
 

Bitwidth Cognizant Architecture Synthesis of Custom 
Hardware Accelerators 
 
Scott Mahlke, Rajiv Ravindran, Michael Schlansker, Robert Schreiber, 
Timothy Sherwood 
Compiler and Architecture Research Group  
HP Laboratories Palo Alto 
HPL-2001-209 
August 30th , 2001* 
 
E-mail: {mahlke, schlansk, schreiber}@ hpl.hp.com, rajiva@cse.iitk.ac.in, sherwood@cs.ucsd.edu 
 
application-
specific 
design, 
architecture 
synthesis, 
bitwidth, 
clustering, 
embedded 
system, 
hardware 
accelerator, 
operation 
scheduling, 
resource 
allocation 
 

PICO is a system for automatically synthesizing embedded hardware 
accelerators from loop nests specified in the C programming language. 
A key issue confronted when designing such accelerators is the 
optimization of hardware by exploiting information that is known 
about the varying number of bits required to represent and process 
operands. In this paper, we describe the handling and exploitation of 
integer bitwidth in PICO. A bitwidth analysis procedure is used to 
determine bitwidth requirements for all integer variables and 
operations in a C application. Given known bitwidths for all variables, 
complex problems arise when determining a program schedule that 
specifies on which function unit and at what time each operation 
executes. If operations are assigned to function units with no 
knowledge of bitwidth, bitwidth-related cost benefit is lost when each 
unit is built to accommodate the widest operation assigned. By 
carefully placing operations of similar width on the same unit, 
hardware costs are decreased. This problem is addressed using a 
preliminary clustering of operations that is based jointly on width and 
implementation cost. These clusters are then honored during resource 
allocation and operation scheduling to create an efficient width-
conscious design. Experimental results show that exploiting integer 
bitwidth substantially reduces the gate count of PICO-synthesized 
hardware accelerators across a range of applications. 
 

 

* Internal Accession Date Only    Approved for External Publication  
 Copyright IEEE  
This paper was presented at the 5th International Workshop on Software and Compilers for 
Embedded Systems, March 2001, and a version will appear in IEEE Transactions on Computer 
Aided Design, 2001. 
 



1 Introduction

As the cost of complex chips decreases, the markets for PDAs, MP3 players, cellular phones,

toys, games, network routers, and other specialized, high-performance electronic devices is

growing explosively. Many of these devices perform computationally demanding processing of

images, sound, and video or packet streams. To reduce cost and power consumption, the elec-

tronic components of these devices are now often realized as a single application-speci�c IC,

or ASIC. In many such ASICs, specialized nonprogrammable hardware accelerators (NPAs)

execute parts of the application that would run too slowly if implemented in software on an

embedded programmable processor. Rapid, low-cost design, low production cost, low energy

consumption, and high performance are important in these designs.

In order to reduce design time and design cost, the HP Labs Program-In-Chip-Out (PICO)

project is focused on automating the design of NPAs from high-level speci�cations. Source

code (in a subset of C) for a performance-critical loop nest is used as a behavioral speci�cation

of an NPA. The PICO system compiles the source code into a custom hardware design in

the form of a parallel, special-purpose processor array. The system produces a VHDL design

for the array, its control logic, its interface to memory, and its interface to a host processor.

PICO's goal is to synthesize hardware systems having minimal cost over a range of compu-

tational rate requirements. This paper presents analysis and optimization techniques that

are needed to synthesize cost-e�ective hardware when function units (FUs) process program

operations having di�ering integer precision requirements. Techniques have been developed

to provide required bitwidth information on all program variables and to optimize hardware

using this bitwidth information.

Our work was based on an existing PICO system that had no capability for analyzing or op-

timizing bitwidths. We needed an approach that provided accurate bitwidth information for

use during hardware optimization. While some bitwidth information was directly available

by inspecting the code (e.g. the size of a constant), other information could only be provided

by the user. Thus, a facility for acquiring user-provided bitwidths was needed. Further, it

1



was unreasonable to expect that a user decorate the bitwidth of every temporary within a

program. Not only is this process tedious, many temporaries are created throughout the

optimization process and the user is not even aware of their existence. Thus, we needed

to develop a bitwidth analysis approach to determine the required bitwidth for all program

data. In our approach, users de�ne the bitwidth of selected variables through declarations

in the source code. With knowledge of these declarations, opcode semantics, and widths

of known constants, bitwidth analysis derives the required width for all program variables,

expressions, and operations. The bitwidth analysis approach that is presented here is simple,

e�cient, and produces reasonably accurate results.

Hardware optimization using bitwidth information is a very complex problem. When each

FU processes only a single program operation, the precision of each FU can be precisely

tailored to the needs of this single operation. In this case, optimization is simpli�ed to a

task of hardware pruning. However, when FUs process multiple operations, the bene�ts of

width-sensitive optimization are often diluted. When a single FU processes a mix of narrow

and wide operations, it must support the widest operation that executes on it irrespective of

the width of the narrowest operation. If operations are assigned to FUs with no knowledge

of bitwidth, hardware is wasted as narrow and wide operations are assigned to FUs. It is

therefore desirable to carefully assign operations of similar width to a common FU.

In the approach described here, all FUs use the standard C language representations for

processing operands of varying width. This exploits most of the advantage available in

treated examples, and is consistent with PICO's high-level synthesis heuristics and low-level

synthesis capabilities. FUs are customized only in the number of bits that they process.

Operands are reformatted using zero �ll, sign extension and truncation. In support of this

approach, we de�ne the bitwidth of a variable to be the number of bits required to represent

the variable over the range of values it can take on. If the variable is a signed integer, its

bitwidth is the number of bits required in two's complement. If unsigned, then its bitwidth

is the number of bits required to hold the largest attainable positive value.

The task of synthesizing hardware requires complex optimization problems to be solved.

2



These arise when operations of varying width are assigned to a heterogeneous set of FUs

each potentially capable of executing multiple operation types (e.g. an ALU). A key goal for

PICO is to provide a family of hardware solutions that vary in both cost and performance.

Low performance solutions should be less expensive while high performance solutions cost

more. In order to achieve this objective, processors are synthesized so as to be adequately

powerful to process data at a given computation rate yet minimum in cost. If costs are to

diminish as the chosen processing rate is decreased, a strategy is needed to use the same

hardware unit to process more than one program operation when low processing rates are

adequate. This implies that each FU may potentially processes program variables of di�ering

width.

A scheduler chooses the FU and time at which each operation takes place. The machine cost

is strongly dependent upon how well the scheduler makes these choices. To make scheduling

aware of width, we employ a new technique, width clustering , in which operations with

similar bitwidths are grouped into clusters before scheduling. Width clustering takes into

account each operation's type and width and uses this information to identify width clusters

that help minimize FU cost.

By binding operations of the same type to a common FU, cost is reduced as the FU is

specialized (e.g. an adder as opposed to an ALU). The scheduler can channel expensive

operations like divides into a common FU to avoid proliferation of expensive FUs. By

binding operations of the same width to a common FU, cost is reduced as FUs that process

only narrow operands are themselves narrow. When FUs process operands of similar width,

the costs of the registers and switches that connect FUs are also reduced. However, di�culty

arises because these criteria often compete.

Width clustering addresses these complex tradeo�s before scheduling begins as it groups

operations into clusters. Width clusters guide resource allocation and scheduling to pro-

duce more a e�cient design. Clusters are formed by analyzing the types and widths of

all operations. Operations that may share resources to reduce cost are placed in the same

width cluster. After clusters are formed, hardware resources are allocated separately for each

3



cluster. This allocation is then used by a scheduler that uses these resources to satisfy all

computational needs. During scheduling, the binding of operations is restricted to FUs from

their own cluster. This produces a cost-sensitive binding of operations to resources based on

operation bitwidth and type.

We believe that width clustering represents a �rst attempt to synthesize hardware over a

range of computation rates while exploiting both type and width information for each oper-

ation. Width clustering produces e�cient hardware by selecting hardware from a complex

and heterogeneous library of FUs each capable of executing one or more operation types.

Results indicate substantial improvements in the cost of generated hardware.

2 NPA Synthesis in the PICO System

The overall structure of PICO is shown in Figure 1. A C loop nest is identi�ed by the

spacewalker (a design space exploration tool) as the application component to be synthesized

and provided to the loop parallelizer to begin the process. Both the number of processors

and the computational rate for of each processor are speci�ed by the spacewalker as input

to the synthesis process. These parameters collectively determine the computational rate

at which the loop nest can be processed and are speci�ed either automatically by PICO's

spacewalker or manually by a user. PICO designs a nonprogrammable processor array for

the given loop nest consistent with this computational rate speci�cation. The RTL design

(in VHDL) is written to an output �le. PICO also generates performance and gate count

measurements for the NPA. See [1] for a full description PICO's NPA synthesis capabilities.

We now provide an overview of PICO by brie
y describing each of its components.

Spacewalker: PICO's spacewalker is a complex heuristic engine that drives system syn-

thesis. In general, multiple application components must be accelerated on one or more

customized hardware processors. Processors take on more than one form including the

PICO-NPAs discussed here as well as PICO-VLIWs (VLIWs customized to speci�c applica-

4



Spacewalker

Cost

Loop Parallelizer

Processor Synthesis

Code 
Optimization

Clustered
FU Allocation

and
Scheduling

Datapath
Synthesis

Bitwidth
Analysis

Width
Clustering

C Loop Nest

Flattened Loop Code

Number of Processors and
Initiation Interval

VHDL

Application

Figure 1: The PICO NPA design system.

tion requirements) [2]. A limited chip area is available for these diverse needs. Further, given

a desired computation rate, the hardware cost or chip area required by a suitable accelerator

is not known until the synthesis process is at least partially completed. To synthesize a

complex system having optimal performance and cost, PICO's spacewalker selects candidate

performance goals for speci�c application components and it requests that these components

are synthesized to evaluate their cost. The merits of this choice can than be evaluated at

the system level, and the choice can be adopted or adjusted before full system synthesis

proceeds. This paper focuses exclusively on techniques for optimizing a loop nest to produce

a single PICO-NPA at a candidate computation rate as requested during spacewalking.

Loop Parallelizer: The loop parallelizer is given a nest of counted loops and analyzes

and exploits parallelism within that nest by generating a high-level plan called an iteration

schedule. The iteration schedule determines a temporal (what time) and spatial (what

processor) plan for all loop iterations. In order to maximize scheduling freedom, the loop

parallelizer perfectizes the input loop nest. The resulting perfect nest of counted loops is

5




attened into a single loop with a trip count that is the product of the loop trip counts in

the original nest. In this form, the iteration scheduler gains additional freedom in organizing

the loop nest for parallel execution and parallelism is limited only by the code's essential

data dependences.

A valid iteration schedule must satisfy the following properties; each processor's loop code

executes a precisely speci�ed subset of all loop iterations and every loop iteration is executed

on some processor. This plan is symmetric among processors. A single loop body is generated

that is executed in lock-step parallel manner on all processors. The plan has the property

that all dependence constraints can be met both within each processor and among processors

at the requested computation rate.

Processor Synthesis: The process of creating a customized datapath from the loop body

is shown in the Processor Synthesis box in Figure 1. The goal is to achieve the requested

throughput for the given code with minimum hardware cost. This is performed by �rst

allocating a set of FUs and then software pipelining the loop code. Software pipelining

generates loop schedules for PICO NPAs. Software pipelining creates a single program

schedule for all iterations that can be initiated at a constant rate called the initiation interval

(II). The software pipeliner can bind multiple operations to each FU. The FU's hardware

realization will be determined after scheduling and it will be made as wide as the widest of

these operations.

We now describe the modules that are used within processor synthesis.

Code Optimization: This phase is performed by Elcor, a retargetable VLIW compiler [3].

After classical optimizations, if-conversion removes any branching within the loop body. The

resulting branch-free loop body is suitable for software pipelining.

Bitwidth Analysis: This phase infers the bitwidth required to represent every value com-

puted in the loop. Our approach is presented in Section 3.

Width Clustering: The set of operations is partitioned into subsets of operations having

similar width using the heuristics discussed in Section 4.

6



Clustered FU allocation and scheduling: Before software pipelining begins, a set of

resources must be allocated that are suitable for executing the loop at the given single-

processor rate. Rather than allocating a single set of resources where each resource can be

used to execute any compatible operation, resources are allocated in clusters. Within each

operation cluster, we allocate (by solving a small mixed integer linear program) a set of FUs

that is powerful enough to perform the cluster operations at the desired II [4]. Each cluster

of FUs is then characterized by a machine description for use by the Elcor software pipeliner.

Hardware is synthesized by �rst generating a software schedule that decides on which FU

and at what time each operation occurs, and then, by more mechanically generating a

datapath during datapath synthesis. Each processor in the array is heavily pipelined. The

computation of a single iteration typically requires more than II cycles, so that there will

be several iterations in the pipeline at any given time. The software pipeliner schedules

operations so that dependences among operations are satis�ed both within each iteration

and for any carried dependences between iterations. Moreover, resource con
icts must be

avoided: the scheduler ensures that two operations are not scheduled on the same FU at the

same time. For simplicity and consistency with PICO's current low-level hardware synthesis

capability, we assume that all FUs are fully pipelined and able to begin a new computation

on every cycle. It follows that a given FU can be assigned at most II operations from the

loop body.

Datapath Synthesis: The scheduler makes many di�cult heuristic decisions regarding how

resources are to be used. By �nalizing these decisions, the synthesis of the registers, switches,

and interconnect needed to maintain and transport operands within and among FUs within

a processor becomes somewhat more mechanical. Datapath synthesis generates a customized

datapath for a single processor and then replicates that datapath for all processors. Each

datapath is connected where needed with sibling processors to yield an array of processors

capable of executing the all iterations at the desired aggregate rate.

7



3 Bitwidth Analysis

Bitwidth analysis infers the bitwidth of every variable in a program segment. The analysis

operates on the assembly-level internal representation in Elcor. Each reference to a register as

a source or destination operand is tagged with its computed bitwidth. The results of bitwidth

analysis are used by architecture synthesis to infer the sizes of the hardware components for

the hardware accelerator.

PICO uses initial bounds on the bitwidth for speci�c variables and iterative constraint prop-

agation to identify adequate bitwidths for all variables. Initial bounds have multiple sources.

First, conventional C variable types (bool, char, and short) provide important bitwidth in-

formation. The exact widths of all constants are directly known. We also give the user more

�ne-grained control over bitwidths of variables: a pragma specifying an arbitrary bitwidth

(e.g., 5 bits) may be optionally supplied after each variable declaration in the C source code.

Values read from or written to an external location, such as memory, are ideal candidates

for user bitwidth annotation. These values are not analyzable and the compiler must assume

the worst case in the absence of user intervention.

Another source of initial bounds is the PICO loop parallelizer, which introduces a number of

variables into the code as it transforms the original program to parallel form. Bounds on these

values are generally known by the loop parallelizer, and their required widths are therefore

known. However, these widths are not readily visible by direct inspection of the code after

loop parallelization. The loop parallelizer inserts additional pragmas within resultant code

to provide this information.

These bounds on bitwidths for all program variables provide a starting point for iterative

constraint analysis. Iterative constraint analysis can re�ne or narrow the bitwidths for many

values by repeatedly propagating width constraints through the program. The width of a

variable is constrained by two factors. First, the width is limited by the amount of useful

data available when the variable is de�ned. This is referred to as the def constraint . For

example, 16 bits are not necessary to hold the result of adding two 3-bit numbers { 4 bits

8



is enough. Second, a value need not retain more bits than the number needed by its uses.

This is referred to as the use constraint . For example, a 32-bit quantity contains unneeded

data if it is only used in 10-bit add operations.

The individual operations are connected via de�ne-use and use-de�ne chains such that every

de�ne of a variable is connected to the operations that consume that value and the reverse.

We repeatedly apply the def and use constraints to get ever tighter restrictions on variable

widths until we converge to a stable solution. This approach is a natural extension to

standard forward and backward data
ow analysis techniques [5].

The iterative constraint propagation is best explained by breaking it down into its three

constituent components: opcode transfer functions, forward analysis, and backward analysis.

Each is discussed in the remainder of this section followed by an example of the entire process.

3.1 Opcode transfer functions

At the individual operation level, there is an opcode-speci�c calculation that determines the


ow of information through the operation. For example, when two 6-bit quantities are added,

it is known the result is not larger than 7 bits. Similarly, when an add has a 10-bit result,

it is known the inputs need not be larger than 10 bits. Such functions, referred to as opcode

transfer functions, are determined for every opcode in the compiler's instruction set. They

are broken down into forward opcode transfer functions to specify the rules for computing

output widths of an operation given its input widths, and backward opcode transfer functions

to specify the rules for computing input widths of an operation given its output widths.

The opcode transfer functions for some commonly occurring integer arithmetic opcodes are

presented in Table 1. The forward transfer function for add states that the destination width

is the maximum of the two source widths plus one. In essence, a single carry-out bit from

the larger number could be generated, hence one additional bit is required. The backward

transfer function for add states that the width of both sources is equal to the width of the

destination. Since an add only propagates information from the low-order bits to the high-

9



Table 1: Opcode transfer functions for common integer opcodes. The form of an operation
is: dest = src1 opc src1. We use d, s1, and s2 to represent the widths of dest, src1, and src2,
respectively.

Opcode Forward Backward

add d = MAX(s1, s2) + 1 s1 = d, s2 = d
subtract d = MAX(s1, s2) + 1 s1 = d, s2 = d
unary negate d = s1 + 1 s1 = d
multiply d = s1 + s2 s1 = d, s2 = d
divide d = s1 + 1 s1 = max width, s2 = max width
left shift by const d = s1 + C s1 = d - C, s2 = max width
right shift by const d = s1 - C s1 = d + C, s2 = max width
compare d = 1 s1 = max width, s2 = max width
bitwise and d = MIN(s1, s2) s1 = d, s2 = d
bitwise or d = MAX(s1, s2) s1 = d, s2 = d
bitwise xor d = MAX(s1, s2) s1 = d, s2 = d
bitwise complement d = max width s1 = d

order bits, anm-bit result is only dependent on the low-orderm bits of the inputs. For integer

divide, the destination is no wider than the divisor. However, a maximal positive value for a

particular bitwidth could be divided by negative one, thereby increasing the required width

of the result by one in two's complement format. Conversely for divide, the destination

width places no constraints on the source widths. Hence, the only conclusion is that the

sources are unconstrained, represented as max width in the table. The table presents the

transfer functions for a variety of other opcodes that are derived through similar analyses.

3.2 Forward analysis

Forward analysis repeatedly applies the def constraint to limit the output widths of all

operations. Information is propagated from operation inputs to their outputs via the forward

opcode transfer functions. The forward propagation phase is applied iteratively across all

operations in the program until a �xed point is reached.

The algorithm for forward analysis is presented in Figure 2. The algorithm maintains two

10



sets of widths for all of the register references in the program segment (or region) being

analyzed: CW and FW. The current width or CW is the last set of stable widths that were

computed. Initially, CW is determined from the variable declaration information received

from the PICO frontend. The forward width or FW is the set of working widths that are

computed during forward analysis. FW is initialized di�erently for each type of operand. For

source operands that are de�ned externally (a live-in register, memory location, or literal),

the CW value is used as the initial value. These operands are never computed in the code,

thus forward analysis cannot make any conclusions about the widths of these operands. For

all other source and destination operands, FW is set to uncomputed, represented as 0 in the

algorithm.

The middle portion of the algorithm in Figure 2 shows the iterative forward analysis process.

The source widths (FW[o,s]) for an operation are calculated by determining the widest

de�nition of the source to reach the operation under consideration. Note that minimum

between the widest reaching de�nition and the CW is always taken, so that the width is

never increased beyond its last stable constraint. The destination widths are then computed

by applying the forward opcode transfer function. The process continues until a �xed point

is reached. When the �xed point is achieved, the FW widths represent the next stable and

more constrained set of widths. Hence, CW is updated with FW where there are di�erences.

3.3 Backward analysis

Backward analysis is analogous to forward analysis with the direction of all constraint prop-

agation reversed. The use constraint is repeatedly applied to limit the input widths of

each operation given constraints on the output widths. Information is propagated from an

operation outputs to its inputs using the backward opcode transfer functions.

The algorithm for backward analysis is presented in Figure 3. It is very similar in structure

to the forward analysis algorithm, thus only a few di�erences are pointed out here. The

backward width or BW is the set of working widths that are computed during backward

11



Compute width information for all operations in a region in the forward direction.
Widths are maintained for each variable reference, operation � operand. CW con-
tains the stable reference widths for the region. FW contains the working reference
widths computed during forward analysis.
Procedure forward propagation(region, CW)
1: // Initialize the working reference widths, FW
2: for each operation o in region in sequential order
3: for each source operand s of o
4: if (s � (livein [ memory [ literal)) then

5: FW[o,s] = CW[o,s] ;
6: else

7: FW[o,s] = 0 ;
8: endif

9: endfor

10: for each destination operand d of o
11: FW[o,d] = 0 ;
12: endfor

13: endfor

14: // Iterate until reach a �xed point solution
15: change = true ;
16: while (change)
17: change = false ;
18: for each operation o in region in sequential order
19: for each source operand s of o
20: // Each source width is the max of its reaching defs
21: FW[o,s] = MIN(MAX(FW[o,rdef[o,s]]), CW[o,s]) ;
22: if (FW[o,s] changed) then

23: change = true ;
24: endif

25: endfor

26: for each destination operand d of o
27: // Propagate RHS to LHS using the forward tf
28: FW[o,d] = MIN(op forward(o,d,FW), CW[o,d]) ;
29: if (FW[o,d] changed) then

30: change = true ;
31: endif

32: endfor

33: endfor

34: endwhile

35: // Update region reference widths
36: change = false ;
37: for each operation-operand pair i, j
38: if (CW[i,j] 6= FW[i,j]) then

39: CW[i,j] = FW[i,j] ;
40: change = true ;
41: endif

42: endfor

43: return change ;

Figure 2: Iterative algorithm for forward bitwidth analysis.

12



Compute width information for all operations in a region in the backward direction.
Widths are maintained for each variable reference, operation � operand. CW con-
tains the stable reference widths for the region. BW contains the working reference
widths computed during backward analysis.
Procedure backward propagation(region, CW)
1: // Initialize the working reference widths, BW
2: for each operation o in region in reverse sequential order
3: for each destination operand d of o
4: if (d � (liveout [ store)) then

5: BW[o,d] = CW[o,d] ;
6: else

7: BW[o,d] = 0 ;
8: endif

9: endfor

10: for each source operand s of o
11: BW[o,s] = 0 ;
12: endfor

13: endfor

14: // Iterate until reach a �xed point solution
15: change = true ;
16: while (change)
17: change = false ;
18: for each operation o in region in reverse sequential order
19: for each destination operand d of o
20: // Each dest width is the max of its reaching uses
21: BW[o,d] = MIN(MAX(BW[o,ruse[o,d]]), CW[o,d]);
22: if (BW[o,d] changed) then

23: change = true ;
24: endif

25: endfor

26: for each source operand s of o
27: // Propagate LHS to RHS using the backward tf
28: BW[o,s] = MIN(op backward(o,s,BW), CW[o,s]) ;
29: if (BW[o,s] changed) then

30: change = true ;
31: endif

32: endfor

33: endfor

34: endwhile

35: // Update region reference widths
36: change = false ;
37: for each operation-operand pair i, j
38: if (CW[i,j] 6= BW[i,j])
39: CW[i,j] = BW[i,j] ;
40: change = true ;
41: endif

42: endfor

43: return change ;

Figure 3: Iterative algorithm for backward bitwidth analysis.

13



I1: x = a + 1

I2: y = x * b

I3: y = y + 1

I4: z = y + c

Loop:

if ( ) goto Loop

3 2

11

2

32

I1: x = a + 1

I2: y = x * b

I3: y = y + 1

I4: z = y + c

Loop:

if ( ) goto Loop

4 1115

23232

3216 32

3232

32

32

32

3216

I1: x = a + 1

I2: y = x * b

I3: y = y + 1

I4: z = y + c

Loop:

if ( ) goto Loop

3 24

4 1115

21616

1616 16

original  code after forward prop after backward prop

3 24

Figure 4: Example application of bitwidth analysis.

analysis. The initialization process for BW sets the width of destination operands that

are either memory locations or live-out registers to CW. These operands have no consumers,

thus backward analysis cannot derive any information about their widths. All other operands

have their BW set to uncalculated or 0. The backward analysis is iteratively applied across

all operations until a �xed point is reached.

3.4 Example

To illustrate the application of bitwidth analysis, consider the example in Figure 4. The

original code consists of four instructions, two sequential instructions, a third within a loop,

and a fourth after the loop. For this example, the trip count of the loop is unknown. The

initial widths provided by the user are annotated above each variable in the original code.

Forward propagation applies the def constraint to propagate right-hand side constraints to

the left-hand side for each instruction. For I1, the addition of a 3-bit and a 2-bit quantity

produces at most a 4-bit result, hence the width of x is 4 bits. For I2, the 4-bit value for x is

propagated downward from I1. Then, the forward opcode transfer function for multiplication

states that n bits multiplied by m bits yields at most n +m bits (see Table 1). Thus, the

width of y is calculated as 15 bits. Similar propagation is applied to the other instructions.

Since I3 is within a loop, the forward propagation iterates until reaching a �xed point in

which y is 32 bits. This result is best possible since the loop iterates an unknown number of

14



times.

Backward analysis is applied next. The constraint of the �nal output, z, being no more than

16 bits is propagated. This a�ects the width of y and c in I4 and I3 because the 16-bit

output requires only 16-bit inputs. Note that the with of c is reduced even though it is a

live-in variable. I1 and I2 are not a�ected by the backward propagation because they already

contain stronger width constraints.

In this example, a second iteration of forward analysis after backward analysis completes

yields no further improvement. In fact, we have tried and failed to �nd a case in which

applying an outer loop to the analysis process is useful. We suspect that forward iteration

to convergence followed by backward to convergence achieves the best solution with this

approach.

4 Width-Sensitive Architecture Synthesis

The architecture synthesis process makes all decisions needed to de�ne e�cient hardware for

a given input loop nest. In this section, we describe techniques that we have incorporated

into architecture synthesis that allow it to use bitwidth information to further improve the

e�ciency of the generated hardware.

The algorithms for architecture synthesis presented here are based on heuristics that divide

a very complex problem into multiple simpler problems that are solved in phased sequence.

A truly optimal strategy jointly makes all design decisions in an environment where it can

establish that the selected decisions are superior or equal to any other design choice. Optimal

search algorithms typically require the traversal of a combinatorial search space.

The use of bitwidth information is one example of the ongoing incorporation of additional

design complexity into PICO's architecture synthesis approach. This complexity is exhibited

in a number of ways. Bitwidth information adds complexity to PICO's architecture synthesis

input. If this new information is to be exploited, algorithms will have to be upgraded to take

15



this information into account. The optimization criteria used during architecture synthesis

grow more complex as PICO's architecture synthesis process tries to more faithfully model

variable width hardware cost. And �nally, the incorporation of variable width hardware

greatly adds to the diversity of designs that must be considered. Multiple design choices that

were co-equal when widths were �xed now represent distinct potentially optimal choices.

A number of papers have presented cleverly contrived integer linear programming formula-

tions of the special-purpose hardware synthesis problem [6, 7]. These formulations represent

the necessary design decisions by using a large number of 0/1 integer variables. These e�orts

have implicit architectural limitations that constrain the search space as de�ned by the for-

mulation so that solution is tractable. No doubt, they can be extended in architectural scope

and to accommodate bitwidth information. The concern with these methods is the runtime

of the solver: as the complexity of the available choices for architecture synthesis and the op-

timization criteria continue to increase, optimal search algorithms experience exponentially

growing runtimes and in practice they are unacceptably slow.

Prior to the incorporation of bitwidth analysis, PICO had a heuristic, two-phase strategy

for architecture synthesis. In this strategy, a �rst phase identi�es a set of FUs of smallest

cost that is capable of executing the loop body at the requisite computation rate. This

minimization implicitly assumes that interconnect cost is less important than FU cost. The

second phase schedules all operations on a speci�c FU and at a speci�c moment in time,

thus completely specifying the higher-level architecture. The FU cost minimization uses

an integer linear programming formulation that is practical due to the simplicity of the

search space (there are no 0/1 integer variables) and the empirical observation that optimal

solutions can be found quickly [1]. The scheduling pass is heuristic due to the very large

search space and the lack of e�cient and provably optimal decision making criteria.

The need to jointly consider operation width and operation type a�ects both the composition

of the FUs in the synthesized processor as well as the detailed binding of each operation to

one of these FUs. The software pipeliner is responsible for solving a di�cult combinatorial

search problem and uses heuristics to identify an operation schedule that meets resource and

16



dependence constraints. Rather than adding complexity to the scheduler, we have developed

a clustering phase that is invoked before scheduling. It is designed to restrict the scheduler

in such a way that e�cient width-sensitive designs are produced.

In general, clustering is a process of partitioning the set of operations and the set of FUs

into subsets before scheduling, and constraining the scheduler to bind operations to FUs of

the same cluster. Operation clustering has traditionally addressed the problem of compiling

programs for prede�ned hardware clusters of FUs and register �les [8].

PICO balances the competing costs of supporting operation width and operation type by

width clustering. In width clustering, the set of operations is �rst partitioned into subsets

having similar type or similar width. After operation clusters are formed, FUs are allocated

separately for each cluster. Width clustering promotes the use of narrow FUs for narrow

operations and it also channels expensive operations into a single cluster to avoid proliferation

of expensive FUs.

Width clustering consists of the following three steps: 1) virtual FU assignment, 2) virtual FU

clustering, 3) creation of clustered machine description. Each is discussed in the remainder

of this section. An example then follows.

4.1 Virtual FU assignment

Virtual FU (VFU) assignment is a preliminary binding of operations to FUs that is directed

by the cost of implementing the operations, with known width, on heterogeneous FUs. It is

derived without using any data dependence information. VFU assignment provides a sample

binding from which further clustering decisions are made. It does not constrain the actual

bindings that are �nally made. Pseudo-code for the VFU assignment algorithm is provided

in Figure 5, and pseudo-code for it's supporting procedures is provided in Figure 6.

The VFU assignment has a number of inputs. A set of operations that must be implemented

along with the requisite II are provided. Each operation, op, has a width, op.width, that is

determined using bitwidth analysis. PICO uses a library of FUs each with a speci�c opcode

17



Assign ops in region to vfus. Returns the list of accrued vfus, vfulist. The heuris-
tic method is utilized until the overcost of the candidate goes above a threshold
(MAX OVERCOST). Once this occurs a recursive method is used to perform the
remainder of the vfu assignment.
Procedure vfu assign(region, II)
1: // Build oplist, a list of ops sorted from highest to lowest
2: // cost of the cheapest FU to implement that operation
3: oplist = build oplist(region) ;
4: while (oplist not empty)
5: cvfulist = build cvfulist(oplist, II) ;
6: best overcost = in�nity ;
7: for each candidate virtual function unit cvfu in cvfulist
8: overcost = compute overcost(cvfu, II) ;
9: if (overcost < best overcost) then

10: best overcost = overcost ;
11: best cvfu = cvfu ;
12: endif

13: endfor

14: // If best cvfu has an acceptable overcost, then keep it
15: if (best overcost � MAX OVERCOST) then

16: vfulist.add(best cvfu) ;
17: oplist = oplist - best cvfu.bound ops ;
18: // Else, use recursive approach to bind remaining ops
19: else

20: �nd vfus recursively(oplist, II, selected fus) ;
21: vfulist = vfulist + selected fus ;
22: oplist.clear() ;
23: endif

24: endwhile

25: return vfulist ;

Figure 5: Algorithm for virtual FU assignment.

repertoire and a cost that varies with the FU's width. The VFU assignment procedure uses

a cost function, fu.cost(width), that is de�ned for each FU. The cost depends on both the

function to be implemented as well as the width of the FU implementation. These costs are

calibrated from an existing standard cell library that can generate actual FUs of appropriate

width and repertoire.

VFU assignment begins in the procedure vfu assign in Figure 5. The input parameter region

is an object that holds all required information about the region of the input program

containing the loop nest for which hardware is to be synthesized. The parameter II speci�es

the initiation interval for the desired schedule. As we discuss later, two distinct heuristics

18



Create a list of cvfus compatible with the �rst operation in oplist, bind up to II
operations to each cvfu.
Procedure build cvfulist(oplist, II)
1: seed = oplist.head ;
2: cvfulist = create compatible cvfus(seed) ;
3: for each candidate virtual function unit cvfu in cvfulist
4: num assigned ops = 0;
5: for each operation x in oplist
6: if (cvfu.fu.implements(x) then

7: cvfu.bind(x) ;
8: cvfu.width = MAX(cvfu.width, x.width) ;
9: num assigned ops = num assigned ops + 1 ;
10: endif

11: if (num assigned ops == II) then

12: break;
13: endif

14: endfor

15: endfor

16: return cvfulist ;

Returns the cost for the best assignment of the remaining operations to vfus. The
parameter selected fus is the 2nd return value, a list of the vfus coresponding to
the returned cost.
Procedure �nd vfus recursively(oplist, II, selected fus)
1: if (oplist is empty) then // Terminate recursion
2: return 0 ;
3: endif

4: // For each cvfu, recursively assign remaining ops to vfus
5: cvfulist = build cvfulist(oplist, II) ;
6: best cost = in�nity ;
7: best cvfus = 0 ;
8: for each candidate virtual function unit cvfu in cvfulist
9: unbound oplist = oplist - cvfu.bound ops ;
10: cost = �nd vfus recursively(unbound oplist, II,
11: selected fus) ;
12: total cost = cost + cvfu.fu.cost(cvfu.width) ;
13: if (total cost < best cost) then

14: best cost = total cost ;
15: best cvfus = selected fus + cvfu ;
16: endif

17: endfor

18: selected fus = best cvfus ;
19: return best cost ;

Figure 6: Support functions for virtual FU assignment.

19



are embodied within the pseudo-code. A more accurate heuristic uses a recursive descent to

calculate cost, while a faster heuristic terminates this descent and sacri�ces the optimality

of selected VFUs while accelerating the VFU assignment process.

The �rst action performed within vfu assign is to invoke the function build oplist (imple-

mentation not shown) in order to build a sorted list of operations from input code. For each

operation, a cheapest FU is identi�ed and used to determine the operation's inherent cost.

An operation's, op's, cheapest FU, CFU(op), is the least expensive FU among those capable

of executing op. The determination of the cheapest FU takes the operation's width into

account. An operation's width is de�ned as the maximum width of all of its operands. This

represents a limitation of current work as some operations like loads can have address width

that is unrelated to the data width and the use of this maximal width is imprecise. For each

FU, fu, that is capable of executing the operation, fu's cost is measured at the width needed

by the operation, fu.cost(op.width). A cheapest FU is any of the FUs that minimizes this

cost. After inherent costs are calculated, operations are sorted from highest to lowest cost

and returned as oplist from the function call to build oplist.

At each step in the VFU assignment procedure, a seed operation is selected from which a

VFU is grown. This process begins with the call to build cvfulist whose implementation

is shown in Figure 6 (top). The function build cvfulist identi�es a seed operation as the

costliest operation that has not already been bound to a VFU. Given a seed operation, a

candidate VFU (CVFU) is grown for every hardware FU in the library that implements the

seed. The invocation of create compatible cvfus(seed) creates a list containing a CVFU for

each FU that implements the seed operation. Each of these CVFUs is initialized with the

property cvfu.fu which identi�es the FU that led to its creation.

A loop then separately processes each CVFU. A CVFU acquires additional operation bind-

ings as an inner loop traverses the list of unbound operations from highest to lowest inherent

cost. As each operation is considered, the operation is bound to the CVFU if the FU cor-

responding to the CVFU implements the operation and the CVFU does not already have

II operations bound to it. Initially, zero operations are bound to the CVFU and the �rst

20



operation processed is the seed. The seed is always compatible with and is always bound

to the CVFU. Operation binding continues until the CVFU has II bound operations or the

prioritized list of unbound operations is exhausted. When build cvfulist is complete, a list

of CVFUs is returned. Each CVFU has a set of operations (cvfu.bound ops) that has been

bound to it, a width (cvfu.width) corresponding to the width of the widest operation, and a

hardware implementation cost for the CVFU (cvfu.fu.cost(cvfu.width)).

The algorithm uses one of two methods to determine the CVFU that is selected as the

�nal VFU for the seed. A rapid heuristic minimizes an overcost function that computes the

amount that the actual implementation exceeds a lower bound on the minimum possible

cost. At each step in the algorithm, the VFU for the seed is selected as the minimal overcost

CVFU. The overcost function is de�ned as

overcost = cvfu.fu.cost(cvfu.width)�
X

op2cvfu.bound ops

CFU(op).cost(op.width)

II
(1)

The overcost measures how close the actual cost of the hardware implementation for a CVFU

is to the sum of the inherent costs for all operations assigned to that FU. The CVFU having

the lowest overcost is chosen as the VFU. After a VFU is identi�ed, the process continues

by selecting the next seed and growing a new VFU until all operations have been bound.

A threshold test (overcost � MAX OVERCOST) determines whether the rapid heuristic

is acceptable or more accurate heuristics should be employed. When the overcost is unac-

ceptably high, a fully-recursive technique is employed by calling �nd vfus recursively. The

function �nd vfus recursively calls build cvfulist to construct a list of CVFUs. For each

CVFU, the total cost is calculated as the actual cost of the CVFU plus the cost of imple-

menting all remaining operations not bound to the CVFU. This remaining cost is calculated

by recursively calling �nd fus recursively with an oplist consisting of the remaining unbound

operations. A minimal cost is selected over all CVFUs and returned.

The VFU assignment pseudo-code integrates a rapid heuristic and an exponential heuristic

into a common algorithm. This algorithm has been used to enhance our understanding

21



of both heuristics and to gain a better understanding of how we might wish to imple-

ment future width-clustering heuristics. We have shown on a number of examples that

the fully-recursive heuristic improves on results achieved by the rapid heuristic. By set-

ting the MAX OVERCOST to in�nity, the rapid heuristic is always used. By setting

MAX OVERCOST to a negative number, the fully-recursive heuristics always used. This al-

lows the comparison of results derived by exclusive use of either heuristic. The fully-recursive

heuristic is exponential in nature and cannot be used in a production setting for large-scale

problems. However, timeout based schemes or other computation limiting schemes can be

used to integrate limited recursion into the VFU assignment algorithm.

After VFU assignment is complete, a set of VFUs is de�ned. Every operation is bound to

one VFU, with a maximum of II operations bound to a single VFU. The VFU selection

and assignment heuristic of this section has chosen a set of VFUs of approximately minimal

total cost. The set of VFUs and the binding of operations to them is next used to drive

downstream clustering that is cognizant of the e�ects of both width and repertoire on FU

cost.

4.2 Form operation clusters through virtual FU clustering

The purpose of this step is to partition the set of operations into operation clusters. To

that end, VFU clustering is used to group VFUs based on width. The width of each VFU

is determined by the widest operation assigned to that VFU. The VFUs are sorted from

highest to lowest in width. A cluster is initialized when the widest unbound VFU is added

to it. The width of this VFU de�nes the cluster width. The ratio of the cluster width to

each of the remaining unbound VFUs is calculated. VFUs are added to the cluster until

this ratio falls below some threshold (e.g., 1.5). When the cluster is complete, the widest

unbound VFU is again selected as a seed to form a new cluster. The process repeats until all

VFUs are assigned to clusters. Finally, each VFU cluster gives rise to an operation cluster.

All operations bound to a common VFU cluster reside within a common operation cluster.

22



After operation clusters are formed, the VFUs have no further use and are discarded.

4.3 Machine description creation and scheduling

Creation of the clustered machine description completes the width-clustering process. For

each operation cluster, a set of FUs that can execute all operations within the cluster at

the required rate is selected using integer linear programming. The integer linear program

allocates FUs from a library of FUs having known cost functions. These functions relate FU

width to FU cost. In the PICO library, the unit of cost is estimated gate count.

The width of each cluster is determined by the widest operation within the cluster. For each

of the operations within the cluster, all FUs that implement the operation are added to that

cluster's FU library. The cost for each of these FUs is evaluated at the cluster width. The

integer linear program is then applied separately, for each cluster, in order to determine the

initial set of FUs for the cluster.

The selection of FUs is translated into a machine description needed by the software pipeliner.

A machine description for all clusters is assembled by instantiating scheduling alternatives

for all allocated FUs within all clusters. For each alternative, its FU type is used to identify

a machine description for the FU that is used to construct the machine description for the

alternative (i.e. the instance of the FU). The software pipeliner has been altered so that it

limits the binding of each operation to scheduling alternatives corresponding to FUs that

are within the operation's width cluster. After the machine description is constructed, the

software pipeliner is then used to determine a FU and time for all operations.

Width clustering allows us to systematically reduce hardware cost by taking advantage of

width information without increasing the complexity of FU allocation and scheduling. In

fact, width clustering simpli�es both the FU allocation and scheduling process. Since FU

allocation is performed separately for each cluster, the allocator solves a simpler alloca-

tion problem for each cluster. This accelerates the allocation process. Since, the software

pipeliner is constrained to bind each operation to scheduling alternatives within its cluster,

23



the number of allowed alternatives is reduced. Again, scheduling is actually simpli�ed by

width clustering.

4.4 Example

To illustrate the application of width clustering, the example in Figure 7 is presented. For

this example, we assume MAX OVERCOST is in�nity, thus the rapid heuristic for VFU

assignment is exclusively utilized. The example consists of four operations, three adds and

a subtract, and an II of two. The example FU library has three elements: adder, subtracter,

adder-subtracter. The operations are sorted by their inherent cost, yielding an order of

I1-I3-I2-I4. The �rst seed is the head of the list or I1. It can be implemented using either

an adder (option A) or an adder-subtracter (option B). With option A, the highest cost

operation that is compatible is I2, yielding a overcost of: (320 � ((320 + 60)=2)) = 130.

With option B, the highest cost operation that is compatible is I3, yielding a overcost of:

(416� ((320+ 320)=2)) = 96. The choice with the smallest overcost is chosen; hence, option

B is selected. The next seed chosen is I2, and with a similar calculation, option A is chosen.

After VFU assignment is complete, there are two VFUs: a 32-bit adder-subtracter assigned

operations I1 and I3; and a 6-bit adder assigned operations I2 and I4.

VFU clustering is then performed. Assuming a cluster ratio of two, each VFU is assigned

its own cluster. Hence after width clustering is complete, there are two clusters, (I1,I3)

and (I2,I4). The creation of the clustered machine description selects an adder-subtracter

for the �rst cluster and an adder for the second cluster. For this simple example, integer

linear programming happens to select the same FUs as those that were selected during VFU

assignment. Subsequent software pipelining ensures that I1 and I3 are bound to the resources

in the �rst cluster (adder-subtracter) and I2 and I4 are bound to the resources in the second

(adder).

It is interesting to re-examine the example with one small change to the FU library. Assume

that the cost of the adder-subtracter is increased from thirteen gates/bit to �fteen gates/bit.

24



I1: add, 32-bit, mincost = 320

I3: sub, 32-bit, mincost = 320
I2: add, 6-bit, mincost = 60

I4: add, 5-bit, mincost = 50

FU library: Adder: 10 gates/bit
Subtracter: 10 gates/bit
Adder-Subtracter: 13 gates/bit

Input instructions:

II = 2

After virtual FU
assignment:

Adder-Subtracter: 32-bit, cost = 480, I1, I3
Adder: 6-bit, cost = 60, I2, I4

After cluster
assignment:

Cluster 1:  I1, I3, width range = 32-bit to 32-bit
Cluster 2: I2, I4, width range = 6-bit to 5-bit

Seed: I1 Option A: Adder, 32-bit, I1, I2, overcost = 130
Option B: Adder-Subtracter, 32-bit, I1, I3, overcost = 96Choose option B

Seed: I2 Option A: Adder, 6-bit, I2, I4, overcost = 5
Option B: Adder-Subtracter, 6-bit, I2, I4, overcost = 35Choose option A

Figure 7: Example application of width clustering using rapid heuristic.

In this case, VFU assignment using the rapid heuristic fails to achieve an e�cient solution.

The result is that three VFUs (32-bit adder, 32-bit subtracter, and 5-bit adder) are assigned

operations. Even with the change in cost, the best solution is still two VFUs (32-bit adder-

subtracter and 6-bit adder) as achieved previously. The rapid heuristic made an ine�cient

choice for the �rst operation assigning it to an adder (rather than an adder-subtracter),

thereby causing the problem. The exponential heuristic achieves the best solution for this

example for either cost function.

5 Hardware Generation

The �nal phase of the design process is to build the actual NPA hardware. A hardware

processing engine is synthesized directly from the scheduled loop. Each hardware component

(FU, register, MUX) is sized using the results from bitwidth analysis and scheduling.

The datapath schema for each processor in the NPA is shown in Figure 8. The datapath

consists of an array of heterogeneous FUs that implement all operations in the loop body.

25



Interconnect

FU FU FU FU FU

Regs Regs Regs Regs Regs

WC1 WC2

Figure 8: Non-programmable accelerator datapath schema used by PICO.

FUs include adders, multipliers, multiply-adders, ALUs, etc. Ports to memories are treated

as FUs as well. The physical memories and memory interfaces are not shown. There is also

a special branch FU that controls the software pipeline loop execution [9].

Each FU computes result operands that must be stored in registers until they are no longer

needed. Our approach for deploying registers is too complex to fully describe within this

paper but a brief overview is presented here. A separate set of registers is dedicated to

storing results that are computed within each FU. However, special treatment is needed for

rarely occurring cases where, due to the use of predicated conditionals, a common result is

computed by multiple FUs within mutually exclusive conditional clauses. Each FU's result

registers are implemented as a customized network of individual register elements rather

than as a multi-ported addressable register �le. The number of required registers depends

upon the number of program variables computed by each FU as well as the length of time

that each computed value must be maintained to support the software pipeline schedule.

After the register network and the 
ow of operands through registers is fully speci�ed, each

register element is further customized to its �nal width. Before the loop can begin execution,

all live-in values are downloaded from the global memory and stored into the appropriate

register to initialize the loop.

Because a common set of registers stores all results that are computed within each FU,

26



and because registers often hold values for more than one program variable, width cluster-

ing simultaneously reduces the hardware cost for the FUs as well as the cost of the FUs'

result registers. That is, the clustering of operations of similar width into common FUs

automatically clusters operands of similar width into shared register elements.

Loop invariant operands receive special treatment. Constant values are directly generated

in hardware. Loop invariant values that are computed prior to entering the loop and then

repeatedly used within the loop require exactly one unshared register.

The datapath is controlled by a ring counter that varies from 0 to II-1 and a loop counter that

is initialized to the number of loop iterations and decremented until it reaches 0. The ring

counter is used to generated control signals for switches within the interconnect, registers,

and multi-function FUs. A �nal DONE 
ag is set when the desired number of iterations

have been executed and the pipeline is drained.

6 Experimental Evaluation

In this section, PICO's bitwidth-sensitive architecture synthesis is evaluated. The compari-

son is made against a baseline PICO that is bitwidth unaware.

6.1 Setup and application characteristics

To perform the experiments, we used PICO to design NPAs for a set of twenty loop nests.

Table 2 presents the loop nests and a brief description of each. The depth of each loop

nest in the original source is speci�ed in the column labeled Depth. These loop nests were

chosen from a variety of domains including printing, digital photography, communications,

and networking. Narrow bitwidths are common in these domains and used throughout these

applications. Width pragmas were inserted where appropriate to more precisely specify the

widths of values kept in memory (e.g., arrays).

27



Table 2: Application description and target throughput.
Application Depth II Description

adpcm 2 9 adaptive speech compression

cell 2 2 packet recognition and delineation

chain 2 2 synthetic benchmark

channel 2 17 multiplexing cells on a channel

conv2d 4 3 2D convolution

dct 2 2 forward discrete cosine transform

edge 2 2 edge-based image smoothing

encode 2 2 run-length encoding

�r 2 2 16-tap �nite impulse response �lter

fsed 2 3 Floyd-Steinberg halftoning

heat 2 2 1D relaxation

hu�man 2 2 hu�man encoding

linescreen 2 2 image half-toning

lyapunov 3 3 stablility analysis

matmul 3 2 matrix multiplication

rls 3 2 complex recursive least-squares �lter

sharp 2 2 image sharpening

sobel 2 2 image edge detection

taub 6 2 digital camera demosaicing

viterbi 2 6 viterbi decoder using block decoding

One application, chain, is a synthetic application that was created during our study of

width-aware synthesis. Chain is a loop nest that contains two dependence chains of multiply

operations that are identical except in the width of data they process. The �rst chain operates

on narrow data and the second on wide data. In such an application, the opportunity for large

cost savings using bitwidth analysis is present because half of the data is narrow. However,

without width-aware heuristics, most FUs end up being wide due to the unfortunate binding

of wide and narrow operations to the same FU.

For these experiments, the performance is held constant for each loop nest as speci�ed by the

II and the number of processors. For each loop nest, the number of processors is set to one and

the chosen II is shown in Table 2. Scaling the number of processors should have little e�ect

on the results, because at higher throughputs identical processors are replicated. By default,

an II of two was chosen. However, there were several cases that contained a recurrence

28



constraint that requires an II that is larger than two. For these loop nests, the lowest II that

met the recurrence constraint was chosen. The �gure of merit in these experiments is the cost

of the design that achieves the speci�ed performance. PICO measures cost using gate count

estimates for each hardware component. Each component has an associated parameterized

cost formula that has been calibrated against a production-quality design library. To derive

the total cost, the hardware components are instantiated and the cost of the components

are summed across the design. These cost formulas have been shown to accurately estimate

system cost as measured in gate equivalents. Cost estimates do not include the cost of wires

(including their length).

The width clustering algorithm presented in Section 4 provides a MAX OVERCOST param-

eter to determine the heuristic that is applied for virtual FU assignment. Except for the last

experiment, these experiments are performed with MAX OVERCOST set to in�nity. This

causes the rapid, non-recursive algorithm to be used for these experiments.

To provide some insight into the width characteristics of the applications, a histogram of the

static operation widths is presented in Table 3. Each cell in the table contains the fraction of

static operations for a particular application whose width is within the speci�ed range. For

example, 27% of the operations in adpcm have widths of 1-4 bits. As previously discussed,

this paper makes the simplifying assumption that an operation can be described by a single

width that corresponds to the maximum width across all of its input and output ports. In

general, a diverse set of widths are present in each application. Most applications also contain

a large fraction of operations whose width is less than 8 bits. A notable exception to these

trends is matmul . This application is a matrix multiplication of two 32-bit matrices of large

size, thus all variables are truly 32 bits. One can properly anticipate that width-sensitive

synthesis will have little e�ect on matmul due to this characteristic. In the remainder

of the applications, many of the 32-bit operations correspond to address calculation and

manipulation. We currently assume all loads and stores to global memory require 32-bit

addresses. Thus, in many cases, further improvement can be obtained for the bitwidth of

address arithmetic.

29



Table 3: Distribution of static operation widths.
Application 1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32

adpcm 0.27 0.15 0.03 0.25 0.14 0.00 0.00 0.15

cell 0.89 0.04 0.00 0.05 0.00 0.00 0.00 0.02

chain 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.57

channel 0.26 0.15 0.00 0.03 0.02 0.00 0.00 0.55

conv2d 0.52 0.12 0.03 0.00 0.03 0.00 0.00 0.30

dct 0.06 0.01 0.21 0.33 0.00 0.00 0.01 0.38

edge 0.37 0.23 0.20 0.02 0.09 0.03 0.00 0.05

encode 0.09 0.22 0.02 0.24 0.05 0.00 0.00 0.38

�r 0.00 0.25 0.00 0.50 0.00 0.00 0.00 0.25

fsed 0.39 0.22 0.31 0.00 0.00 0.00 0.00 0.08

heat 0.45 0.00 0.21 0.00 0.00 0.00 0.00 0.34

hu�man 0.23 0.48 0.09 0.05 0.01 0.01 0.00 0.13

linescreen 0.06 0.63 0.00 0.17 0.00 0.00 0.00 0.14

lyapunov 0.29 0.14 0.06 0.00 0.00 0.00 0.00 0.51

matmul 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

rls 0.08 0.09 0.00 0.02 0.09 0.00 0.00 0.72

sharp 0.48 0.18 0.09 0.13 0.00 0.00 0.03 0.09

sobel 0.35 0.19 0.29 0.08 0.00 0.02 0.02 0.06

taub 0.38 0.07 0.02 0.27 0.00 0.00 0.14 0.11

viterbi 0.28 0.17 0.30 0.16 0.00 0.00 0.00 0.09

6.2 E�ectiveness of bitwidth analysis

Figure 9 presents the e�ects of bitwidth analysis on the NPA cost for each application

along with the arithmetic mean (amean) across all of the applications. The �gure compares

two variants of the PICO-NPA system: no width cognizance where the standard C widths

are used for all variables and operations (left bar), bitwidth analysis enabled but width

clustering disabled (right bar). The bars show the normalized cost for each NPA design

broken down into three pieces: FU, register, and the remainder or rest. The remainder

portion is dominated by switches within the interconnect of the design (see Figure 8). As

with FUs and registers, the cost of the interconnect is highly dependent on width. Total cost

for each bar is normalized to the no width cognizance case, thus the height of the rightmost

bar shows the overall cost reduction achieved via bitwidth analysis.

30



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
z
e

d
c
o

s
t

FU Register Rest

a
d
p
c
m

c
e
ll

c
h
a
in

c
h
a
n
n
e
l

c
o
n
v
2
d

d
c
t

e
d
g
e

e
n
c
o
d
e fi
r

fs
e
d

h
e
a
t

h
u
ff
m

a
n

lin
e
s
c
re

e
n

ly
a
p
u
n
o
v

m
a
tm

u
l

rl
s

s
h
a
rp

s
o
b
e
l

ta
u
b

v
it
e
rb

i

a
m

e
a
n

Figure 9: E�ects of bitwidth analysis on NPA cost. The study compares two con�gurations
to determine component widths: standard C widths (left bar) and bitwidth analysis (right
bar). Cost is broken down into three pieces: FU, register, and rest.

From the �gure, bitwidth analysis alone provides a large reduction in total cost across most

of the loops. The mean total cost is reduced by approximately 50%. This is achieved by

reducing the mean costs of the FUs, registers, and rest by 38%, 57%, and 45%, respectively.

Interestingly, the register cost is reduced by the largest percentage and the FU cost by the

smallest. A common cause for this behavior is that many of the loops contain uniformly

wide multiply operations. Multipliers are quadratic whereas registers are linear in cost as

a function of width. As a result, the FU cost has an expensive �xed term due to wide

multipliers. Therefore, a smaller reduction is observed for a very expensive term in the FU

cost.

The largest reduction occurs for cell , where the total cost is reduced by 85%. This application

is dominated by operations that are 1-4 bits (89% from Table 3). Hence, there are a large

number of opportunities to synthesize narrow hardware to reduce cost. There are few prob-

31



lems that arise due to any sharing of hardware between wide and narrow operations. The

other extreme behavior occurs for matmul , where no cost reduction is observed. As shown in

Table 3, all of its operations are 32 bit, hence there is no opportunity for bitwidth-sensitive

synthesis to yield any cost reductions.

6.3 E�ectiveness of width clustering

Figure 10 presents the e�ects of width clustering on the NPA cost for each application along

with the arithmetic mean across all of the applications. The format of the �gure is identical

to that of the previous experiment (Figure 9). However, Figure 10 compares two di�erent

variants of the PICO-NPA system: bitwidth analysis alone (left bar) and bitwidth analysis

and width clustering (right bar). Total cost for each bar is normalized to the bitwidth

analysis alone case.

The �gure shows that width clustering further improves to the cost of the NPAs, but the

improvement is more modest than in the previous experiment. A mean reduction of 9% in

total cost is observed, achieved by mean reductions of 11% FU, 6% register, and 9% rest.

The most noticeable cost savings occurs for chain, which enjoys a 45% reduction in total

cost. This application su�ers from poor sharing of hardware using bitwidth analysis alone.

Almost half of the operations in chain are 1-4 bits (see Table 3), yet less than a 5% reduction

in cost is observed after bitwidth analysis (see Figure 9). Narrow and wide operations are

accidentally scheduled onto common FUs resulting in most of the hardware being wide.

Width clustering e�ectively groups narrow operations together, thereby reducing the FU

cost by a substantial amount. A similar behavior occurs for lyapunov and yields a total cost

reduction of 19%.

Other applications, which achieve more than 10% reduction in total cost via width clustering,

illustrate a di�erent behavior. Two such examples are channel and encode. In both of these

cases, the FU cost drops by less than 5%. However, the register cost drops by 21% and

15%. Both of these designs are dominated by register cost, because there are a large number

32



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
z
e

d
c
o

s
t

FU Register Rest

a
d
p
c
m

c
e
ll

c
h
a
in

c
h
a
n
n
e
l

c
o
n
v
2
d

d
c
t

e
d
g
e

e
n
c
o
d
e fi
r

fs
e
d

h
e
a
t

h
u
ff
m

a
n

lin
e
s
c
re

e
n

ly
a
p
u
n
o
v

m
a
tm

u
l

rl
s

s
h
a
rp

s
o
b
e
l

ta
u
b

v
it
e
rb

i

a
m

e
a
n

Figure 10: E�ects of width clustering on NPA cost. The study compares two con�gurations
to determine component widths: bitwidth analysis alone (left bar) and bitwidth analysis and
width clustering (right bar). Cost is broken down into three pieces: FU, register, and rest.

of variables with long lifetimes. Without width clustering, wide and narrow operations are

placed on common FUs. This binding results in wide FUs, but more importantly results in

wide registers because our datapath schema shares registers among the values produced by a

single FU (see Section 5). Width clustering is able to e�ectively group operations of similar

width to enable the width of the output registers to be substantially reduced. FU cost is

also reduced, but the amount is insigni�cant compared to the savings in the register cost.

The rls application is an outlier. In this case, width clustering increases the cost of the NPA

by 3%. This behavior results because width clustering causes the schedule length for a single

iteration of the loop to increase. We believe that this is because the scheduler has fewer

binding choices due to the clustering, and must lengthen the schedule to achieve the desired

II. The net e�ect is that a larger number of registers is required and the cost grows slightly.

33



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a

li
z
e

d
c
o

s
t

FU Register Rest

a
d
p
c
m

c
e
ll

c
h
a
in

c
h
a
n
n
e
l

c
o
n
v
2
d

d
c
t

e
d
g
e

e
n
c
o
d
e fi
r

fs
e
d

h
e
a
t

h
u
ff
m

a
n

lin
e
s
c
re

e
n

ly
a
p
u
n
o
v

m
a
tm

u
l

rl
s

s
h
a
rp

s
o
b
e
l

ta
u
b

v
it
e
rb

i

a
m

e
a
n

Figure 11: E�ects of width clustering on NPA cost using a richer FU library that contains
multi-function FUs. The study compares two con�gurations to determine component widths:
bitwidth analysis alone (left bar) and bitwidth analysis and width clustering (right bar). Cost
is broken down into three pieces: FU, register, and rest.

6.4 Width clustering with multi-function FUs

One of the key factors a�ecting the results is the set of FUs available in the library. The

baseline library in PICO supports only a small number of multi-function FUs, such as adder-

subtracter, multiply-adder, and load-store. Multi-function FUs create opportunities for in-

telligent sharing that can be exploited by width clustering. To investigate these e�ects, the

last experiment is repeated with a number of multi-function FUs added to the PICO library.

The results of the experiment are presented in Figure 11. The �gure has the same format as

Figure 10. However, note that the cost is normalized to a di�erent value in this experiment

due to the di�erent FU library.

The results in Figure 11 are noticeably di�erent from those in Figure 10. The mean reduc-

34



tion in total cost increases from 9% to 12%. This behavior is directly attributable to the

availability of multi-function FUs. Multi-function FUs support larger combinations of oper-

ation types. Hence, there are more interesting sharing opportunities to exploit during width

clustering. The 
exibility of multi-function FUs enables the mapping of more operations of

similar width to common FUs when it has little e�ect on the cost of the FU. In addition to

reducing overall FU cost, this behavior generally reduces the cost of registers and intercon-

nect as better width utilization is achieved for the entire datapath. One obvious example

of this behavior is adpcm. In this case, a 23% reduction in total cost is achieved via width

clustering compared to 6% reduction in the previous experiment without multi-function FUs.

There is one outlying application, edge, where the relative cost of the NPA is increased with

multi-function FUs and width clustering. For this application, width clustering provides a

12% reduction in cost using the base FU library (Figure 10). However, using multi-function

FUs, width clustering increases the cost by 1%. The single-iteration schedule length is

increased by a signi�cant amount by the choice of clusters. As a result, the register and

total cost also grow.

6.5 Comparison of width clustering heuristics

The width clustering algorithm presented in Section 4 contains two separate heuristics for the

VFU assignment phase. The rapid heuristic employs the overcost metric to make assignment

decisions. There is also a more expensive heuristic that employs a fully-recursive technique

to derive the VFU assignments. Using both FU libraries from the previous experiments, we

compared the gate counts achieved with exclusive use of each heuristic. The results showed

only minor di�erences in the achieved FU and total gate counts. They di�ered by no more

than 3%. Generally, the expensive heuristic achieved better results, but there were several

cases where the rapid actually performed better. In many cases, the results were virtually

identical.

From these results, one might conclude that the expensive heuristic is not needed. We believe,

35



however, that such a conclusion cannot be sustained at this point for a number of reasons.

First, we only evaluated a small number of applications for these experiments. Second,

PICO's FU library is less complex than what we expect to encounter in fully practical uses.

Third, it is not di�cult to break the rapid heuristic, as shown in Section 4.4. A production

architecture synthesis system is likely to face more complex applications and a richer FU

library. In such an environment, the tradeo�s are more di�cult, and we believe the expensive

heuristic may have be better than this set of experiments shows.

7 Related Work

Bitwidth has been exploited in a number of previous e�orts. The C language has been

augmented to provide additional bitwidth information in the work on Valen-C at Kyushu

University [10], and by using pragmas in work at Delft [11]. Our C extensions closely

mirror these pragmas. A number of prior e�orts propagate bitwidth information in the

style of data
ow analysis. Information is propagated only locally in [11]. Others propagate

information over larger scope [12] [13] [14]. This work is similar to ours in that we all use

bidirectional constraint propagation. The work at MIT [14] emphasizes the careful treatment

of value ranges, while the work at CMU [13] analyzes sparse patterns of bits by recording

detailed information about each bit position separately. Each of these bitwidth analysis

approaches can potentially discover opportunities that are missed by our analysis approach.

In work at Seoul National University [15] [16], the e�ects of quantization error for �xed point

operations where low order bits are discarded is studied using both analysis and simulation.

This work treats a limited class of add and multiply based signal processing algorithms.

While our approach never sacri�ces any precision, it is clear that for many digital signal

processing applications low-order bits are often not needed and can be discarded in order to

reduce hardware cost without introducing undue error into the application.

Automatic datapath synthesis and has a long history and vast literature. For example,

Cathedral III [17], represents a complete synthesis system developed at IMEC and illustrates

36



one approach to high-level synthesis. It uses an applicative language for program speci�cation

and designs customized datapaths for DSP applications from this speci�cation.

Our work focuses speci�cally on datapath synthesis in the context of II � 1 software pipelines

that share resources among multiple operations. This requires both the allocation of hard-

ware resources as well as the scheduling of operations to those resources. The focus on

software pipelines allows us to allocate hardware using resource models that have been care-

fully adapted to software pipelining. We do not know of other datapath synthesis systems

that generate low-cost designs by scheduling loops at a desired throughput on FUs that are

shared among operations of similar width in such a way as to reduce hardware cost.

Paulin and Knight use a technique called force-directed scheduling to synthesize datapaths in

the HAL system for ASIC design [18]. They integrate FU resource allocation and scheduling

into a common synthesis algorithm to minimize overall cost. The Sehwa design system au-

tomatically designs processing pipelines from behavioral speci�cations [19]. This work uses

allocation and scheduling heuristics to construct cost or performance constrained designs.

Bakshi and Gajski consider the tradeo�s in allocating either low latency and expensive or

high latency and inexpensive FUs within an integrated scheduling and resource allocation

algorithm [20]. Similarly, Chang and Pedram also consider the allocation of FUs of varying

latency but their focus is on energy minimization [21]. Clique based partitioning algorithms

were developed in the FACET project to jointly minimize FU and inter-FU communication

costs [22]. In [16], greedy list scheduling techniques are presented that use bitwidth infor-

mation during scheduling to select hardware units having compatible width. An additional

problem of minimizing the cost of transmitting and extending operands of variable bitwidth

has been addressed in [23].

Marwedel studies techniques that allow the use of common hardware to treat expressions

with related, but not identical, semantics [24]. The technique consists of an initial phase

that maps expressions to virtual components followed by a subsequent phase that maps

virtual components to physical components. Ang and Dutt develop techniques to optimize

multi-output operations. They also consider a simple linear-cost treatment for bitwidth [25].

37



Another approach customizes a conventional processor with respect to bitwidth. In work by

Shackleford et al. detailed bitwidth information on operations is used to explore the cost

e�ectiveness of a family of processors with varying datapath width [26]. When operands have

width that exceeds the hardware width, they are treated in a serial fashion using multiple

precision operations. As the hardware width is varied, bitwidth information on operations

allows the system to determine the precise number of computational steps required for each

operation.

Scheduling within clusters has been used for VLIW architectures that are implemented as

separate physical clusters [8] [27] [28] [29] [30]. These clustering heuristics are aimed at

compilation for prede�ned VLIW architectures that have partitioned FUs and register �les.

In these machines, inter-cluster communication is costly and may require the insertion of

inter-cluster copy operations. The goal is to intelligently assign operations and operands to

clusters so that performance is maximized.

Eijk et al. [31] present an approach for scheduling code for irregular CPUs. This work deals

with complex machine constraints by pruning the search space prior to scheduling. While

the problem they solve is quite di�erent from ours, they also use an approach that limits the

binding choices before scheduling starts.

8 Conclusion

In this paper, we investigate the exploitation of integer bitwidth in an architecture synthesis

system for custom nonprogrammable hardware accelerators. The goal is to reduce the cost

of our designs by exploiting bitwidth information to build cheaper hardware. We employ

two complementary approaches. Bitwidth analysis computes the number of bits necessary

for each program variable and operation. This information provides the foundation for

architecture synthesis. Width clustering is then used to guide FU allocation and instruction

scheduling so that they intelligently map operations of disparate bitwidths onto the hardware.

Sharing decisions are made jointly based on bitwidth and implementation cost.

38



Experiments show that bitwidth-sensitive architecture synthesis reduces design cost by a

substantial amount. Bitwidth analysis alone provides a mean reduction in total gate count

of 49%. The application of width clustering provides an additional reduction of 9% in mean

total gates. Overall, the mean design cost is reduced by 53% over a baseline system that

is bitwidth unaware. The experiments also show that the importance of width clustering

increases as the number of architectural choices increases. The scheduler is more prone

to making bad decisions concerning width, resulting in poor designs. Width clustering

e�ectively constrains the scheduling choices to produce a quality design.

This work is based on a number of assumptions that could be generalized in future research.

The current synthesis system assumes that all FUs are fully pipelined and can process a

new set of input operands on every clock cycle. This limitation can be eliminated using

relatively simple techniques to model, allocate, and synthesize operations that occupy FUs

for multiple machine cycles. Results presented here also assume that each operation's latency

is known prior to FU binding. That is, for each operation, the binding choice is limited to

a set of FUs having common latency. This too can be generalized; however, problems occur

when operations on recurrence cycles are chosen with excessive latency and the scheduler

fails to identify a legal program schedule. Finally, the work also assumes that, for each

operation, all input and output operands have the same bitwidth. For operations like shifts

and multiplies, this is a severe limitation. Removing this limitation is somewhat more di�cult

because of the increased complexity in modeling cost and the large number of binding choices

that are now presented. For example, when treating a mixed set of commutative and non-

commutative operations, hardware optimization should consider applying the commutative

property, where legal, to co-align narrow operands on the same side of each potential FU.

Improvements in all of these areas would make this work more generally applicable to future

design systems.

39



Acknowledgments

The authors thank Santosh Abraham for his help in designing and developing bitwidth

analysis; Shail Aditya, Darren Cronquist, Vinod Kathail, Bob Rau, and Mukund Sivaraman

for their many discussions and useful feedback.

References

[1] R. Schreiber et al., \High-level synthesis of nonprogrammable hardware accelerators,"
in Proceedings of the International Conference on Application-Speci�c Systems, Archi-
tectures, and Processors (E. E. Swartzlander, G. A. Jullian, and M. J. Schulte, eds.),
pp. 113{124, July 2000.

[2] S. Aditya, B. R. Rau, and V. Kathail, \Automatic architectural synthesis of VLIW and
EPIC processors," in International Symposium on System Synthesis, ISSS'99, pp. 107{
113, Nov. 1999.

[3] The Trimaran Compiler Infrastructure for Instruction-Level Parallelism.
www.trimaran.org.

[4] R. Schreiber et al., \PICO-NPA: High-level synthesis of nonprogrammable hardware
accelerators," Journal of VLSI Signal Processing, vol. to appear, 2001.

[5] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools. Read-
ing, MA: Addison-Wesley, 1986.

[6] C. H. Gebotys and M. I. Elmasry, \Global optimization approach for architecture syn-
thesis," IEEE Transactions on Computer Aided Design, 1993.

[7] B. Landwehr, P. Marwedel, and R. Domer, \Oscar: Optimum simultaneous scheduling,
allocation and resource binding based on integer programming," in IFIP Workshop on
Logic and Architecture Synthesis, (Grenoble), 1994.

[8] P. Lowney et al., \The Multi
ow Trace scheduling compiler," The Journal of Super-
computing, vol. 7, pp. 51{142, Jan. 1993.

[9] V. Kathail, M. S. Schlansker, and B. R. Rau, \HPL PlayDoh architecture speci�ca-
tion: Version 1.0," Tech. Rep. HPL-93-80, Hewlett-Packard Laboratories, Palo Alto,
CA 94304, Feb. 1994.

[10] H. Yasuura, H. Tomiyama, A. Inoue, and F. N. Eko, \Embedded system design using
soft-core processor and Valen-C," IIS Journal of Information Science and Engineering,
vol. 14, pp. 587{603, Sept. 1998.

40



[11] A. Cilio and H. Corporaal, \E�cient code generation for ASIPs with di�erent word
sizes," in Third Annual Conference of the Advance School for Computing and Imaging,
(The Netherlands), June 1997.

[12] R. Razdan and M. D. Smith, \A high-performance microarchitecture with hardware-
programmable function units," in Proceedings of the 27th Annual International Sympo-
sium on Microarchitecture, pp. 172{180, Nov. 1994.

[13] M. Budiu, S. Goldstein, K. Walker, and M. Sakr, \Bitvalue inference: Detecting and ex-
ploiting narrow bitwidth computations," in Euro-Par 2000 Parallel Processing (A. Bode,
T. Ludwig, W. Karl, and R. Wism�uller, eds.), vol. 1900 of Lecture Notes In Computer
Science, pp. 969{979, Springer-Verlag, 2000.

[14] M. Stephenson, J. Babb, and S. Amarasinghe, \Bitwidth analysis with application to
silicon compilation," in Proceedings of the SIGPLAN '00 Conference on Programming
Language Design and Implementation, pp. 108{120, June 2000.

[15] S. Lee and W. Sung, \Finite wordlength e�ects analysis and wordlength optimization
of Dolby digital audio decoder," in Proceedings of ISCAS'98, June 1998.

[16] K. I. Kum and W. Sung, \Word-length optimization for high level synthesis of digital
signal processing systems," in Proceedings of 1998 IEEE Workshop on Signal Processing
Systems, pp. 142{151, Oct. 1998.

[17] S. Note, W. Geurts, F. Catthoor, and H. D. Man, \Cathedral-III: Architecture-driven
high-level synthesis for high throughput DSP applications," in Proceedings of the 28th
ACM/IEEE Design Automation Conference, pp. 597{602, June 1991.

[18] P. G. Paulin and J. P. Knight, \Force-directed scheduling for the behavorial synthesis
of ASIC's," IEEE Transactions on Computer-Aided Design, vol. 8, pp. 661{679, June
1989.

[19] N. Park and A. C. Parker, \Sehwa: A software package for synthesis of pipelines from be-
havioral speci�cations," IEEE Transactions on Computer-Aided Design, vol. 7, pp. 356{
370, Mar. 1988.

[20] S. Bakshi and D. D. Gajski, \Components selection for high performance pipelines,"
IEEE Transactions on VLSI Systems, vol. 4, pp. 182{194, June 1996.

[21] J. M. Chang and M. Pedram, \Energy minimization using multiple supply voltages,"
IEEE Transactions on VLSI Systems, vol. 5, pp. 1{8, Dec. 1997.

[22] C. Tseng and D. P. Siewiorek, \FACET: A procedure for automated synthesis of digital
systems," in Proceedings of the 20th Design Automation Conference, pp. 566{572, June
1983.

41



[23] K. Schoofs, G. Goossens, and H. D. Man, \Bit-alignment in hardware allocation for
multiplexed DSP architectures," in Proceedings of the European Conference on Design
Automation, pp. 289{293, Feb. 1993.

[24] P. Marwedel, \Matching system and component behaviour in MIMOLA synthesis tools,"
in Proceedings of the European Design Automation Conference, Mar. 1990.

[25] R. Ang and N. Dutt, \An algorithm for the allocation of functional units from realistic
RT component libraries," in Proceedings of the Seventh International Symposium on
High-level Synthesis, pp. 164{169, May 1994.

[26] B. Shackleford et al., \Embedded system cost optimization via data path width adjust-
ment," IEICE Transactions on Information and Systems, vol. E80-D, pp. 974{981, Oct.
1997.

[27] A. Capitanio, N. Dutt, and A. Nicolau, \Partitioned register �les for VLIWs: A pre-
liminary analysis," in Proceedings of the 25th Annual International Symposium on Mi-
croarchitecture, pp. 292{300, Dec. 1992.

[28] W. Lee et al., \Space-time scheduling of instruction-level parallelism on a RAW ma-
chine," in Eighth International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 46{57, Oct. 1998.

[29] E. Ozer, S. Banerjia, and T. M. Conte, \Uni�ed assign and schedule: A new approach
to scheduling for clustered register �le microarchitectures," in Proceedings of the 31th
Annual International Symposium on Microarchitecture, pp. 308{314, Nov. 1998.

[30] G. Desoli, \Instruction assignment for clustered VLIW DSP compilers: A new ap-
proach," Tech. Rep. HPL-98-13, Hewlett-Packard Laboratories, Palo Alto, CA 94304,
Feb. 1999.

[31] K. Eijk et al., \Constraint analysis for code generation: Basic techniques and appli-
cations in FACTS," ACM Transactions on Design Automation of Electronic Systems,
vol. 5, pp. 774{793, Oct. 2000.

42


