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E-services are composite in nature. The composition can be 
static or dynamic. As these e-services are being deployed by 
different enterprises, they are cross-domain and federated in 
nature. To conduct a business task, an e-service undertakes a 
conversation that spans across multiple e-services, which is 
often asynchronous and asymmetric. Within a conversation,
the unit of business at each e-service is called a component 
transaction. The component transactions within a conversation 
form a conversational transaction. Each component transaction 
is autonomous and independent while it is relative to each 
other only in the context of a specific conversation. A                      
conversational transaction is committed if each component is 
committed, or recommitted after compensation. If one or more 
component transactions abort, the conversational transaction, 
depending on the  business logic, may need to be canceledthe 
committed component transactions need to be canceled
though not every transaction is cancellable after a certain 
point. In this paper, we argue that the traditional transaction 
semantics and mechanisms do not apply well in the e-service 
world, and propose an optimistic commit protocol to provide 
transaction support, i.e., all-or-nothing semantics, for 
conversational transactions. 
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Abstract: Web based services or E-services are being deployed by 
different enterprises. These E-services in turn use other E-
services. This makes them collaborate across management 
domains. To conduct a business task, an e-service undertakes a 
conversation that often spans across multiple e-services, and is 
often asynchronous and asymmetric. Within a conversation, the 
unit of business at each e-service is called a component 
transaction. The component transactions within a conversation 
form a conversational transaction. Each component transaction is 
autonomous and independent while it is relative to each other 
only in the context of a specific conversation. A conversational 
transaction is committed if each component is committed, or re-
committed after compensation. If one or more component 
transactions abort, the conversational transaction, depending on 
the business logic, may need to be canceled the committed 
component transactions need to be canceled though not every 
transaction is cancellable after a certain point. In this paper, we 
argue that the traditional transaction semantics and mechanisms 
do not apply well in the e-service world, and propose an 
optimistic commit protocol to provide transaction support, i.e., 
all-or-nothing semantics, for conversational transactions. 
 

A. INTRODUCTION 
 
An e-service is a service available via the Internet that 
completes tasks, solves problems, or conducts 
transactions. These e-services are accessible on the 
Internet at a particular Uniform Resource Locator. An e-
service may depend on other e-services. These e-
services are termed composite e-services.  This 
composition could be static or dynamic in nature. There 
is an increasing trend towards dynamic composition 
where e-services dynamically choose their trading 
partners or service providers.  In figure 1, the root e-
service is composed of two sub e-services, one of  which 
in turn is composed of another sub e-service. 

 
Figure 1.  A composite e-service 

These e-services are federated in nature as they interact 
across management domains and enterprise networks. 
                                                      
 

Their implementations could be vastly different in 
nature. They could be based on CORBA [1], BizTalk 
[2], COM, E-speak [3] or on other platforms.  
 
E-services interact with each other using asynchronous 
messages. The interactions between e-services for 
conducting a specific task create a conversation [4, 5]. 
Within a conversation, we call the unit of business at 
each e-service a component transaction. The component 
transactions within a conversation form a conversational 
transaction. As independent e-services are created and 
deployed by autonomous e-service providers, 
component transactions are independent and 
autonomous. On the other hand, the component 
transactions are relative to each other in the context of a 
particular conversation. For example, a travel agency 
may need services provided by a flight and a hotel e-
service. The business logic of the transactions in the two 
e-services is independent of each other. The lifecyles of 
the transactions in the two e-services are totally 
unrelated, and could be largely different. However, for a 
particular travel request, the travel conversation will 
initiate a flight booking transaction and a hotel booking 
transaction. The two transactions are relative to each 
other in the context of this particular conversation The 
booked flight and hotel are part of a particular travel 
arrangement. 
 
Conversational transactions have different semantics 
compared to tranditional transactions. A conversational 
transaction is committed if each component transaction 
is committed. If one or more component transactions 
abort, the conversional transaction, unlike a traditional 
transaction, may or may not need to be canceled 
depending on the business logic. This is because the 
component transactions are independent of each other, 
and it is totally up to the e-service starting the 
conversation to decide if all-or-nothing semantics 
should be enforced. A conversational transaction, by 
itself, does not require all-or-nothing semantics.  
 
This paper proposes an optimistic commit protocol, 
called conversational transaction protocol (CTP),  to 
provide all-or-nothing property for conversational 
transactions. The remainder of this paper is organized as 
follows. Section B describes the all-or-nothing problem 
for conversational transactions, and presents the related 
work. Section C presents the system model on which 
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CTP is built. Section D formally describes the protocol 
and proves its correctness. Section E proposes a 
reference API on top of the protocol, and section F 
draws the conclusion. 
 

B. THE PROBLEM AND RELATED WORK 
 
For traditional distributed transactions, a key technology 
to guarantee the data consistency is the two-phase 
commit protocol (2-pc) [6]. It is used to ensure 
agreement by all parties regarding the outcome of the 
work (all-or-nothing). Current 2-pc protocols and 
transaction managers are only suitable for single-domain 
distributed applications [5].  To address the problem, 
The Transaction Internet Protocol (TIP) [5] was 
proposed. TIP is a 2-pc protocol which provides 
ubiquitous distributed transaction support in a 
hetergeneous and cross-domain environment. It is made 
possible by separating the transaction protocol from the 
application communications protocol (the two-pipe 
model). 
 
2-pc protocols including TIP do not fit in well with the 
conversational transaction paradigm. If TIP is used to 
coordinate a conversational transaction, the executions 
of component transactions are bundled together in a 2-pc 
manner. This is not desirable, sometimes not acceptable 
due to the following reasons. 
• = The component transactions within a conversation 

are autonomous and independent, and they are 
relative to each other only in the context of a 
particular conversation. 

• = The lifecycles of different component transactions 
could be largely different. In the e-service world, 
individual service requests are usually 
asynchronous. That is, response to a request may not 
arrive immediately, and the response time may be 
unpredictable. There are many factors contributing 
to the response time such as business logic (long-
lived or short-lived), delayed inputs from human 
operators, the network delays, and so forth. The 
reponses times of component transactions are 
independent of each other. 

• = If a conversational transaction consists of 
component transactions with largely different 
response times, TIP will commit the conversational 
transaction when everyone is ready. That is, the 
short-lived transactions (their resources) will be 
blocked for probably an unaceptable amount of 
time, and the resources cannot be released for 
processing new service requests. This is usually an 
undesirable, sometimes an unacceptable option from 
an autonomous e-service provider’s point of view. 

 
Another type of approach [4] would be to let the 
applications explicitly deal with the possible failure 
scenarios. The protocol would work as follow. 
• = Starts a conversation by starting a root transaction 

upon receiving a service request. 
• = Each component transaction, after finishing its 

business logic, commits or aborts the transaction 
based on its local result. 

• = Commits the conversational transaction if every 
component transaction commits. 

• = If one or more component transactions abort and the 
committed component transactions need to be 
canceled, the root transaction sends explicit cancel 
requests to the e-services to cancel the previous 
agreements. 
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Figure 2.  A dynamic travel e-service 

 
The above protocol has two problems. First, it does not 
provide all-or-nothing semantics. If a conversational 
transaction needs to be canceled and some committed 
component transactions cannot be undone, it will 
produce an inconsistent result. Second, even without all-
or-nothing requirement, it works fine only if the 
composite e-services are static. It would be extremely 
difficult, if not impossible, when the composition is 
dynamic. Consider a travel e-service that interacts with 
flight, hotel, and car rental e-services. As shown figure 
2, there are a number of  e-services available for flight, 
hotel, and car rental. For each travel request, the travel 
e-service dynamically chooses a set of e-services (e.g., 
UA, Hilton, and Hertz) based on some criteria such as 
availability, rates, etc. If the travel e-service is involved 



in a higher level conversation, the travel transaction 
becomes a component transaction within that 
conversation. To enable the cancellation of a travel 
arrangement, the travel component transaction must 
remember the context of each travel arrangement (i.e., 
the request itself and the sub e-service providers for the 
request). Thus the cancellation request can be forwarded 
to the corresponding flight, hotel, and car e-services. 
This would impose tremendous burden on the 
development of these e-services. 
 
To overcome the limitations of the above approaches, 
we adopt and extend the idea of transaction 
compensation [10]. The idea was to perform a “semantic 
undo” of a “erroneoulsy” or “prematurely” committed 
local transaction if the global transaction aborts due to 
failures. Based on compensation, a protocol [11] was 
proposed to enable each participating transaction to 
commit independently, and be undone when the global 
transaction aborts. However, the protocol is not 
sufficient to manage conversational transactions due to 
the following reasons.  
 
First, a committed component transaction may need to 
be undone before it passes its deadline and becomes 
uncancellable. Then instead of just an “undo”, a new 
component transaction may need to be initiated, perform 
the same business logic, and send its parent an updated 
service response. We term the new transaction the 
transaction in update. If transactions in update are not 
handled properly, the correctness of a committed 
conversational transaction cannot be guaranteed. 
Consider the example in figure 3, t0, after receiving 
responses from t1 and t2, sends a global commit. 
Meanwhile, t3 has passed its deadline, and has to 
perform an “undo” and an “update”. As illustrated in the 
figure, a problem occurs in the following scenario. t2 
sends a commit response to t0 before receiving the 
updated service response from t3, t0 then commits the 
conversational transaction. If t2 fails to do the update, it 
aborts and sends an abort message to t0 that has already 
committed. Even if t0 can, once again, try to cancel the 
global transaction, it may not be able to do so if t1, after 
globally committed, has passed its deadline and become 
uncancellable. 
 
We define that a conversational transaction is committed 
when each component transaction has been committed, 
and each transaction in update (if any) has been caught. 

t0

committed transaction aborted transaction

t1

t2

t3

 
Figure 3. A transaction in update 

That is, the result of each transaction in update has been 
reflected permanently in the conversational transaction 
once committed. The protocol [11] did not provide 
mechanisms to catch the transactions in update. Second, 
a conversational transaction can dynamically span 
across multiple e-services, and form a spanning tree. In 
such a spanning tree, each node only knows its 
immediate parent and children no node has a global 
picture of what the tree looks like. The above protocol 
can only deal with a typical “coordinator-participants” 
scenario (i.e., a two-tier workflow). That is, the 
coordinating transaction knows the global picture and 
deal with each participating transaction directly. 
 
To fill the gap in the existing approachs, we propose 
CTP to provide transaction support for conversational 
transactions. The key contribution in this protocol is to 
enable the catching of transactions in update for 
conversational transactions that are dynamically 
composed. 
 

C. SYSTEM MODEL 
 
A conversational transaction is used to identify the units 
of business spanning across multiple e-services while a 
conversation is used to capture the interactions between 
the e-services. The following characteristics usually 
exist in the conversation-based e-services environment, 
and our conversational transaction protocol is built in 
such type of environment. 
 
E-service independence. Each e-service may be 
developed and deployed by an independent entity. Thus, 
the business logic of each e-service is completely 
separated from each other. 
 
E-service Autonomy. Within a conversation, the state 
and status of a component transaction will neither affect 
nor be affected by those of its peer transactions. 
 
Dynamic Composition. E-services can be composed 
dynamically.  
 



DOM based Interactions. E-services essentially use the 
Document Object Model of interactions. 
 
Unpredictable Response Times. Asynchronous 
processing, different service lifecycles, human and/or 
network delays make the response times of component 
transactions unpredictable. The response time of one 
component transaction is of little use to predict another 
one. It is undesirable, sometimes unacceptable to 
synchronize the executions of the peer e-services. 
 
System and network failures. System and/or network 
failures may occur during a conversation. We assume 
that each e-service is able to recover from a failure 
within a definite amount of time. 
 
Commit, cancellation, and compensation. Depending 
on the business logic, the e-service starting a 
conversational transaction can request an all-or-nothing 
property for the conversational transaction. However 
services may not always be cancellable. Some payments 
are not refundable, and booking cannot be canceled after 
a certain point of time. Thus some scheme is needed to 
prevent the situation where some committed component 
transactions become uncancellable while others are still 
outstanding. 
 

D. CONVERSATIONAL TRANSACTION PROTOCOL 
 
1st. System definitions 
 
We define an e-service conversation as C, C = {s0, s1, 
…, sn-1} where s0 is the root e-service starting the 
conversation, and others are the participating children e-
services. A participating e-service may be an immediate 
child of the root e-service, or may be an immediate child 
of another child e-service. 
 
Corresponding to C, a conversational transaction is 
defined as T, T = {t0, t1, …, tn-1} where t0 is the root 
transaction starting the conversational transaction, and ti 
is a component transaction at e-service si. A component 
transaction may be an immediate child of the root 
transaction, or may be an immediate child of another 
component transaction. 
 
As e-services interact with each other by exchanging 
documents, dij is used to represent a document from ti to 
tj. We define two functions for each component 
transaction: f(dij) and ϕ(d[]). f(dij) is called by tj to 
perform the business logic when receiving a request 
from ti. ϕ(d[]) is called by tj to cancel the commit status 

of the service due to request dij. d[] including dij are the 
messages tj received from other e-services. Based on 
d[], ϕ(d[]) undoes the committed transaction, and 
performs the business logic one more time without 
making a commitment (tj is in update). 
 
A converstional transaction has the following properties: 
 
Property 1 A conversational transaction is committed if 
each component transaction has been committed and 
each transaction in update, if any, has been caught. 
 
Property 2 If a conversational transaction is canceled,  
each  of its component transactions is canceled. 
 
CTP is designed to guarantee the properties, and provide 
transaction support for conversational transactions. 
 
2nd. The techniques 
 
Before presenting the conversational transaction 
protocol, we describe the techniques used for the 
protocol: transaction correlation [12, 13] and message 
logging. 
A conversational transaction draws a spanning tree 
where each node represents a component transaction. To 
forward a commit or cancellation request, each node is 
correlated to its parent and children by using a 
correlator. A correlator consists of the CTP handles of a 
node, its parent, and its immidiate children. The CTP 
handle is used to identify a component transaction. It 
contains the transaction’s listening endpoint (i.e., its 
URL) and the transaction identifier. By using the 
correlators, a CTP message (e.g., a commit or 
cancellation request) from the root can be forwarded to 
all the nodes as each node knows where their immediate 
children are. For the same reason, a CTP message (e.g., 
a commit or cancellation confirmation) can be delivered 
all the way back to the root node.  The following are the 
XML [7] definitions of  the correlator. 
 
<complexType name = “CTPHandleType”>
<element name = “CTPURL” type = ”string”/>
<element name = “TranID” type =“decimal”/>

</complexType>

 
<complexType name = “CorrelatorType” >
<element name = “ParentHandle”

type = “CTPHandleType”
minOccurs = “0” maxOccurs = “1”>

<element name = “TranHandle”
type = “CTPHandleType”/>

<element name = “ChildHandle”
type = “CTPHandleType”

minOccurs = “0“ maxOccurs = “unbounded”>
</complexType>



For traditonal transaction processing, a 2-pc protocol is 
used to coordinate a distributed transaction such that a 
local transaction cannot commit unless every 
participating transaction is ready to do so. As described 
above, it is expensive, if not unacceptable, to do so for 
conversational transactions. During a conversation, a 
component transaction should commit or abort 
independently whenever possible. To enable the 
cancellation of a committed transaction, there are 
basically two types of approaches. 
 
One approach is based on the checkpointing of 
databases and files [8, 9]. The advantage of this 
approach is that the cancellation of a committed 
transaction is totally transparent to the business logic. 
However the disadvantage of this approach is that the 
complexity is high. It involves modifications to the 
database/file I/O libraries, which makes it less practical. 
 
The other approach is based on message-logging. 
Conversational/component transactions are initiated by 
service requests. When receiving service request dij from 
ti, tj is initiated, and dij is logged. Then tj calls f(dij) to 
process the request, and commits the transaction if 
possible. Besides requests, responses received from 
other e-services also need to be logged. To cancel its 
commit status, tj retrieves the logged messages d[] and 
calls the callback function ϕ(d[]) to undo the previous 
service and perform the business logic one more time. If 
a failure occurs, tj aborts; otherwise it is in update until 
it is informed to commit again. 
 
Compared to the first approach, message-logging is easy 
to implement, and does not need the involvement from 
the system. The disadvantage of this approach is that it 
requires applications to provide a callback function to 
cancel the commit status of a previously committed 
service. CTP uses message-logging for the cancellation 
purpose. 
 
3rd. The protocol 
 
CTP is designed to provide all-or-nothing transactional 
property for conversational transactions. It has the 
following features. 
• = It is distributed. In the cross-domain e-services 

environment, each e-service is responsible for its 
own behaviors and commitments. There is no 
central control point which could otherwise have the 
global knowledge of a conversation and coordinate 
all the participating e-services directly. As a result, 
CTP does not provide a central control point 
coordinating each participating component. Instead, 

it relies on transaction correlation to make sure that 
commit or cancellation actions are taken 
consistently within a conversational transaction. 

• = It is partly asynchronous. Unlike 2-pc protocols, 
CTP allows the component transactions within a 
conversation to locally commit if they are 
cancellable. CTP commits the conversational 
transaction if each component is committed and 
each transaction in update is caught. Otherwise, 
CTP will try to automatically cancel the committed 
component transactions. 

 
A component transaction, if not cancellable, will not 
commit until receiving a commit request. A locally 
committed component transaction needs to roll back to, 
and be blocked at the pre-commit state when it reaches  
the point beyond which it will not be cancellable. Thus, 
CTP, in its worse scenario where each component 
transaction is or becomes uncancellable, will work in the 
same manner as TIP. However in the normal situation, 
CTP should outperform TIP as all or most of the 
component transactions commit independently. 
 
The protocol consists of two parts. The first part 
specifies the behavior of the root transaction manager 
(RTM) that starts a particular conversation. The second 
part specifies the behavior of a component transaction 
manager (CTM) how a component transaction 
participates in a conversational transaction. 
 
The root transaction manager is responsible for starting, 
committing, or canceling a conversational transaction 
upon receiving an event from the root e-service or its 
immediate component transaction managers. The RTM 
protocol describes how to respond to these events. 
• = The start event. The RTM starts a root transaction 

upon receiving a start event from the root e-service. 
It creates a CTP handle for the root transaction and 
returns it to the root e-service. The CTP handle must 
be tagged on each of the request documents sent to 
other e-services. 

• = The connection event. After a service request is 
delivered at a sub e-service and a component 
transaction is created, the CTM will send its parent 
a connection request. Then the root/parent 
transaction will build a connection with the 
component transaction using their CTPs, and add 
the child’s CTP to the children list of its correlator 
structure. Note that, due to the asynchronous nature 
of e-services, the connection is really just a “hand-
shake” so that the parent and the child knows the 
existence of each other. 



• = The response event. When a component transaction 
ends, the CTM will send a response to the 
root/parent manager. Based on the status of the 
component transaction, the root/parent transaction 
will update the corresponding child entry in its 
correlator structure. 

• = The timeout event. A timeout event will be 
generated internally if there are outstanding service 
requests for a certain amount of time. When the 
event occurs, the transaction manager finds out the 
outstanding component transactions from its 
correlator, and sends a “ping” message to the 
corresponding CTMs. If one or more CTMs do not 
reply or reply with an error, failures are assumed to 
have occurred, and an alarm is generated and sent to 
the local e-service. 

• = The update event. Before a committed component 
transaction becomes uncancellable, the CTM sends 
its parent/root an “update” request. After receiving 
the request, the root transaction, based on its current 
status, will send back a reply indicating how the 
component transaction should proceed: whether to 
allow the component transaction to perform ϕ(d[]). 
If ϕ(d[]) is allowed, the update count of the root 
transaction is incremented. The update count is used 
to catch the transactions in transit. It indicates the 
number of the updated service responses that the 
root transaction will receive. The root transaction 
will not commit until those number of updated 
responses have been received. 

• = The end event. The RTM ends the root transaction 
upon receiving an end event from the root e-service. 
If the root e-service wants to commit the 
conversational transaction, the RTM sends a “local 
commit” request to each of its immediate CTMs. If  
each response is “locally committed”, then the RTM 
sends a “global commit” message and commits the 
root transaction. If the root e-service wants to cancel 
the conversational transaction due to an error, the 
RTM sends a “cancel” request to each of its 
immediate CTMs. When receiving a “canceled” 
response from each CTM, the RTM marks the root 
transaction as “canceled”. The RTM will forget the 
transaction after returning control to the root e-
service. 

 
The RTM protocol is shown as follows. 
 
RTM()

When (an event occurs)
if (start) then

corr ← new correlator();
corr.CTPHandle.URL ← RTM.URL;

corr.CTPHandle.ID ← a new tran ID;
return corr.CTPHandle;

else if (connection) then
connect(corr.CTPHandle,evt.CTPHandle);
corr.children ← evt.CTPHandle;

else if (response) then
if (corr.children[i] = evt.CTPHandle)
then

corr.children[i] ← evt.tranStatus;
else if (timeout) then

ping(corr.children);
if (error) then

alarm(e-service);
else if (update) then

if (allowed) then
corr.updates++;

send(decision, evt.CTPHandle);
else if (end) then

if (commit) then
send(“local_commit”,corr.children);
wait until all responses or timeout
if (local commit is OK) then

ret ← commit(corr.CTPHandle);
if (ret != OK) then

goto cancel;
send(“global_commit”,

corr.children);
wait until all responses

else
goto cancel;

else if (cancel) then
cancel: send(“cancel”, corr.children);

wait until all responses
end

 
A component transaction manager is responsible for 
starting, committing, or canceling a component 
transaction upon receiving an event from the local e-
service, its parent CTM/RTM, or its own immediate 
CTMs. The CTM protocol describes how to respond to 
these events. 
• = The start event. When receiving a request, an e-

service first checks if there is a CTP handle tagged 
on the request. If so, it informs local CTM to start a 
component transaction. Based on the request and its 
own business logic, the e-service should also let the 
CTM know if and/or until when the transaction will 
be cancellable. Then the CTM creates a CTP handle 
for the transaction, and sends a connection request 
to the parent transaction manager which will build 
the connection. 

• = The connection event. Same as the RTM protocol. 
• = The response event. Same as the RTM protocol. 
• = The ping event. When receiving a ping message, the 

CTM checks the corresponding component 
transaction’s correlator and sees if there are 
outstanding sub transactions. If so, it sends a “ping” 
message to the corresponding CTMs. If one or more 
CTMs do not reply or reply with an error, failures 
are assumed to have occurred, then the CTM sends 



an error reply to its parent. Otherwise, a “in-
progress” reply is sent back. 

• = The end event. The CTM ends the component 
transaction upon receiving an end event from the 
local e-service. The transaction aborts if there is an 
error in itself or some of its component transactions. 
Otherwise, the CTM optimistically commits the 
transaction (“self-committed”) if it is cancellable, or 
puts it in a pre-commit state. Then the CTM sends a 
“ok” or “aborted” response to the parent transaction. 

• = The checkpoint event. A checkpoint of a transaction 
is a point beyond which it will not be cancellable. 
The checkpoint event can be triggered by time 
and/or some business logic. When it occurs, the 
CTM checks if there are any self-committed 
transactions that have reached their cancellation 
deadlines. For each of these transactions, the CTM 
sends an “update” request to its parent. If the reply 
indicates that the local transaction should proceed, 
the CTM retrieves the logged service 
requests/responses. Then it calls the transaction’s 
callback function ϕ(d[]) to undo the committed 
transaction, perform the business logic one more 
time, and put it in the pre-commit state (the 
transaction is in update). If the reply indicates that 
the local transaction should abort, the CTM calls 
ϕ(d[]) just to undo the transaction, sends a “cancel” 
request to the children transactions, and then sends 
an “aborted” response to the parent transaction. If 
the reply indicates that a distributed commit has 
been initiated, nothing should be done at this point. 

• = The update event. When receiving an “update” 
request from one of its children, the CTM, if the 
local transaction’s status is “locally committed”, 
sends back a reply indicating a distributed commit 
has been initiated. Otherwise, it forwards the request 
to its parent. If the reply is positive, the CTM 
increments the update count of the local transaction, 
and changes its status to “pre-commit” if its current 
status “self-committed”. Therefore, the local 
transaction can expect an updated service response 
from that child transaction in update, and it will not 
commit until all the updated responses have been 
received. Regardless of the content of the reply, the 
CTM will then forward the reply to the child. 

• = The local commit event. When receiving a “local 
commit” message, the CTM checks the status of the 
corresponding local transaction, and forwards the 
message to the transaction’s immediate children. If 
each response from the children is “locally 
committed”, the CTM commits the local transaction 
if it is in the pre-commit state. If the commit is 
successful, the CTM marks the local transaction as 

“locally committed”, and sends a “locally 
committed” response to the parent transaction. 
Otherwise, the CTM aborts/cancels the local 
transaction as well as its children, and sends back a 
“aborted” response. 

• = The global commit event. When receiving a “global 
commit” message, the CTM marked the local 
transaction as “globally committed”, and forwards 
the message to the transaction’s immediate children. 
Once all the responses come back,  the CTM sends a 
“globally committed” response to the parent 
transaction. 

• = The cancel event. When receiving a “cancel” 
message, the CTM aborts or cancels the local 
transaction if its status is not aborted (e.g., pre-
commit, self-committed, locally committed). Then it 
forwards the “cancel” message to its immediate 
CTMs. Once all the responses come back, the CTM 
sends a “canceled” response to the parent 
transaction. 

 
The pseudo code of the CTM protocol is shown as 
follows. 
 
CTM()

When (an event occurs)
if (start) then

corr ← new correlator();
corr.CTPHandle.URL ← CTM.URL;
corr.CTPHandle.ID ← a new tran ID;
corr.parent ← evt.CTPHandle;
corr.checkpoint ← deadline;
connect(corr.CTPHandle, corr.parent);
return corr.CTPHandle;

else if (connection or response) then
/* Same as RTM */

else if (ping) then
ping(corr.children);
if (error) then

send(“error”, corr.parent);
else

send(“in-progress”, corr.parent);
else if (end) then

if (commit) then
if (checkpoint) then

commit(corr.CTPHandle);
corr.status ← “self-committed”;

else
corr.status ← “pre-commit”;

send(“ok”,corr.parent);
else

abort: send(“cancel”,corr.children);
wait until all responses
abort(corr.CTPHandle);
corr.status ← “canceled”;
send(“aborted”, corr.parent);

else if (checkpoint) then
for (each local transation)

corr ← t.correlator;
if(corr.checkpoint >= δ(deadline) &&



corr.status =“self-committed”) then
send(“update”, corr.parent);
if (reply = “allowed”) then
d[] ← retrieve(corr.CTPHandle);
thread(ϕ, corr.CTPHandle, d[]);

else if (“not allowed”) then
d[] ← retrieve(corr.CTPHandle);
ϕ(d[]);
goto abort;

else if (update) then
if (corr.status = “locally committed”)
then send(“wait”, evt.CTPHandle);
else

send(“update”, corr.parent);
if (reply = “allowed”) then
corr.updates++;
if (corr.status = “self-committed”)
then corr.status ← “pre-commit”;
send(reply, evt.CTPHandle);

else if (local commit) then
if (no error) then

send(“local_commit”,corr.children);
wait until all responses

if (corr.status = “pre-commit”
&& no error) then
commit(corr.CTPHandle);

if (no error) then
corr.status ← “locally committed”;
send(“locally-committed”,corr.parent);
if (error) then

goto abort;
else if (global commit) then

corr.status ← “globally committed”;
send(“global_commit”,corr.children);
wait until all responses
send(“globally-committed”,

corr.parent);
else if (cancel) then

if (corr.status = “canceled”) then
send(“aborted”, corr.parent);

if (corr.status = “pre-commit”) then
goto abort;

else
d[] ← retrieve(corr.CTPHandle);
ϕ(d[]);
goto abort;

end

 
Note that the conversational transaction protocol does 
not specify how a component transaction should be 
committed locally. It is our intention to separate this 
from the protocol. Therefore, any existing transaction 
managers can participate in CTP without any 
modifications. 
 
To demonstrate how CTP works, figure 4 shows an 
example where a travel e-service is making a travel 
arrangement by interacting with a flight, a car, and a 
hotel e-service. For simplicity, figure 4 only displays the 
CTP messages between the e-services whereas the e-
service-specific messages are not included. 

flight cartravel hotel

 
Figure 4. A CTP workflow 

In the example, the flight and car e-services book and 
confirm a flight and a car, then commit the transactions 
accordingly. Due to some delay at the hotel e-service 
(e.g., no vacancy), it is about to reach a point when the 
booked flight cannot be canceled while a hotel room has 
not been booked. After being informed of the status of 
the flight transaction, the travel transaction decides to 
continue this arrangement and knows that it will not 
only hear from the hotel transaction, but also get a flight 
update from the flight transaction. When receiving the 
decision, the flight transaction cancels the confirmed 
flight. Based on the logged flight request, it will then 
book another flight and send an update to its parent. But 
this time, the flight transaction will not commit itself 
until it hears from the travel transaction. After receiving 
the flight update and the hotel confirmation, the travel 
transaction requests each sub transaction to 
commit the flight transaction has not committed the 
other two have already committed. Once receiving the 
responses from the sub transactions, the travel 
transaction sends a “global commit” message. The 
message informs each participating entity that the 
conversational transaction has committed, and the local 
transaction can be discarded. 
 
4th. Proof of correctness 
 
We prove in this section the correctness of the 
conversational transaction protocol. The protocol must 
ensure the safety and liveness properties. 



Lemma 1 The conversational transaction protocol is 
deadlock free. 
 
Proof: 
First, we prove that the root transaction will commit or 
cancel a conversational transaction within a definite 
amount of time. Suppose that root transaction t0 has 
initiatied conversational transaction T. If t0 has not 
received responses from some component transactions 
within a timeout interval, a timeout event is generated, 
and a “ping” message is forwarded to each ti ( 0 < i < n). 
If errors are detected, t0 will abort T to avoid a potential 
deadlock. Otherwise, t0 will eventually receive the 
response from each ti ( 0 < i < n) because the latencies 
due to asynchronous processing and network delivery 
are bounded. Following the business logic, t0 will send 
two rounds of synchronous messages. If errors are 
detected in the first phase, t0 cancels T; otherwise it 
commits T. t0, after every certain interval, will keep 
sending the final commit or cancel message until it 
receives the response from each ti ( 0 < i < n). This will 
not lead to a deadlock as we assume each e-service is 
able to recover from a failure within a definite amount 
of time. Thus, each ti ( 0 < i < n) will eventually receive 
the commit or cancel decision, so will t0 receive all the 
responses. 
 
Second, we prove that each ti ( 0 < i < n) will not be 
blocked indefinitely. In CTP, ti behaves independently 
except for two points where ti can be blocked: waiting 
for a reply after sending its parent an “update” request; 
and waiting for a “global commit” or “cancel” message. 
For the same reason as above, this will not lead to a 
deadlock. 
 
Lemma 2 The conversational transaction protocol is 
livelock free. 
 
Proof: 
A livelock would occur if ti, before receiving the “local 
commit” message, is committed and undone repeatedly 
due to the checkpoint events. CTP prevents this by 
allowing ti to be undone at most once before t0 commits 
or cancels T. When a checkpoint event occurs, ϕ(d[]) is 
called to undo the transaction, perform the business 
logic one more time, and change ti‘s status from “self-
committed” to “pre-commit”. That is, the following 
checkpoint events will have no impact on ti. Hence no 
livelock. ti will not proceed until receiving a “local 
commit” or “cancel” messsage.  Again, this will not lead 
to a deadlock, as proved in Lemma 1. 

E. THE CTP API 
 

Based on the conversational transaction protocol, we 
propose an application programming interface for the 
development of conversation-based e-services. The API 
is defined in the CTransaction class. 
 
public class CTransaction extends Object { 
// Public Constructors 
 public   CTransaction(); 
// Public Instance Methods 
 public XMLDocument 
        push(XMLDocument doc, 
                  CTPHandle Handle); 
 public CTPHandle 
        pull(XMLDocument doc); 
 public CTPHandle 
        begin(Time Checkpoint); 
 public CTPHandle 
        begin(CTPHandle Parent,  
      Time Checkpoint); 
 public int 
        query(CTPHandle Handle); 
 public short 
        end(CTPHandle Handle, 
                  int CompletionType); 
} 
 

ctran = new CTransaction()

parent = ctran.begin(checkpoint)

Request = ctran.push(Req, parent)

Send the request to the server

  ctran.end(parent, "commit")

  Client

  Receive the confirmation from server
  parent = ctran.pull(Response)

stran.end(child, "commit")

Response = stran.push(Res, child)
Send the response to the client

  Receive a service request  from the client

Performs the business logic

Server

parent

stran = new CTransaction()
parent = stran.pull(Request)
child = stran.begin(parent, checkpoint)

Request

parent

child

Response

 Figure 5. The CTP API 

Method push() is used to tag the outgoing service 
request/response with the CTP handles of the local 
transaction and its parent (if a response). When 
receiving a request or response, method pull() is called 
to log the message, and retrieve the CTP handle of the 
parent or local transaction. There are two versions of 
begin(). One version is used to start a root transaction 
while the other is used to start a component transaction. 
Method query() is called to get the number of 
transactions in update. A transaction can commit only 
after it receives the response from each child transaction 



in update. Method end() is called to commit or abort a 
root/component transaction, depending on the 
transaction completion type. Figure 5 is a simplest 
sample demonstrating how the CTP API is used. 
 

F. CONCLUSION 
 
E-services are federated, composite, and autonomous. 
Due to the nature of e-services, the traditional 
transaction processing mechanisms do not serve well in 
the e-service world. We proposed in this paper a new 
optimistic commit protocol called CTP to provide 
transaction support for e-service transactions (i.e., 
conversational transactions). That is to provide all-or-
nothing semantics for conversational transactions. A 
reference API was also proposed to enable the 
development of the conversation-based e-services. 
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