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A common topic for PC clusters is the use of mainstream instead of 
dedicated hardware i.e., using standard desktop PCs and standard 
network connectivity, with technology to organize them so that they 
can be used as a single computing entity. Current work in this "off-the-
shelf cluster" domain usually focuses on how to reach a high 
availability infrastructure, on how to efficiently balance the work 
between nodes of such clusters, or on how to get the most computing 
power for loosely-coupled (large grained) problems. hp Labs Grenoble, 
teaming with INRIA Rhone-Alpes, teamed up to build a cluster out of 
225 standard hp e-PC interconnected by standard Ethernet, with the 
objective of getting the highest computational performance and scaling 
from the simplest desktop PC to the most powerful computers in the 
world. As an additional constraint, we decided to use a cluster that 
models a modern enterprise network, using standard machines 
interconnected through standard Ethernet connectivity. This paper 
describes the issues and challenges we had to overcome in order to 
reach the 385th rank in the TOP500 list of most powerful 
supercomputers in the world on June 21st, 2001, being the first 
mainstream cluster to enter TOP500 ever. Also we provide hereafter 
some details about the software and middleware tuning we have done, 
as well as the impact of different factors on performance such as the 
network topology and infrastructure hardware. 
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A. ABSTRACT  

A common topic for PC clusters is the use of mainstream instead of dedicated hardware i.e., 
using standard desktop PCs and standard network connectivity, with technology to organize 
them so that they can be used as a single computing entity.  Current work in this "off-the-
shelf cluster" domain usually focuses on how to reach a high availability infrastructure, on 
how to efficiently balance the work between nodes of such clusters, or on how to get the most 
computing power for loosely-coupled (large grained) problems. hp Labs Grenoble, teaming 
with INRIA Rhône-Alpes, teamed up to build a cluster out of 225 standard hp e-PC 
interconnected by standard Ethernet, with the objective of getting the highest computational 
performance and scaling from the simplest desktop PC to the most powerful computers in the 
world. As an additional constraint, we decided to use a cluster that models a modern 
enterprise network, using standard machines interconnected through standard Ethernet 
connectivity. This paper describes the issues and challenges we had to overcome in order to 
reach the 385 th rank in the TOP500 list of most powerful supercomputers in the world on 
June 21st, 2001, being the first mainstream cluster to enter TOP500 ever. Also we provide 
hereafter some details about the software and middleware tuning we have done, as well as 
the impact of different factors on performance such as the network topology and 
infrastructure hardware. 

 

B. INTRODUCTION 

hp Laboratories Grenoble and the INRIA started 
the I-Cluster1 project in June 2000. I-Cluster is a 
research program on communities of standard 
Internet Appliances (e-client) aiming at 
distributing virtual functions like high-
performance super-computing tasks, distributed 
storage or network caching, using only non-
dedicated hardware. In this scope, a Beowulf-
class cluster of few hundred PCs would be 
contributed by hp,  constituting the basis for the 
experimental cluster. 
In October 2000, a first part of the I-Cluster (100 
machines interconnected with 3 switches) was 
built. After fine tuning the environment and 

                                                                 
1 More I-Cluster information is available 
from http://icluster.imag.fr/ 

Software, we measured a performance level2 of 
36 Gflop/s on the 100 machines. This 
performance and scalability features were above 
what we had expected, and we decided to extend 
the cluster to 225 machines and to experiment 
how to get the most performance out of the 
cluster in order to enter the TOP500. 

C. PERFORMANCE SCALE 

It is tempting to develop a supercomputer using 
mainstream “off the shelf” hardware. As these 
types of products are manufactured in volume, 
one can expect competitive pricing and high 
quality. So we can imagine buying literally 
thousands of PCs, and interconnecting them 
using standard connectivity methods. One good 
example of such a large-scale computer is 
                                                                 
2 The performance benchmark used is Linpack, 
in the conditions settled by 
http://www.top500.org/ 
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exploited in the SETI@Home project [3], which 
interconnects hundreds of thousands of machines 
over the Internet, raising a cumulated 
performance of several Teraflop/s. 
For supercomputers, a common way to measure 
performance is to use the Linpack benchmark as 
described by the TOP500 consortium. Linpack 
stresses the system through computing large-
scale linear algebra problems on fully filled 
matrixes. This type of program requires some 
heavy double precision computing on each 
processing node, but it also requires a lot of 
communications between computing nodes 
(mainly global and synchronous 
communications). If it were to be executed on a 
Metacomputer such as the one built through the 
SETI@home project, the Linpack benchmark 
would give extremely bad results, as the 
communication between machines suffers from a 
very poor latency inherent to Internet. On the 
other hand, supercomputers (or high 
performance clusters) with sophisticated 
hardware and high performance networks will 
have a good Linpack scalability but a poor 
performance/price ratio. Our work then was to 
design the intermediate “Linpack and price 
scalable” supercomputer. 

D. I-CLUSTER CONFIGURATION 

a. Computing nodes 

Our cluster consists of 225 hp e-PC machines.  
Each of these PC is equipped with a 733 MHz 
Pentium III ®, 256 MB of RAM, and a 15 GB 
hard disk. The e-PC represents the evolution of 
the classic PC into a smaller, simpler and more 
reliable device, designed as a typical corporate 
office desktop. In the scope of I-Cluster, this 
brings us high stability as well as a simplified 
maintenance model. The required space is much 
smaller than what would be required if we had 
installed 225 common desktop machines, and the 
power requirements are only in the range of 50 
W per machine, which is only about 30% of 
what it would be for a common desktop machine. 
The ventilation and air conditioning 
requirements are easier to maintain with a cluster 
of e-PCs than a cluster of common desktops. 
On the other hand, not being able to open the e-
PCs also means that it is not possible to modify 

their hardware. Hence it is not possible to add 
memory, nor to add a second network adapter or 
to upgrade the network adapter to a low-latency 
network such as Myrinet [4], SCI [5] or VIA [6], 
which are typically used for interconnection in 
computational clusters. 

b. Connectivity 

The network technology being constrained by 
the hp e-PC connectivity, the nodes are 
connected to five switches by Ethernet 100 links. 
The switches are hp ProCurve 4000 Switches 
interconnected with gigabit Ethernet (note that 
this configuration may match the configuration 
of many large companies Intranet.) 
As I-Cluster uses Ethernet for its 
interconnections, the switches need to rely on 
store-and-forward  algorithms to process the 
Ethernet frames and to calculate their routes. 
This causes a delay in the processing of each 
network frame, hence increasing the latency and 
diminishing I-Cluster’s performance. 
Our configuration allows the mesh of switches to 
have a pentagram or double ring structure (see 
Figure 1: I-cluster Topology).   
In a completely connected mesh of network 
switches, each switch is directly connected to the 
four other ones through an Ethernet 1000TX 
interconnect. Several alternatives have been 
envisioned. Among them, a tree of switches, that 
would eventually give a good network 
performance, but inter-switch communications 
would have required to cross 3 different 
switches, hence giving a poor latency. 
Flat Neighborhood Networks (FNN) such as 
described in the KLAT2 project [8] is an 
interesting alternative for the network topology, 
but it requires several network adapters on each 
PC of the cluster. In I-Cluster’s case, the selected 
PC model is hp e-PC, which is not extensible 
hence cannot support a second network adapter. 
With our pentagram mesh, Ethernet frames 
traveling from one e-PC to another e-PC that is 
attached to a different switch have to cross the 
two switches, hence doubling the latency due to 
switches. As we will see below, connecting all 
the machines from a specific Linpack row to the 
same switch greatly increases performance 
(typically 14%). 
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Figure 1: I-cluster Topology 

c. Software 

I-Cluster is based on Linux Mandrake 7.0 
(different kernel versions have been tested with 
various results, see “Network drivers and Linux 
Kernel”).  

d. The parallel Linpack benchmark  

We used the HPL3 (High Parallel Linpack) 
package [1] as the basis for our experiments. It 
consists of the distributed computation of a LU 
factorization, for a dense matrix of n x n double 
precision numbers. The complexity of the 
algorithm is constrained to an order of: 
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Parallelization is made with a block 
decomposition of the matrix, which allows both 
a recursive algorithm to be applied, and a 
sequential granularity that is compatible with the 
use of (sequential) matrix-like computations, 
thus allowing calls to specialized and highly 
performing libraries (Blas). 
The block algorithm requires a grid-like use of 
the available processors, in order to map the two-

                                                                 
3 In this document, “HPL” or “Linpack test” will 
be referring to the HPL program unless 
specified. 

dimensional matrix on a two-dimensional 
topology. Besides, the numerical analysis shows 
that most of the communication resides in 
broadcasts that occur on each line of the grid. An 
extremely flat grid would therefore lead to a 
bottleneck due to extensive broadcasts. 
On the other hand, one phase of the algorithm 
being the propagation of a block-pivot, which 
occurs on each column and is a synchronizing 
event (every node has to wait for the pivot in 
order to proceed to the following computation), 
it is not possible to get a high efficiency if the 
grid is too deep. The balance between the 
number of lines and the number of columns of 
the grid, linked to the broadcast algorithms, is 
therefore one of the key issues for the parallel 
algorithm’s efficiency. 
[10] provides an extensive analysis of 
communication costs in the algorithm. The 
conclusion is that, on a simplified machine 
model, the parallel efficiency (ratio between the 
sequential time, and the parallel time, reduced to 
one processor), is a decreasing function of the 

quantity 
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n

pq
lp , where the grid of processors 

has p lines and q columns; n is the size of the 
matrix; and l is the latency of the network. 
Each node therefore requires a memory quantity 

of 
pq

n 2

, and if you keep it constant (i.e. increase 
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the matrix’s size when adding nodes to the 
computation), you remain with a limiting factor 
due mainly to the product latency x broadcast 
length , which is coherent: the flatter the grid, the 
longer the broadcasts, and the more the parallel 
execution slows down. The latency will play a 
huge role in this inefficiency. This latter result 
was one more incentive for us to optimize the 
network capacities, or the software drivers, to 
reduce the latency. 

E. REACHING TOP PERFORMANCE  

The I-Cluster research program started upon 
receipt of the first batch of machines mid-
October 2000. Because of budget constraints we 
only received 100 machines. This number was 
increased to 216 machines in March 2001, then 
to 225 machines in April. 

a. Optimized parameters 

We conducted many experiments to evaluate the 
importance of various components and 
parameters for the overall performance of the 
cluster. The idea was to optimize each parameter 
as independently as possible, identify 
optimizations that provide a performance gain, 
synchronize all the optimizations, then repeat the 
whole process until no more parameter provides 
a gain. We focused on the following parameters: 
- Blas library choice (MKL, Atlas…), compiler 
used, and parameters; 
- Linpack parameters (Matrix size, block size, 
broadcast algorithm); 
- Operating System and drivers configuration; 
- Network topology, including adaptation to 
Linpack parameters. 
We therefore had to deal with each level of 
software optimization, from the hardware 
(topology) to front-end parameters (Linpack’s 
options). 

1) Blas library and tests 
The Blas libraries are responsible for the basic 
matrix-like and vector-like -routines that are the 
core CPU operations performed by the Linpack 
software. 
The first performance measures were done using 
a BLAS library optimized using the ATLAS 
suite [9], which performs optimizations 
depending on the actual hardware of each 
computing node. The gcc compiler was used for 
the first experiments. We planned to use the Intel 
Compiler or the Portland Group one in order to 
take advantage of Intel Pentium ® III Streaming 
SIMD Extensions (SSE), which is an extension 

present in the model of microprocessors we use 
in I-Cluster e-PC machines. Unfortunately, this 
technology that allows the processor to perform 
two double precision calculations in one single 
step is not activated on Pentium III, so we never 
measured a major advantage using either 
compiler. 
We compared several available Blas libraries, 
mainly Atlas, the Intel Math Kernel Library and 
a library issued from the ASCII project (actually 
it consists in a fusion between the Atlas library 
for all the operations but the dgemm, which is 
directly tuned for the Pentium III by Greg Henry 
from Intel).  

20 runs were done for each Blas library. 
 Mean S 
Henry 499.38  6.52 
Atlas 3.2.0 493.96  1.8 
Atlas 3.2.1 478.3 1.7 
MKL 439.9 2.1 

Table 1: Blas Libraries Performance 

As a conclusion, all our tests finally induced us 
to choose an Atlas based version, with Greg 
Henry’s optimized dgemm. 
2) Linpack parameters 
There are quite a number of parameters for the 
HPL test itself (without counting those at 
compile-time!). These are: the size N of the 
matrix; the size N_b of the blocks it should be 
divided into; the number of rows (p) and 
columns (q) in the grid-like topology of 
processors; the algorithm used for a panel 
factorization (pfact); the minimal size of a block 
to make a recursive call to the factorization 
algorithm and the algorithm used for it; the type 
of broadcast required; the number of pivots 
computed before sending them to other 
processors; and the algorithm for swapping the 
pivots. Many of these parameters are dependent 
on each other. A good part of the job was to tune 
each one regarding the architecture of the cluster. 
The tuning guide of HPL suggests a choice of a 
square-like grid, with a number of columns 
slightly bigger than the number of rows. 
Obviously, depending on the topology, the 
broadcast had to change. Apparently, the 
possibility of decomposing N in prime factors 
was predominant for the scalability of the 
performance. 
Ø Broadcast algorithm 

Linpack is a synchronous program based on 
MPI, hence using “rendez-vous” mechanisms. If 
one computing node is slower than the others, 
the whole performance will suffer, as the faster 
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nodes will align on the slower one during 
rendez-vous. HPL provides 6 algorithms for the 
broadcast. Each one was extensively tested, on 
nearly all configurations. The optimal broadcast 
algorithm had to be changed between 98 nodes 
tests  and the 210 and 225 ones. Anyway, it is 
easy to pick the broadcast algorithm that best 
suits the grid. 
We also tested some "hand-made" broadcast 
algorithms that were variations around the pre-
defined broadcasts then we tested the MPI_Bcast 
of MPICH, which is implemented using a 
binomial tree (and hence different from all other 
broadcast algorithms of HPL). None of these 
solutions outperformed the best HPL native 
broadcast.  
Ø Matrix and Block sizes 

These are some of the parameters that we most 
empirically dealt with. We reached our best 
performance with a matrix whose RAM size 
ranged from 200 Mbytes to 220 Mbytes per 
node: 

pq
n

nM
2

.8)( =  

It seemed that for the higher matrices, a subset of 
the nodes swapped from time to time. This may 
be due to the handling of buffers from MPI or to 
the operating system. Some performance 
evaluation work should be done on this problem. 
On the average, a size of 212 Mbytes per node 
seemed good. 
As to the block size, theoretically we should 
have: 
Determined approximately the size M x N of the 
matrix treated on one node; 
Determined sequentially the best value K for the 
BLAS dgemm operation on matrices M x K and 
K x N; 
Fixed N_b = K and N accordingly. 
The latter operation should be done following 
the rules: pN_b divides N and qN_b divides N; 
that is to say, 

gcd(p,q) x N_b divides N. 

3) Network drivers and Linux Kernel 
The i-cluster is designed for a standard every day 
use, so we decided to keep the TCP/IP stack as 
provided in Linux 2.2.4 kernels. This choice 
badly influences HPL performance numbers 
because of the latency overhead of the TCP 
stack. Latency is caused by data extra copies 
between user space and the network card 
memory. 
This phenomenum can only be avoid  using 
specific hardware (Myrinet [4], SCI [5]) or 
specific low latency protocols (GAMMA [7]) or 

architectures (VIA [6]). Until now, none of these 
solutions achieved the same stability, low cost 
and compatibility as TCP. This latency is widely 
introduced by HPL with a great number of 
medium sized messages. 
Several parameters have been tuned for HPL 
performance. For example the maximal size of 
the TCP buffer has been modified and several 
network card drivers have been tested. Each 
driver has been installed and tested on the Linux 
2.2.17 and 2.4.2 kernels. Last kernel showed 
little improvement and was used for further 
testing. 
4) Network architecture 
Tests with more than 45 nodes use a multi-
switch layout and allocating nodes to the grid 
scheme is getting complex. 
The first step is to balance involved nodes 
among switches. Then we have to specify an 
order for the nodes used by MPI, such that it 
builds its grid with the right nodes at the right 
place and minimizes the number of inter-switch 
communication. For a 210 nodes computation 
and five switches, good mapping provided an 
extra 5 Gflop/s, allowing us to reach up to 76.4 
Gflop/s where before we only had 71.8 Gflop/s. 
As far as topologies are concerned, we could test 
three of them (simple ring, double ring and star) 
for the network switches interconnection. The 
star used a comp lete graph topology (pentagram) 
to interconnect the 5 switches with links at 2 
Gbit/s, and a ring. Surprisingly, we did not 
notice any improvement with the star while a 
double ring improves the results by 1.5%. Here 
again, some tool to monitor the packet exchanges 
and the collisions on each of these networks 
should enable us to understand better what is 
going on. 

b. Performance results 

We first used a 100 node cluster from which we 
got very good scalability results. Using 1 up to 
45 nodes is very easy since all nodes reside on 
the same switch. Trying to use an “almost 
square” grid gives the best results. 
With more nodes and switches, scalability is 
good, but finding the best Linpack parameters is 
not so easy. Blind runs of Linpack would give 
very non-deterministic results. 
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Grid Best performance 

(Gflop/s) 
15 x 14 67.9 
14 x 15 76.4 
10 x 21 74.4 

Table 2: Grid vs. Performance 

Moreover, the optimal allocation of nodes to a 
grid is not possible for all cluster sizes. 
Best runs with 210 nodes gave 76.4 gigaflops 
results while runs with 215 nodes gave at most 
55 flops. This is because the only grids that 
match 215 nodes and 5 switches are 5x43 or 
43x5, which are not balanced. 
When the number of nodes and switches allows 
non-flat grids, a few runs should lead to very 
good performance. 
 
A 15 x 15 grid yields theoretically quasi-optimal 
results. To get the best experimental results, we 
increased the matrix size until some swap 
phenomenon prevented achievement of peak 
performance. The best run gave then 81.6 
Gflop/s. 
 
The experiments showed us that the increase in 
number of nodes involved in the computation did 
not damage the performance. Scalability of I-
Cluster is very good (nearly linear). In “Figure 2: 
Performance vs. number of nodes ”, the gigaflops 
measures were made on machines on a single 
switch. Processors grids that do not suit the 
Linpack test such as (1x41) grid are not included 
in these results. With 45 nodes on a switch, the 
performance reaches 350 Mflop/s by node. Bad 
behaviors correspond to almost flat grids (2x17, 
2x19). 
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Figure 2: Performance vs. number of nodes 

Also as shown in the following figure, Linpack 
scales with more nodes and s witches: 
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Figure 3: Multi-switch performance/nodes 

c. Performance/price 

The following table shows the costs for I-cluster. 
Note that the software is house-built or Open 
Source, hence we did not show any Software 
costs. 
 

Parts Cost ($) 
225 hp e-Vectra @$950 213750 
5 hp ProCurve switch @$3300 16500 
25 hp ProCurve expansion 
boards @$700 

17500 

Total 247750 

Table 3: I-Cluster Hardware costs  

I-Cluster’s performance/price index is hence 
around $3000 per Gflop/s.  
 
This ratio may vary with the number of nodes 
per switch, but remains good at any cluster size, 
as shown in the following figure : 
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Figure 4: Price/Gflop/s vs. number of nodes 

F. PERSPECTIVES 

A few changes in the software architecture could 
improve the overall performance: 
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Linpack uses various operations (matrix, 
vector…) from the Blas library, and ATLAS and 
MKL Blas libraries perform differently on each 
of these operations. Thus, we could expect to get 
the optimal Blas library performance by picking 
the best from both worlds and merging them. 
Part of this work was done by plugging the 
“dgemm Greg Henry routine” into ATLAS. 
The MPI library used is the standard one. It may 
be worthwhile rewrit ing the collective 
communications routines to take care of the 
cluster topology. Using a multicast 
communication framework should be a good 
way to improve Linpack performance 
Switching from TCP/IP to a low latency protocol 
(such as Gamma or M-VIA) would also boost 
the performance. 
Such research axes have not been considered 
during our experiments and are left as an 
exercise for the reader… 
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H. CONCLUSION 

Being the first ones to enter the TOP500 using 
only mainstream hardware (standard PCs, 
standard Ethernet connectivity) was quite a 
challenge. Reaching a 81.6 Gflop/s 
performance showed that such challenge is 
technically achievable. At the time we installed 
the I-Cluster, it proved to be one of the two 
hundred best supercomputers ever built 
according to J. Dongarra performance list [2]. 

The performance tuning required for that was 
around 6 man/month of experienced people’s 
efforts. However, this timing is mainly due to 
software testing rather than Linpack 
experiments. Starting from our experiments 
results, it is now much faster to implement and 
tune a mainstream cluster using clues and 
guidelines from this paper. 
So mainstream hardware in an “intranet 
framework” is a viable alternative to 
supercomputers: We obtained a TOP500 
performance level with hardware approximately 
ten times cheaper. Also our performance/price 
ratio is better than the one for a high 
performance cluster, since a comp lete e-PC is 
cheaper than a single low latency Myrinet or SCI 
network card, we also would easily beat high 
performance clusters with same cost. And as we 
showed that scalability in the context of I-Cluster 
was not a problem, it is easy to extend the cluster 
to meet a required level of performance. 
 

 

Figure 5 : I-Cluster 
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