.” In contrast, without
such an end-to-end application, the user must deal
with a computer and one of its applications in each

11

of the steps ADS performs:

1. extract photos from the digital camera (file
system,)

2. create thumbnails of the photos (image editing
program,)

3. upload the thumbnails and pictures to the
Web server hosting the Web-based photo al-
bum (ftp program)

4. edit HTML to add the thumbnails to the page,
descriptions of each photo, and links to the
actual picture (text editor)

These steps may be easy for a computer-savvy
user and are simplified by online photo album ap-
plications. However, for consumers that expect to
buy a digital camera and produce pictures as eas-
ily as they would with a non-digital camera, these
steps and the learning required to master them is u-
nacceptable. Only an end-to-end application solves
the problem for the average consumer.

An extension to this application that saves time
even for expert users involves adding an image-
editing service. Often, when publishing pictures on
the Web, people perform a set of image manipula-
tions on every picture. These manipulations may
include adding a drop-shadow, increasing the con-
trast, or decreasing the brightness. Adding a cus-
tomizable image-editing service to the Web Photo
Album application eliminates this time-consuming
task. Thus, applications like these simplify tasks
and save time when using digital devices.

4.3.2 Guestbook

The Guestbook application shows how the ADS
framework can be used in a appliance computing
world where people have a variety of personal and
infrastructure-attached devices available. This ap-
plication exhibits the framework’s flexibility in deal-
ing with a variety of different devices. An example
scenario involves a kiosk placed at the entrance of
conference. In this scenario, attendees register by
adding their information to the ADS guestbook:

1. the attendee looks into a Webcam mounted
on the kiosk and presses a button to take a
picture

2. the application requests the attendee’s busi-
ness card and displays the following options:

e type your contact information

e place your business card in the business
card scanner

12

e beam your electronic business card using
a Palm™ or WinCE™ device

3. the attendee verifies that the picture look-
s right and the business card information is
correct, then clicks a button to add the entry
to the conference attendee list

5 Evaluation

We evaluate the implementation of the framework
using two criteria: how well the implementation
meets the stated principles of our appliance com-
puting vision and how easy it is for developers to
build applications on the framework. To make steps
towards realizing our vision, we identify three prin-
ciples, which are met framework implementation in
the following ways:

1. We bring devices to the forefront so that peo-
ple can focus on using concrete artifacts for
moving data. The Template Database plays a
major role in accomplishing this by separating
application specification and selection so that
users can perform high-level tasks by simply
specifying a command-tag. Meanwhile, the
extensible Access Point makes it possible to
support a variety of devices so that a large
number of devices can be used to input data
and select command-tags.

2. We facilitate keeping the number of features
on devices to a minimum so that devices can
be made simple and easy-to-use. The Com-
mand Canonicalizer allows devices to be ex-
tended for command-tag selection in the most
natural way without adding a lot of extra fea-
tures to the device. Meanwhile, the Tem-
plate Database helps minimize device config-
uration by allowing application creation and
customization to be done independently of the
user’s devices.

3. We place the software required to accomplish
tasks in the network infrastructure so that
people can perform a variety of tasks with-
out dealing with complex devices or the PC
experience. The Dataflow Manager coordi-
nates data so that a variety of tasks using
one or more devices can be performed. Fur-
thermore, as much functionality as possible is
placed in the Internet infrastructure to free
the user from software issues (e.g., installa-
tions, upgrades, and configurations), provide
a more reliable service, and leverage existing
Internet services.

Not only does the ADS framework fulfill the re-
quirements of our appliance computing vision, it
eases the development and evolution of applications
that make appliance computing a reality. First, cre-
ating new ADS service modules is a relatively low-
overhead task because of the services Ninja provides
and the small number of requirements it places on
its service. Secondly, creating new ADS applica-
tions using XML templates is simpler than build-
ing standalone applications from scratch. Finally,
modifying existing ADS applications and extending
them to support new devices and services is simpler
than doing so for standalone versions of the same
applications.

A real-life example that shows the ease with
which ADS application behaviors can be modified
arose when we decided to replace actual photo-
s with thumbnailed links to the actual photos in
the Web Photo Album. Changing the applica-
tion’s behavior simply required adding a few lines
to the template to invoke the ThumbnailService
and StoreService. Also, since the application is
Web-based, a few lines needed to be added to the
dynamic HTML file that displays the pictures in the
photo album.

Another real-life example of the advantage of
having a general appliance computing framework
involves adding support for new devices. When we
added support for the CardScan™ business card s-
canner, all current and future applications that use
a picture instantly benefited. Without any mod-
ifications to the template, the Web Photo Album
accepted the TIFF files, converted them to JPEG,
and correctly displayed the scans on the resulting
page. It was also easy to create a new application
based on the Web Photo Album that was optimized
for the image attributes (size and B/W) of scanned
images. Modifying the Guestbook to accept scans
of business cards as an alternative to text business
cards sent from PDASs required that a few lines be
added to the template. In standalone versions of
these applications, it is likely that support for the
handheld scanner would have to be added to both
independently; this is especially true since these t-
wo applications would have been developed by two
different parties.

Our experience with the CardScan™ business
card scanner has shown that adding support for new
devices is simple as well. The simple file system API
between device adaptors and the Access Point For-
warder made it possible for a new project member
to immediately write adaptors for ADS. This stu-
dent did not have to learn anything about the rest
of the ADS framework and could focus solely on the
logic of interfacing with the scanner. Thus, it took

13

Figure 5: A meeting at the Stanford Interactive
Workspaces Room

very little effort to add business card scanner sup-
port for all current and future ADS applications.

Thus, in our experience, ADS has been success-
ful in providing a framework on which appliance
computing application can be quickly built, cus-
tomized for each user, and evolved. Furthermore,
the ADS architecture provides these applications
with the desirable attributes of our appliance com-
puting vision: people use simple artifacts to move
data around in a variety of ways.

6 Research Agenda

This section describes three areas of research we
intend to explore in the immediate future.

6.1 Integrating more infrastructure services

One of the advantages of taking an infrastructure-
centric approach to designing the ADS framework is
that we are able to leverage existing infrastructure
services. Currently, ADS takes advantage of the
Geocities™ Web page hosting service by publishing
users’ Web-based photo albums and guest books to
Geocities. With the wealth of Internet services such
as Geocities available, we intend to continue our ex-
ploration in using these services as building blocks
in the modular services framework.

Immediate plans involve implementing a digital
photo frame posting service that will enable users
to post pictures to a Ceiva™ or Storybox™ photo
frame from anywhere in the world. Currently, the
Storybox service involves many of the same steps as
posting pictures to a Web photo album. By adding
a Storybox service, we hope to make posting pic-
tures to a remote digital photo frame as simple as
it is to post pictures to a Web page using ADS.

6.2 Exploration into “Smart Space” environ-
ments

The Interactive Workspaces Project at Stanford [7]
explores new possibilities for people to work col-
laboratively in “meeting rooms of the future” using
a variety of computing and interaction devices of
many scales. These devices include laptops, PDAs,
wall-mounted SmartBoard™ displays, etc. We in-
tend to use this technology-rich space to explore
ways ADS can be deployed in “Smart Space” en-
vironments. Furthermore, since the Stanford In-
teractive Workspaces Room (IW-Room), shown in
Figure 5, is in production use for regularly sched-
uled meetings, the room and its users will serve as
a testbed for ADS applications.

Our initial efforts involve installing a production
version of the ADS framework in the IW-Room.
The first application that will be deployed is the
ADS Guestbook application. A kiosk at the entry-
way will act as the Access Point for the application
so that all visitors to the room can input their busi-
ness card information and have their pictures taken
upon entering.

Future areas of exploration involve using the
IW-Room’s endpoints (e.g. wall-mounted displays)
and devices to build other ADS applications that
support sharing of data in this collaborative envi-
ronment. For example, an IR-dongle placed below a
wall-mounted display might have a fixed ADS appli-
cation associated with it that results in the inject-
ed data being displayed. This application exercises
the modular services framework to a point where
dynamic, on-the-fly service composition is needed
to invoke the appropriate application to display the
data; Paths is a project at Stanford designed to do
exactly that [11]. Currently, a production version
of Paths, which includes an interface to make Paths
appear like an ADS service, is being installed in the
IW-Room.

As people begin to use ADS and Paths for day-
to-day operations in the IW-Room, we expect to
gain insight on new applications and deficiencies in
the architecture that need to be addressed.

6.3 Conveying status and error information

As ADS is used in production form, we expect user-
s will want more feedback about the status of the
data they send into the system. Even when ADS is
used casually among members of the project team,
this issue has already begun to arise. The solution
is not as simple as adding error dialog boxes with
error messages. The lack of a traditional computer
interface and the target audience of everyday con-
sumers means that a non-traditional approach must

14

be taken to convey status and error information to
the user.

7 Related Work

The Portolano Project [3] at the University of
Washington shares a similar goal of exploring ways
in which appliance computing can be made a reali-
ty. They too recognize that it is necessary to shift
the focus away from general-purpose computers and
towards simple, easy-to-use devices. Furthermore,
they take an infrastructure-centric design approach
and aim to build a general framework on top of
which many appliance computing applications can
be built. The main difference between ADS and
Portolano is in the scopes of the projects. Certain
Portolano research issues, such as user interfaces,
service deployment, and resource discovery, are be-
yond the scope of ADS or are provided by the ser-
vice framework we have chosen.

At the Sony Computer Science Laboratory,
there are a number of projects that explore how
transferring data between devices can be simplified.
The Pick-and-Drop [14] and InfoStick [10] projects
are based on the observation that users find it eas-
ier to deal with concrete artifacts than with ab-
stract objects like files. This system allows users
to move objects between multiple displays using a
pen-like device to provide the illusion that the pen
can manipulate physical objects. The Augmented
Surfaces [15] project addresses the need for users to
share data from their mobile devices with the pre-
installed devices in the environment. The project
explores how the user’s mobile devices can be inte-
grated into the current computing environment.

Much of the work on post-PC devices has fo-
cused on accessing the Internet from data appli-
ances such as PDAs, cell phones, and palmtop com-
puters. Some examples include transformational
proxies [6, 5, 13] and wireless protocol gateways
[12, 4], both of which enable these devices to lever-
age the enormous installed infrastructure of servers,
content, and interactive services. Conversely, and
partially as a result of infrastructure enablement,
the Internet has begun to adapt to these devices
and we are now seeing services tailored for their
use, such as Yahoo Mobile™ and a variety of sites
that feature “Palm-friendly” pages in addition to
their desktop content.

8 Conclusion

While the devices required for an appliance comput-
ing world exist, users often cannot even perform the
simplest operations with current devices. These de-

vices and the supporting infrastructure are simply
too difficult to use. Our vision for appliance com-
puting is a world in which everyday users move da-
ta seamlessly and effortlessly among handheld and
infrastructure-attached artifacts. As is the goal of
this project, we identified three principles for re-
alizing this vision and implemented a testbed for
affirming their validity. Applications built on the
ADS framework showed that these principles are
helpful steps in realizing our appliance computing
vision.

References

[1]

2]

[4]

[8]

Dan Carp. Keynote address. In Advanced Dig-
ital Photography Forum, Boston, MA, USA,
April 2000.

Alan Cooper. The Inmates Are Running the
Asylum: Why High Tech Products Drive Us
Crazy and How To Restore The Sanity. Sams,
1999.

Mike Esler, Jeffrey Hightower, Tom Ander-
son, and Gaetano Borrielo. Next century
challenges: Data-centric networking for invis-
ible computing. In Fifth ACM Conference on
Mobile Computing and Networking (MobiCom
99), Seattle, WA, USA, August 1999.

WAP Forum. Wireless application protocol
(WAP) forum. http://wuw.wapforum.org.

Armando Fox, Tan Goldberg, Steven D. Grib-
ble, Anthony Polito, and David C. Lee. Ex-
perience with Top Gun Wingman: A proxy-
based graphical web browser for the Palm Pi-
lot PDA. 1In IFIP International Conference
on Distributed Systems Platforms and Open
Distributed Processing (Middleware ’98), Lake
District, UK, September 15-18 1998.

Armando Fox, Steven D. Gribble, Yatin
Chawathe, Eric A. Brewer, and Paul Gauthi-
er. Cluster-Based Scalable Network Services.
In Proceedings of the 16th ACM Symposium on
Operating Systems Principles (SOSP-16), St.-
Malo, France, October 1997.

Armando Fox, Brad Johanson, Pat Hanrahan,
and Terry Winograd. Integrating informa-
tion appliances into an interactive workspace.
IEEE Computer Graphics and Applications,
20(3):54-65, May/June 2000.

Steven D. Gribble, Matt Welsh, Rob von
Behren, Eric A. Brewer, David Culler,
N. Borisov, S. Czerwinski, R. Gummadi,

15

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

J. Hill, A. Joseph, R.H. Katz, Z.M. Mao,
S. Ross, and B. Zhao. The ninja architecture
for robust internet-scale systems and services.
In To Appear, Special Issue of Computer Net-
works on Pervasive Computing.

IBM. Viavoice sdk. http://www-4.ibm.com/
software/speech/dev/sdk_linux.html.

Naohiko Khotake, Jun Rekimoto, and Yuichi-
ro Anzai. InfoStick: An interaction device for
inter-appliance computing. In Handheld and
Ubiquitous Computing (HUC’99), First In-
ternational Symposium, Karlsruhe, Germany,
September 1999.

Emre Kiciman and Armando Fox. Using
dynamic mediation to integrate cots enti-
ties in a ubiquitous computing environmen-
t. In Handheld and Ubiquitous Computing
(HUC 2000), First International Symposium,
September 2000.

Metricom Corp. Ricochet Wireless Modem,
1998. http://www.ricochet.net.

ProxiNet, Inc. ProxiWeb Thin Client Web
Browser, 1998. http://www.proxinet.com.

Jun Rekimoto. A multiple device approach for
supporting whiteboard-based interactions. In
CHI’98 Proceedings, Los Angeles, CA, USA,
April 1998.

Jun Rekimoto and Masanori Saitoh. Augment-
ed surfaces: A spatially continuous work space
for hybrid computing environments. In CHI’99
Proceedings, Pittsburg, PA, USA, May 1999.

Helen J. Wang, Bhaskaran Raman, Chen nee
Chuah, Rahul Biswas, Ramakrishna Gumma-
di, Barbara Hohlt, Xia Hong, Emre Kici-
man, Zhuoqging Mao, Jimmy S. Shih, Lakshmi-
narayanan Subramanian, Ben Y. Zhao, Antho-
ny D. Joseph, and Randy H. Katz. Iceberg: An
internet-core network architecture for integrat-
ed communications. In IEEE Personal Com-
munications: Special Issue on IP-based Mobile
Telecommunication Networks, 2000.

Mark Weiser. The computer for the twenty-
first century. Scientific American, pages 94—
100, September 1991.

Ben Y. Zhao. The xset xml search engine and
xbench xml query benchmark. Master’s thesis,
University of California, Berkeley, May 2000.

