

I-Cluster: Reaching TOP500 Performance Using
Mainstream Hardware

B. Richard, P. Augerat1, N. Maillard1, S. Derr1, S. Martin1, C. Robert1
HP Laboratories Grenoble
HPL-2001-206
August 22nd , 2001*

E-mail: bruno_richard@hp.com, {philippe.augerat, nicolas.maillard, simon.derr, stephane.martin,
celine.robert}@imag.fr

cluster,
performance,
TOP500,
network,
switch, PC,
Linpack
benchmark

A common topic for PC clusters is the use of mainstream instead of
dedicated hardware i.e., using standard desktop PCs and standard
network connectivity, with technology to organize them so that they
can be used as a single computing entity. Current work in this "off-the-
shelf cluster" domain usually focuses on how to reach a high
availability infrastructure, on how to efficiently balance the work
between nodes of such clusters, or on how to get the most computing
power for loosely-coupled (large grained) problems. hp Labs Grenoble,
teaming with INRIA Rhone-Alpes, teamed up to build a cluster out of
225 standard hp e-PC interconnected by standard Ethernet, with the
objective of getting the highest computational performance and scaling
from the simplest desktop PC to the most powerful computers in the
world. As an additional constraint, we decided to use a cluster that
models a modern enterprise network, using standard machines
interconnected through standard Ethernet connectivity. This paper
describes the issues and challenges we had to overcome in order to
reach the 385th rank in the TOP500 list of most powerful
supercomputers in the world on June 21st, 2001, being the first
mainstream cluster to enter TOP500 ever. Also we provide hereafter
some details about the software and middleware tuning we have done,
as well as the impact of different factors on performance such as the
network topology and infrastructure hardware.

* Internal Accession Date Only Approved for External Publication
1 ID Laboratory
 Copyright Hewlett-Packard Company 2001

1

I-Cluster: Reaching TOP500 performance using mainstream hardware

B. Richard
hp Laboratories Grenoble
bruno_richard@hp.com

P. Augerat, N. Maillard, S. Derr, S. Martin, C.
Robert, ID Laboratory

{philippe.augerat, nicolas.maillard, simon.derr,
stephane.martin, celine.robert}@imag.fr

June 2001

A. ABSTRACT

A common topic for PC clusters is the use of mainstream instead of dedicated hardware i.e.,
using standard desktop PCs and standard network connectivity, with technology to organize
them so that they can be used as a single computing entity. Current work in this "off-the-
shelf cluster" domain usually focuses on how to reach a high availability infrastructure, on
how to efficiently balance the work between nodes of such clusters, or on how to get the most
computing power for loosely-coupled (large grained) problems. hp Labs Grenoble, teaming
with INRIA Rhône-Alpes, teamed up to build a cluster out of 225 standard hp e-PC
interconnected by standard Ethernet, with the objective of getting the highest computational
performance and scaling from the simplest desktop PC to the most powerful computers in the
world. As an additional constraint, we decided to use a cluster that models a modern
enterprise network, using standard machines interconnected through standard Ethernet
connectivity. This paper describes the issues and challenges we had to overcome in order to
reach the 385 th rank in the TOP500 list of most powerful supercomputers in the world on
June 21st, 2001, being the first mainstream cluster to enter TOP500 ever. Also we provide
hereafter some details about the software and middleware tuning we have done, as well as
the impact of different factors on performance such as the network topology and
infrastructure hardware.

B. INTRODUCTION

hp Laboratories Grenoble and the INRIA started
the I-Cluster1 project in June 2000. I-Cluster is a
research program on communities of standard
Internet Appliances (e-client) aiming at
distributing virtual functions like high-
performance super-computing tasks, distributed
storage or network caching, using only non-
dedicated hardware. In this scope, a Beowulf-
class cluster of few hundred PCs would be
contributed by hp, constituting the basis for the
experimental cluster.
In October 2000, a first part of the I-Cluster (100
machines interconnected with 3 switches) was
built. After fine tuning the environment and

1 More I-Cluster information is available
from http://icluster.imag.fr/

Software, we measured a performance level2 of
36 Gflop/s on the 100 machines. This
performance and scalability features were above
what we had expected, and we decided to extend
the cluster to 225 machines and to experiment
how to get the most performance out of the
cluster in order to enter the TOP500.

C. PERFORMANCE SCALE

It is tempting to develop a supercomputer using
mainstream “off the shelf” hardware. As these
types of products are manufactured in volume,
one can expect competitive pricing and high
quality. So we can imagine buying literally
thousands of PCs, and interconnecting them
using standard connectivity methods. One good
example of such a large-scale computer is

2 The performance benchmark used is Linpack,
in the conditions settled by
http://www.top500.org/

2

exploited in the SETI@Home project [3], which
interconnects hundreds of thousands of machines
over the Internet, raising a cumulated
performance of several Teraflop/s.
For supercomputers, a common way to measure
performance is to use the Linpack benchmark as
described by the TOP500 consortium. Linpack
stresses the system through computing large-
scale linear algebra problems on fully filled
matrixes. This type of program requires some
heavy double precision computing on each
processing node, but it also requires a lot of
communications between computing nodes
(mainly global and synchronous
communications). If it were to be executed on a
Metacomputer such as the one built through the
SETI@home project, the Linpack benchmark
would give extremely bad results, as the
communication between machines suffers from a
very poor latency inherent to Internet. On the
other hand, supercomputers (or high
performance clusters) with sophisticated
hardware and high performance networks will
have a good Linpack scalability but a poor
performance/price ratio. Our work then was to
design the intermediate “Linpack and price
scalable” supercomputer.

D. I-CLUSTER CONFIGURATION

a. Computing nodes

Our cluster consists of 225 hp e-PC machines.
Each of these PC is equipped with a 733 MHz
Pentium III ®, 256 MB of RAM, and a 15 GB
hard disk. The e-PC represents the evolution of
the classic PC into a smaller, simpler and more
reliable device, designed as a typical corporate
office desktop. In the scope of I-Cluster, this
brings us high stability as well as a simplified
maintenance model. The required space is much
smaller than what would be required if we had
installed 225 common desktop machines, and the
power requirements are only in the range of 50
W per machine, which is only about 30% of
what it would be for a common desktop machine.
The ventilation and air conditioning
requirements are easier to maintain with a cluster
of e-PCs than a cluster of common desktops.
On the other hand, not being able to open the e-
PCs also means that it is not possible to modify

their hardware. Hence it is not possible to add
memory, nor to add a second network adapter or
to upgrade the network adapter to a low-latency
network such as Myrinet [4], SCI [5] or VIA [6],
which are typically used for interconnection in
computational clusters.

b. Connectivity

The network technology being constrained by
the hp e-PC connectivity, the nodes are
connected to five switches by Ethernet 100 links.
The switches are hp ProCurve 4000 Switches
interconnected with gigabit Ethernet (note that
this configuration may match the configuration
of many large companies Intranet.)
As I-Cluster uses Ethernet for its
interconnections, the switches need to rely on
store-and-forward algorithms to process the
Ethernet frames and to calculate their routes.
This causes a delay in the processing of each
network frame, hence increasing the latency and
diminishing I-Cluster’s performance.
Our configuration allows the mesh of switches to
have a pentagram or double ring structure (see
Figure 1: I-cluster Topology).
In a completely connected mesh of network
switches, each switch is directly connected to the
four other ones through an Ethernet 1000TX
interconnect. Several alternatives have been
envisioned. Among them, a tree of switches, that
would eventually give a good network
performance, but inter-switch communications
would have required to cross 3 different
switches, hence giving a poor latency.
Flat Neighborhood Networks (FNN) such as
described in the KLAT2 project [8] is an
interesting alternative for the network topology,
but it requires several network adapters on each
PC of the cluster. In I-Cluster’s case, the selected
PC model is hp e-PC, which is not extensible
hence cannot support a second network adapter.
With our pentagram mesh, Ethernet frames
traveling from one e-PC to another e-PC that is
attached to a different switch have to cross the
two switches, hence doubling the latency due to
switches. As we will see below, connecting all
the machines from a specific Linpack row to the
same switch greatly increases performance
(typically 14%).

3

Figure 1: I-cluster Topology

c. Software

I-Cluster is based on Linux Mandrake 7.0
(different kernel versions have been tested with
various results, see “Network drivers and Linux
Kernel”).

d. The parallel Linpack benchmark

We used the HPL3 (High Parallel Linpack)
package [1] as the basis for our experiments. It
consists of the distributed computation of a LU
factorization, for a dense matrix of n x n double
precision numbers. The complexity of the
algorithm is constrained to an order of:

2
3

.2
3
.2

n
n

ops +=

Parallelization is made with a block
decomposition of the matrix, which allows both
a recursive algorithm to be applied, and a
sequential granularity that is compatible with the
use of (sequential) matrix-like computations,
thus allowing calls to specialized and highly
performing libraries (Blas).
The block algorithm requires a grid-like use of
the available processors, in order to map the two-

3 In this document, “HPL” or “Linpack test” will
be referring to the HPL program unless
specified.

dimensional matrix on a two-dimensional
topology. Besides, the numerical analysis shows
that most of the communication resides in
broadcasts that occur on each line of the grid. An
extremely flat grid would therefore lead to a
bottleneck due to extensive broadcasts.
On the other hand, one phase of the algorithm
being the propagation of a block-pivot, which
occurs on each column and is a synchronizing
event (every node has to wait for the pivot in
order to proceed to the following computation),
it is not possible to get a high efficiency if the
grid is too deep. The balance between the
number of lines and the number of columns of
the grid, linked to the broadcast algorithms, is
therefore one of the key issues for the parallel
algorithm’s efficiency.
[10] provides an extensive analysis of
communication costs in the algorithm. The
conclusion is that, on a simplified machine
model, the parallel efficiency (ratio between the
sequential time, and the parallel time, reduced to
one processor), is a decreasing function of the

quantity

2

.
n

pq
lp , where the grid of processors

has p lines and q columns; n is the size of the
matrix; and l is the latency of the network.
Each node therefore requires a memory quantity

of
pq

n 2

, and if you keep it constant (i.e. increase

4

the matrix’s size when adding nodes to the
computation), you remain with a limiting factor
due mainly to the product latency x broadcast
length , which is coherent: the flatter the grid, the
longer the broadcasts, and the more the parallel
execution slows down. The latency will play a
huge role in this inefficiency. This latter result
was one more incentive for us to optimize the
network capacities, or the software drivers, to
reduce the latency.

E. REACHING TOP PERFORMANCE

The I-Cluster research program started upon
receipt of the first batch of machines mid-
October 2000. Because of budget constraints we
only received 100 machines. This number was
increased to 216 machines in March 2001, then
to 225 machines in April.

a. Optimized parameters

We conducted many experiments to evaluate the
importance of various components and
parameters for the overall performance of the
cluster. The idea was to optimize each parameter
as independently as possible, identify
optimizations that provide a performance gain,
synchronize all the optimizations, then repeat the
whole process until no more parameter provides
a gain. We focused on the following parameters:
- Blas library choice (MKL, Atlas…), compiler
used, and parameters;
- Linpack parameters (Matrix size, block size,
broadcast algorithm);
- Operating System and drivers configuration;
- Network topology, including adaptation to
Linpack parameters.
We therefore had to deal with each level of
software optimization, from the hardware
(topology) to front-end parameters (Linpack’s
options).

1) Blas library and tests
The Blas libraries are responsible for the basic
matrix-like and vector-like -routines that are the
core CPU operations performed by the Linpack
software.
The first performance measures were done using
a BLAS library optimized using the ATLAS
suite [9], which performs optimizations
depending on the actual hardware of each
computing node. The gcc compiler was used for
the first experiments. We planned to use the Intel
Compiler or the Portland Group one in order to
take advantage of Intel Pentium ® III Streaming
SIMD Extensions (SSE), which is an extension

present in the model of microprocessors we use
in I-Cluster e-PC machines. Unfortunately, this
technology that allows the processor to perform
two double precision calculations in one single
step is not activated on Pentium III, so we never
measured a major advantage using either
compiler.
We compared several available Blas libraries,
mainly Atlas, the Intel Math Kernel Library and
a library issued from the ASCII project (actually
it consists in a fusion between the Atlas library
for all the operations but the dgemm, which is
directly tuned for the Pentium III by Greg Henry
from Intel).

20 runs were done for each Blas library.
 Mean S
Henry 499.38 6.52
Atlas 3.2.0 493.96 1.8
Atlas 3.2.1 478.3 1.7
MKL 439.9 2.1

Table 1: Blas Libraries Performance

As a conclusion, all our tests finally induced us
to choose an Atlas based version, with Greg
Henry’s optimized dgemm.
2) Linpack parameters
There are quite a number of parameters for the
HPL test itself (without counting those at
compile-time!). These are: the size N of the
matrix; the size N_b of the blocks it should be
divided into; the number of rows (p) and
columns (q) in the grid-like topology of
processors; the algorithm used for a panel
factorization (pfact); the minimal size of a block
to make a recursive call to the factorization
algorithm and the algorithm used for it; the type
of broadcast required; the number of pivots
computed before sending them to other
processors; and the algorithm for swapping the
pivots. Many of these parameters are dependent
on each other. A good part of the job was to tune
each one regarding the architecture of the cluster.
The tuning guide of HPL suggests a choice of a
square-like grid, with a number of columns
slightly bigger than the number of rows.
Obviously, depending on the topology, the
broadcast had to change. Apparently, the
possibility of decomposing N in prime factors
was predominant for the scalability of the
performance.
Ø Broadcast algorithm

Linpack is a synchronous program based on
MPI, hence using “rendez-vous” mechanisms. If
one computing node is slower than the others,
the whole performance will suffer, as the faster

5

nodes will align on the slower one during
rendez-vous. HPL provides 6 algorithms for the
broadcast. Each one was extensively tested, on
nearly all configurations. The optimal broadcast
algorithm had to be changed between 98 nodes
tests and the 210 and 225 ones. Anyway, it is
easy to pick the broadcast algorithm that best
suits the grid.
We also tested some "hand-made" broadcast
algorithms that were variations around the pre-
defined broadcasts then we tested the MPI_Bcast
of MPICH, which is implemented using a
binomial tree (and hence different from all other
broadcast algorithms of HPL). None of these
solutions outperformed the best HPL native
broadcast.
Ø Matrix and Block sizes

These are some of the parameters that we most
empirically dealt with. We reached our best
performance with a matrix whose RAM size
ranged from 200 Mbytes to 220 Mbytes per
node:

pq
n

nM
2

.8)(=

It seemed that for the higher matrices, a subset of
the nodes swapped from time to time. This may
be due to the handling of buffers from MPI or to
the operating system. Some performance
evaluation work should be done on this problem.
On the average, a size of 212 Mbytes per node
seemed good.
As to the block size, theoretically we should
have:
Determined approximately the size M x N of the
matrix treated on one node;
Determined sequentially the best value K for the
BLAS dgemm operation on matrices M x K and
K x N;
Fixed N_b = K and N accordingly.
The latter operation should be done following
the rules: pN_b divides N and qN_b divides N;
that is to say,

gcd(p,q) x N_b divides N.

3) Network drivers and Linux Kernel
The i-cluster is designed for a standard every day
use, so we decided to keep the TCP/IP stack as
provided in Linux 2.2.4 kernels. This choice
badly influences HPL performance numbers
because of the latency overhead of the TCP
stack. Latency is caused by data extra copies
between user space and the network card
memory.
This phenomenum can only be avoid using
specific hardware (Myrinet [4], SCI [5]) or
specific low latency protocols (GAMMA [7]) or

architectures (VIA [6]). Until now, none of these
solutions achieved the same stability, low cost
and compatibility as TCP. This latency is widely
introduced by HPL with a great number of
medium sized messages.
Several parameters have been tuned for HPL
performance. For example the maximal size of
the TCP buffer has been modified and several
network card drivers have been tested. Each
driver has been installed and tested on the Linux
2.2.17 and 2.4.2 kernels. Last kernel showed
little improvement and was used for further
testing.
4) Network architecture
Tests with more than 45 nodes use a multi-
switch layout and allocating nodes to the grid
scheme is getting complex.
The first step is to balance involved nodes
among switches. Then we have to specify an
order for the nodes used by MPI, such that it
builds its grid with the right nodes at the right
place and minimizes the number of inter-switch
communication. For a 210 nodes computation
and five switches, good mapping provided an
extra 5 Gflop/s, allowing us to reach up to 76.4
Gflop/s where before we only had 71.8 Gflop/s.
As far as topologies are concerned, we could test
three of them (simple ring, double ring and star)
for the network switches interconnection. The
star used a comp lete graph topology (pentagram)
to interconnect the 5 switches with links at 2
Gbit/s, and a ring. Surprisingly, we did not
notice any improvement with the star while a
double ring improves the results by 1.5%. Here
again, some tool to monitor the packet exchanges
and the collisions on each of these networks
should enable us to understand better what is
going on.

b. Performance results

We first used a 100 node cluster from which we
got very good scalability results. Using 1 up to
45 nodes is very easy since all nodes reside on
the same switch. Trying to use an “almost
square” grid gives the best results.
With more nodes and switches, scalability is
good, but finding the best Linpack parameters is
not so easy. Blind runs of Linpack would give
very non-deterministic results.

6

Grid Best performance

(Gflop/s)
15 x 14 67.9
14 x 15 76.4
10 x 21 74.4

Table 2: Grid vs. Performance

Moreover, the optimal allocation of nodes to a
grid is not possible for all cluster sizes.
Best runs with 210 nodes gave 76.4 gigaflops
results while runs with 215 nodes gave at most
55 flops. This is because the only grids that
match 215 nodes and 5 switches are 5x43 or
43x5, which are not balanced.
When the number of nodes and switches allows
non-flat grids, a few runs should lead to very
good performance.

A 15 x 15 grid yields theoretically quasi-optimal
results. To get the best experimental results, we
increased the matrix size until some swap
phenomenon prevented achievement of peak
performance. The best run gave then 81.6
Gflop/s.

The experiments showed us that the increase in
number of nodes involved in the computation did
not damage the performance. Scalability of I-
Cluster is very good (nearly linear). In “Figure 2:
Performance vs. number of nodes ”, the gigaflops
measures were made on machines on a single
switch. Processors grids that do not suit the
Linpack test such as (1x41) grid are not included
in these results. With 45 nodes on a switch, the
performance reaches 350 Mflop/s by node. Bad
behaviors correspond to almost flat grids (2x17,
2x19).

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50

Figure 2: Performance vs. number of nodes

Also as shown in the following figure, Linpack
scales with more nodes and s witches:

0

10

20

30

40

50

60

70

80

90

0 50 100 150 200 250

Figure 3: Multi-switch performance/nodes

c. Performance/price

The following table shows the costs for I-cluster.
Note that the software is house-built or Open
Source, hence we did not show any Software
costs.

Parts Cost ($)
225 hp e-Vectra @$950 213750
5 hp ProCurve switch @$3300 16500
25 hp ProCurve expansion
boards @$700

17500

Total 247750

Table 3: I-Cluster Hardware costs

I-Cluster’s performance/price index is hence
around $3000 per Gflop/s.

This ratio may vary with the number of nodes
per switch, but remains good at any cluster size,
as shown in the following figure :

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250

Figure 4: Price/Gflop/s vs. number of nodes

F. PERSPECTIVES

A few changes in the software architecture could
improve the overall performance:

7

Linpack uses various operations (matrix,
vector…) from the Blas library, and ATLAS and
MKL Blas libraries perform differently on each
of these operations. Thus, we could expect to get
the optimal Blas library performance by picking
the best from both worlds and merging them.
Part of this work was done by plugging the
“dgemm Greg Henry routine” into ATLAS.
The MPI library used is the standard one. It may
be worthwhile rewrit ing the collective
communications routines to take care of the
cluster topology. Using a multicast
communication framework should be a good
way to improve Linpack performance
Switching from TCP/IP to a low latency protocol
(such as Gamma or M-VIA) would also boost
the performance.
Such research axes have not been considered
during our experiments and are left as an
exercise for the reader…

G. THANKS AND ACKNOWLEDGEMENTS

The I-Cluster performance experiment has been
very exciting and intensive. We want to thank all
the participants that helped, in particular Bruce
Greer and Greg Henry from Intel, Antoine Petitet
from Sun Labs.

H. CONCLUSION

Being the first ones to enter the TOP500 using
only mainstream hardware (standard PCs,
standard Ethernet connectivity) was quite a
challenge. Reaching a 81.6 Gflop/s
performance showed that such challenge is
technically achievable. At the time we installed
the I-Cluster, it proved to be one of the two
hundred best supercomputers ever built
according to J. Dongarra performance list [2].

The performance tuning required for that was
around 6 man/month of experienced people’s
efforts. However, this timing is mainly due to
software testing rather than Linpack
experiments. Starting from our experiments
results, it is now much faster to implement and
tune a mainstream cluster using clues and
guidelines from this paper.
So mainstream hardware in an “intranet
framework” is a viable alternative to
supercomputers: We obtained a TOP500
performance level with hardware approximately
ten times cheaper. Also our performance/price
ratio is better than the one for a high
performance cluster, since a comp lete e-PC is
cheaper than a single low latency Myrinet or SCI
network card, we also would easily beat high
performance clusters with same cost. And as we
showed that scalability in the context of I-Cluster
was not a problem, it is easy to extend the cluster
to meet a required level of performance.

Figure 5 : I-Cluster

I. REFERENCES

[1] HPL http://www.netlib.org/benchmark/hpl/

[2] Performance of Various Computers Using Standard Linear Equations Software, J. Dongarra,
Technical Report CS-89-85, University of Tennessee, 1989. (An updated version of this report can
be found at http://www.netlib.org/benchmark/performance.ps).

[3] A new major SETI project based on Project Serendip data and 100,000 personal computers. W.
T. Sullivan, III, D. Werthimer, S. Bowyer, J.Cobb, D. Gedye, D. Anderson. Published in:
"Astronomical and Biochemical Origins and the Search for Life in the Universe", Proc. of the Fifth
Intl. Conf. on Bioastronomy. 1997

[4] Nanette J. Boden, Robert E. Felderman, Alan E. Kulawik, Charles L. Seitz, Jakov N. Seizovic,
and Wen-King Su, "Myrinet - A Gigabit per Second Local Area Network," in IEEE-Micro, February
1995, vol. 15(1), pp. 29-36.

8

[5] IEEE Computer Society, IEEE Standard for Scalable Coherent Interface (SCI), IEEE, ieee std
1596-1992 edition, August 1993.

[6] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry, A. M. Merrit, E.
Gronke, and C. Dodd, “The Virtual Interface Architecture,” IEEE Micro, vol. 18, pp. 66–69, Mar.–
Apr. 1998.

[7] G. Ciaccio, Optimal Communication Performance on Fast Ethernet with GAMMA, in
proceedings of PC-NOW'98 (International Workshop on Personal Computers based Networks Of
Workstations, in conjunction with IPPS/SPDP 1998), Orlando, Florida, March 30/April 3, 1998.
LNCS 1388, Springer.

[8] H. G. Dietz and T.I.Mattox, "KLAT2's Flat Neighborhood Network," Proceedings of the
Extreme Linux track of the 4th Annual Linux Showcase (ALS2000), Atlanta, GA, USA, October 12,
2000.

[9] Automated Empirical Optimizations of Software and the ATLAS project,
http://www.netlib.org/atlas/, R. Clint Whaley Antoine Petitet Jack J. Dongarra, September 19, 2000

[10] HPL scalability analysis, http://www.netlib.org/benchmark/hpl/scalability.html

