

CTP: An Optimistic Commit Protocol for
Conversational Transactions

Jinsong Ouyang, Akhil Sahai, Vijay Machiraju
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-20
January 26th , 2001

Internet,
conversations,
management,
transactions

E-services are composite in nature. The composition can be
static or dynamic. As these e-services are being deployed by
different enterprises, they are cross-domain and federated in
nature. To conduct a business task, an e-service undertakes a
conversation that spans across multiple e-services, which is
often asynchronous and asymmetric. Within a conversation,
the unit of business at each e-service is called a component
transaction. The component transactions within a conversation
form a conversational transaction. Each component transaction
is autonomous and independent while it is relative to each
other only in the context of a specific conversation. A
conversational transaction is committed if each component is
committed, or recommitted after compensation. If one or more
component transactions abort, the conversational transaction,
depending on the business logic, may need to be canceledthe
committed component transactions need to be canceled
though not every transaction is cancellable after a certain
point. In this paper, we argue that the traditional transaction
semantics and mechanisms do not apply well in the e-service
world, and propose an optimistic commit protocol to provide
transaction support, i.e., all-or-nothing semantics, for
conversational transactions.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

Abstract: Web based services or E-services are being deployed by
different enterprises. These E-services in turn use other E-
services. This makes them collaborate across management
domains. To conduct a business task, an e-service undertakes a
conversation that often spans across multiple e-services, and is
often asynchronous and asymmetric. Within a conversation, the
unit of business at each e-service is called a component
transaction. The component transactions within a conversation
form a conversational transaction. Each component transaction is
autonomous and independent while it is relative to each other
only in the context of a specific conversation. A conversational
transaction is committed if each component is committed, or re-
committed after compensation. If one or more component
transactions abort, the conversational transaction, depending on
the business logic, may need to be canceled the committed
component transactions need to be canceled though not every
transaction is cancellable after a certain point. In this paper, we
argue that the traditional transaction semantics and mechanisms
do not apply well in the e-service world, and propose an
optimistic commit protocol to provide transaction support, i.e.,
all-or-nothing semantics, for conversational transactions.

A. INTRODUCTION

An e-service is a service available via the Internet that
completes tasks, solves problems, or conducts
transactions. These e-services are accessible on the
Internet at a particular Uniform Resource Locator. An e-
service may depend on other e-services. These e-
services are termed composite e-services. This
composition could be static or dynamic in nature. There
is an increasing trend towards dynamic composition
where e-services dynamically choose their trading
partners or service providers. In figure 1, the root e-
service is composed of two sub e-services, one of which
in turn is composed of another sub e-service.

Figure 1. A composite e-service

These e-services are federated in nature as they interact
across management domains and enterprise networks.

Their implementations could be vastly different in
nature. They could be based on CORBA [1], BizTalk
[2], COM, E-speak [3] or on other platforms.

E-services interact with each other using asynchronous
messages. The interactions between e-services for
conducting a specific task create a conversation [4, 5].
Within a conversation, we call the unit of business at
each e-service a component transaction. The component
transactions within a conversation form a conversational
transaction. As independent e-services are created and
deployed by autonomous e-service providers,
component transactions are independent and
autonomous. On the other hand, the component
transactions are relative to each other in the context of a
particular conversation. For example, a travel agency
may need services provided by a flight and a hotel e-
service. The business logic of the transactions in the two
e-services is independent of each other. The lifecyles of
the transactions in the two e-services are totally
unrelated, and could be largely different. However, for a
particular travel request, the travel conversation will
initiate a flight booking transaction and a hotel booking
transaction. The two transactions are relative to each
other in the context of this particular conversation The
booked flight and hotel are part of a particular travel
arrangement.

Conversational transactions have different semantics
compared to tranditional transactions. A conversational
transaction is committed if each component transaction
is committed. If one or more component transactions
abort, the conversional transaction, unlike a traditional
transaction, may or may not need to be canceled
depending on the business logic. This is because the
component transactions are independent of each other,
and it is totally up to the e-service starting the
conversation to decide if all-or-nothing semantics
should be enforced. A conversational transaction, by
itself, does not require all-or-nothing semantics.

This paper proposes an optimistic commit protocol,
called conversational transaction protocol (CTP), to
provide all-or-nothing property for conversational
transactions. The remainder of this paper is organized as
follows. Section B describes the all-or-nothing problem
for conversational transactions, and presents the related
work. Section C presents the system model on which

CTP: An Optimistic Commit Protocol for Conversational Transactions
Jinsong Ouyang, Akhil Sahai, Vijay Machiraju

E-Services Software Research Department
HP Laboratories, 1501 Page Mill Road, Palo-Alto, CA = 94034

E-Service

E-Service

E-Service

E-Service

conversations

conversations

conversations

CTP is built. Section D formally describes the protocol
and proves its correctness. Section E proposes a
reference API on top of the protocol, and section F
draws the conclusion.

B. THE PROBLEM AND RELATED WORK

For traditional distributed transactions, a key technology
to guarantee the data consistency is the two-phase
commit protocol (2-pc) [6]. It is used to ensure
agreement by all parties regarding the outcome of the
work (all-or-nothing). Current 2-pc protocols and
transaction managers are only suitable for single-domain
distributed applications [5]. To address the problem,
The Transaction Internet Protocol (TIP) [5] was
proposed. TIP is a 2-pc protocol which provides
ubiquitous distributed transaction support in a
hetergeneous and cross-domain environment. It is made
possible by separating the transaction protocol from the
application communications protocol (the two-pipe
model).

2-pc protocols including TIP do not fit in well with the
conversational transaction paradigm. If TIP is used to
coordinate a conversational transaction, the executions
of component transactions are bundled together in a 2-pc
manner. This is not desirable, sometimes not acceptable
due to the following reasons.
• = The component transactions within a conversation

are autonomous and independent, and they are
relative to each other only in the context of a
particular conversation.

• = The lifecycles of different component transactions
could be largely different. In the e-service world,
individual service requests are usually
asynchronous. That is, response to a request may not
arrive immediately, and the response time may be
unpredictable. There are many factors contributing
to the response time such as business logic (long-
lived or short-lived), delayed inputs from human
operators, the network delays, and so forth. The
reponses times of component transactions are
independent of each other.

• = If a conversational transaction consists of
component transactions with largely different
response times, TIP will commit the conversational
transaction when everyone is ready. That is, the
short-lived transactions (their resources) will be
blocked for probably an unaceptable amount of
time, and the resources cannot be released for
processing new service requests. This is usually an
undesirable, sometimes an unacceptable option from
an autonomous e-service provider’s point of view.

Another type of approach [4] would be to let the
applications explicitly deal with the possible failure
scenarios. The protocol would work as follow.
• = Starts a conversation by starting a root transaction

upon receiving a service request.
• = Each component transaction, after finishing its

business logic, commits or aborts the transaction
based on its local result.

• = Commits the conversational transaction if every
component transaction commits.

• = If one or more component transactions abort and the
committed component transactions need to be
canceled, the root transaction sends explicit cancel
requests to the e-services to cancel the previous
agreements.

Travel

National

Marriott

UA

Budget

Hertz

Delta

Hilton

Figure 2. A dynamic travel e-service

The above protocol has two problems. First, it does not
provide all-or-nothing semantics. If a conversational
transaction needs to be canceled and some committed
component transactions cannot be undone, it will
produce an inconsistent result. Second, even without all-
or-nothing requirement, it works fine only if the
composite e-services are static. It would be extremely
difficult, if not impossible, when the composition is
dynamic. Consider a travel e-service that interacts with
flight, hotel, and car rental e-services. As shown figure
2, there are a number of e-services available for flight,
hotel, and car rental. For each travel request, the travel
e-service dynamically chooses a set of e-services (e.g.,
UA, Hilton, and Hertz) based on some criteria such as
availability, rates, etc. If the travel e-service is involved

in a higher level conversation, the travel transaction
becomes a component transaction within that
conversation. To enable the cancellation of a travel
arrangement, the travel component transaction must
remember the context of each travel arrangement (i.e.,
the request itself and the sub e-service providers for the
request). Thus the cancellation request can be forwarded
to the corresponding flight, hotel, and car e-services.
This would impose tremendous burden on the
development of these e-services.

To overcome the limitations of the above approaches,
we adopt and extend the idea of transaction
compensation [10]. The idea was to perform a “semantic
undo” of a “erroneoulsy” or “prematurely” committed
local transaction if the global transaction aborts due to
failures. Based on compensation, a protocol [11] was
proposed to enable each participating transaction to
commit independently, and be undone when the global
transaction aborts. However, the protocol is not
sufficient to manage conversational transactions due to
the following reasons.

First, a committed component transaction may need to
be undone before it passes its deadline and becomes
uncancellable. Then instead of just an “undo”, a new
component transaction may need to be initiated, perform
the same business logic, and send its parent an updated
service response. We term the new transaction the
transaction in update. If transactions in update are not
handled properly, the correctness of a committed
conversational transaction cannot be guaranteed.
Consider the example in figure 3, t0, after receiving
responses from t1 and t2, sends a global commit.
Meanwhile, t3 has passed its deadline, and has to
perform an “undo” and an “update”. As illustrated in the
figure, a problem occurs in the following scenario. t2
sends a commit response to t0 before receiving the
updated service response from t3, t0 then commits the
conversational transaction. If t2 fails to do the update, it
aborts and sends an abort message to t0 that has already
committed. Even if t0 can, once again, try to cancel the
global transaction, it may not be able to do so if t1, after
globally committed, has passed its deadline and become
uncancellable.

We define that a conversational transaction is committed
when each component transaction has been committed,
and each transaction in update (if any) has been caught.

t0

committed transaction aborted transaction

t1

t2

t3

Figure 3. A transaction in update

That is, the result of each transaction in update has been
reflected permanently in the conversational transaction
once committed. The protocol [11] did not provide
mechanisms to catch the transactions in update. Second,
a conversational transaction can dynamically span
across multiple e-services, and form a spanning tree. In
such a spanning tree, each node only knows its
immediate parent and children no node has a global
picture of what the tree looks like. The above protocol
can only deal with a typical “coordinator-participants”
scenario (i.e., a two-tier workflow). That is, the
coordinating transaction knows the global picture and
deal with each participating transaction directly.

To fill the gap in the existing approachs, we propose
CTP to provide transaction support for conversational
transactions. The key contribution in this protocol is to
enable the catching of transactions in update for
conversational transactions that are dynamically
composed.

C. SYSTEM MODEL

A conversational transaction is used to identify the units
of business spanning across multiple e-services while a
conversation is used to capture the interactions between
the e-services. The following characteristics usually
exist in the conversation-based e-services environment,
and our conversational transaction protocol is built in
such type of environment.

E-service independence. Each e-service may be
developed and deployed by an independent entity. Thus,
the business logic of each e-service is completely
separated from each other.

E-service Autonomy. Within a conversation, the state
and status of a component transaction will neither affect
nor be affected by those of its peer transactions.

Dynamic Composition. E-services can be composed
dynamically.

DOM based Interactions. E-services essentially use the
Document Object Model of interactions.

Unpredictable Response Times. Asynchronous
processing, different service lifecycles, human and/or
network delays make the response times of component
transactions unpredictable. The response time of one
component transaction is of little use to predict another
one. It is undesirable, sometimes unacceptable to
synchronize the executions of the peer e-services.

System and network failures. System and/or network
failures may occur during a conversation. We assume
that each e-service is able to recover from a failure
within a definite amount of time.

Commit, cancellation, and compensation. Depending
on the business logic, the e-service starting a
conversational transaction can request an all-or-nothing
property for the conversational transaction. However
services may not always be cancellable. Some payments
are not refundable, and booking cannot be canceled after
a certain point of time. Thus some scheme is needed to
prevent the situation where some committed component
transactions become uncancellable while others are still
outstanding.

D. CONVERSATIONAL TRANSACTION PROTOCOL

1st. System definitions

We define an e-service conversation as C, C = {s0, s1,
…, sn-1} where s0 is the root e-service starting the
conversation, and others are the participating children e-
services. A participating e-service may be an immediate
child of the root e-service, or may be an immediate child
of another child e-service.

Corresponding to C, a conversational transaction is
defined as T, T = {t0, t1, …, tn-1} where t0 is the root
transaction starting the conversational transaction, and ti
is a component transaction at e-service si. A component
transaction may be an immediate child of the root
transaction, or may be an immediate child of another
component transaction.

As e-services interact with each other by exchanging
documents, dij is used to represent a document from ti to
tj. We define two functions for each component
transaction: f(dij) and ϕ(d[]). f(dij) is called by tj to
perform the business logic when receiving a request
from ti. ϕ(d[]) is called by tj to cancel the commit status

of the service due to request dij. d[] including dij are the
messages tj received from other e-services. Based on
d[], ϕ(d[]) undoes the committed transaction, and
performs the business logic one more time without
making a commitment (tj is in update).

A converstional transaction has the following properties:

Property 1 A conversational transaction is committed if
each component transaction has been committed and
each transaction in update, if any, has been caught.

Property 2 If a conversational transaction is canceled,
each of its component transactions is canceled.

CTP is designed to guarantee the properties, and provide
transaction support for conversational transactions.

2nd. The techniques

Before presenting the conversational transaction
protocol, we describe the techniques used for the
protocol: transaction correlation [12, 13] and message
logging.
A conversational transaction draws a spanning tree
where each node represents a component transaction. To
forward a commit or cancellation request, each node is
correlated to its parent and children by using a
correlator. A correlator consists of the CTP handles of a
node, its parent, and its immidiate children. The CTP
handle is used to identify a component transaction. It
contains the transaction’s listening endpoint (i.e., its
URL) and the transaction identifier. By using the
correlators, a CTP message (e.g., a commit or
cancellation request) from the root can be forwarded to
all the nodes as each node knows where their immediate
children are. For the same reason, a CTP message (e.g.,
a commit or cancellation confirmation) can be delivered
all the way back to the root node. The following are the
XML [7] definitions of the correlator.

<complexType name = “CTPHandleType”>
<element name = “CTPURL” type = ”string”/>
<element name = “TranID” type =“decimal”/>

</complexType>

<complexType name = “CorrelatorType” >
<element name = “ParentHandle”

type = “CTPHandleType”
minOccurs = “0” maxOccurs = “1”>

<element name = “TranHandle”
type = “CTPHandleType”/>

<element name = “ChildHandle”
type = “CTPHandleType”

minOccurs = “0“ maxOccurs = “unbounded”>
</complexType>

For traditonal transaction processing, a 2-pc protocol is
used to coordinate a distributed transaction such that a
local transaction cannot commit unless every
participating transaction is ready to do so. As described
above, it is expensive, if not unacceptable, to do so for
conversational transactions. During a conversation, a
component transaction should commit or abort
independently whenever possible. To enable the
cancellation of a committed transaction, there are
basically two types of approaches.

One approach is based on the checkpointing of
databases and files [8, 9]. The advantage of this
approach is that the cancellation of a committed
transaction is totally transparent to the business logic.
However the disadvantage of this approach is that the
complexity is high. It involves modifications to the
database/file I/O libraries, which makes it less practical.

The other approach is based on message-logging.
Conversational/component transactions are initiated by
service requests. When receiving service request dij from
ti, tj is initiated, and dij is logged. Then tj calls f(dij) to
process the request, and commits the transaction if
possible. Besides requests, responses received from
other e-services also need to be logged. To cancel its
commit status, tj retrieves the logged messages d[] and
calls the callback function ϕ(d[]) to undo the previous
service and perform the business logic one more time. If
a failure occurs, tj aborts; otherwise it is in update until
it is informed to commit again.

Compared to the first approach, message-logging is easy
to implement, and does not need the involvement from
the system. The disadvantage of this approach is that it
requires applications to provide a callback function to
cancel the commit status of a previously committed
service. CTP uses message-logging for the cancellation
purpose.

3rd. The protocol

CTP is designed to provide all-or-nothing transactional
property for conversational transactions. It has the
following features.
• = It is distributed. In the cross-domain e-services

environment, each e-service is responsible for its
own behaviors and commitments. There is no
central control point which could otherwise have the
global knowledge of a conversation and coordinate
all the participating e-services directly. As a result,
CTP does not provide a central control point
coordinating each participating component. Instead,

it relies on transaction correlation to make sure that
commit or cancellation actions are taken
consistently within a conversational transaction.

• = It is partly asynchronous. Unlike 2-pc protocols,
CTP allows the component transactions within a
conversation to locally commit if they are
cancellable. CTP commits the conversational
transaction if each component is committed and
each transaction in update is caught. Otherwise,
CTP will try to automatically cancel the committed
component transactions.

A component transaction, if not cancellable, will not
commit until receiving a commit request. A locally
committed component transaction needs to roll back to,
and be blocked at the pre-commit state when it reaches
the point beyond which it will not be cancellable. Thus,
CTP, in its worse scenario where each component
transaction is or becomes uncancellable, will work in the
same manner as TIP. However in the normal situation,
CTP should outperform TIP as all or most of the
component transactions commit independently.

The protocol consists of two parts. The first part
specifies the behavior of the root transaction manager
(RTM) that starts a particular conversation. The second
part specifies the behavior of a component transaction
manager (CTM) how a component transaction
participates in a conversational transaction.

The root transaction manager is responsible for starting,
committing, or canceling a conversational transaction
upon receiving an event from the root e-service or its
immediate component transaction managers. The RTM
protocol describes how to respond to these events.
• = The start event. The RTM starts a root transaction

upon receiving a start event from the root e-service.
It creates a CTP handle for the root transaction and
returns it to the root e-service. The CTP handle must
be tagged on each of the request documents sent to
other e-services.

• = The connection event. After a service request is
delivered at a sub e-service and a component
transaction is created, the CTM will send its parent
a connection request. Then the root/parent
transaction will build a connection with the
component transaction using their CTPs, and add
the child’s CTP to the children list of its correlator
structure. Note that, due to the asynchronous nature
of e-services, the connection is really just a “hand-
shake” so that the parent and the child knows the
existence of each other.

• = The response event. When a component transaction
ends, the CTM will send a response to the
root/parent manager. Based on the status of the
component transaction, the root/parent transaction
will update the corresponding child entry in its
correlator structure.

• = The timeout event. A timeout event will be
generated internally if there are outstanding service
requests for a certain amount of time. When the
event occurs, the transaction manager finds out the
outstanding component transactions from its
correlator, and sends a “ping” message to the
corresponding CTMs. If one or more CTMs do not
reply or reply with an error, failures are assumed to
have occurred, and an alarm is generated and sent to
the local e-service.

• = The update event. Before a committed component
transaction becomes uncancellable, the CTM sends
its parent/root an “update” request. After receiving
the request, the root transaction, based on its current
status, will send back a reply indicating how the
component transaction should proceed: whether to
allow the component transaction to perform ϕ(d[]).
If ϕ(d[]) is allowed, the update count of the root
transaction is incremented. The update count is used
to catch the transactions in transit. It indicates the
number of the updated service responses that the
root transaction will receive. The root transaction
will not commit until those number of updated
responses have been received.

• = The end event. The RTM ends the root transaction
upon receiving an end event from the root e-service.
If the root e-service wants to commit the
conversational transaction, the RTM sends a “local
commit” request to each of its immediate CTMs. If
each response is “locally committed”, then the RTM
sends a “global commit” message and commits the
root transaction. If the root e-service wants to cancel
the conversational transaction due to an error, the
RTM sends a “cancel” request to each of its
immediate CTMs. When receiving a “canceled”
response from each CTM, the RTM marks the root
transaction as “canceled”. The RTM will forget the
transaction after returning control to the root e-
service.

The RTM protocol is shown as follows.

RTM()

When (an event occurs)
if (start) then

corr ← new correlator();
corr.CTPHandle.URL ← RTM.URL;

corr.CTPHandle.ID ← a new tran ID;
return corr.CTPHandle;

else if (connection) then
connect(corr.CTPHandle,evt.CTPHandle);
corr.children ← evt.CTPHandle;

else if (response) then
if (corr.children[i] = evt.CTPHandle)
then

corr.children[i] ← evt.tranStatus;
else if (timeout) then

ping(corr.children);
if (error) then

alarm(e-service);
else if (update) then

if (allowed) then
corr.updates++;

send(decision, evt.CTPHandle);
else if (end) then

if (commit) then
send(“local_commit”,corr.children);
wait until all responses or timeout
if (local commit is OK) then

ret ← commit(corr.CTPHandle);
if (ret != OK) then

goto cancel;
send(“global_commit”,

corr.children);
wait until all responses

else
goto cancel;

else if (cancel) then
cancel: send(“cancel”, corr.children);

wait until all responses
end

A component transaction manager is responsible for
starting, committing, or canceling a component
transaction upon receiving an event from the local e-
service, its parent CTM/RTM, or its own immediate
CTMs. The CTM protocol describes how to respond to
these events.
• = The start event. When receiving a request, an e-

service first checks if there is a CTP handle tagged
on the request. If so, it informs local CTM to start a
component transaction. Based on the request and its
own business logic, the e-service should also let the
CTM know if and/or until when the transaction will
be cancellable. Then the CTM creates a CTP handle
for the transaction, and sends a connection request
to the parent transaction manager which will build
the connection.

• = The connection event. Same as the RTM protocol.
• = The response event. Same as the RTM protocol.
• = The ping event. When receiving a ping message, the

CTM checks the corresponding component
transaction’s correlator and sees if there are
outstanding sub transactions. If so, it sends a “ping”
message to the corresponding CTMs. If one or more
CTMs do not reply or reply with an error, failures
are assumed to have occurred, then the CTM sends

an error reply to its parent. Otherwise, a “in-
progress” reply is sent back.

• = The end event. The CTM ends the component
transaction upon receiving an end event from the
local e-service. The transaction aborts if there is an
error in itself or some of its component transactions.
Otherwise, the CTM optimistically commits the
transaction (“self-committed”) if it is cancellable, or
puts it in a pre-commit state. Then the CTM sends a
“ok” or “aborted” response to the parent transaction.

• = The checkpoint event. A checkpoint of a transaction
is a point beyond which it will not be cancellable.
The checkpoint event can be triggered by time
and/or some business logic. When it occurs, the
CTM checks if there are any self-committed
transactions that have reached their cancellation
deadlines. For each of these transactions, the CTM
sends an “update” request to its parent. If the reply
indicates that the local transaction should proceed,
the CTM retrieves the logged service
requests/responses. Then it calls the transaction’s
callback function ϕ(d[]) to undo the committed
transaction, perform the business logic one more
time, and put it in the pre-commit state (the
transaction is in update). If the reply indicates that
the local transaction should abort, the CTM calls
ϕ(d[]) just to undo the transaction, sends a “cancel”
request to the children transactions, and then sends
an “aborted” response to the parent transaction. If
the reply indicates that a distributed commit has
been initiated, nothing should be done at this point.

• = The update event. When receiving an “update”
request from one of its children, the CTM, if the
local transaction’s status is “locally committed”,
sends back a reply indicating a distributed commit
has been initiated. Otherwise, it forwards the request
to its parent. If the reply is positive, the CTM
increments the update count of the local transaction,
and changes its status to “pre-commit” if its current
status “self-committed”. Therefore, the local
transaction can expect an updated service response
from that child transaction in update, and it will not
commit until all the updated responses have been
received. Regardless of the content of the reply, the
CTM will then forward the reply to the child.

• = The local commit event. When receiving a “local
commit” message, the CTM checks the status of the
corresponding local transaction, and forwards the
message to the transaction’s immediate children. If
each response from the children is “locally
committed”, the CTM commits the local transaction
if it is in the pre-commit state. If the commit is
successful, the CTM marks the local transaction as

“locally committed”, and sends a “locally
committed” response to the parent transaction.
Otherwise, the CTM aborts/cancels the local
transaction as well as its children, and sends back a
“aborted” response.

• = The global commit event. When receiving a “global
commit” message, the CTM marked the local
transaction as “globally committed”, and forwards
the message to the transaction’s immediate children.
Once all the responses come back, the CTM sends a
“globally committed” response to the parent
transaction.

• = The cancel event. When receiving a “cancel”
message, the CTM aborts or cancels the local
transaction if its status is not aborted (e.g., pre-
commit, self-committed, locally committed). Then it
forwards the “cancel” message to its immediate
CTMs. Once all the responses come back, the CTM
sends a “canceled” response to the parent
transaction.

The pseudo code of the CTM protocol is shown as
follows.

CTM()

When (an event occurs)
if (start) then

corr ← new correlator();
corr.CTPHandle.URL ← CTM.URL;
corr.CTPHandle.ID ← a new tran ID;
corr.parent ← evt.CTPHandle;
corr.checkpoint ← deadline;
connect(corr.CTPHandle, corr.parent);
return corr.CTPHandle;

else if (connection or response) then
/* Same as RTM */

else if (ping) then
ping(corr.children);
if (error) then

send(“error”, corr.parent);
else

send(“in-progress”, corr.parent);
else if (end) then

if (commit) then
if (checkpoint) then

commit(corr.CTPHandle);
corr.status ← “self-committed”;

else
corr.status ← “pre-commit”;

send(“ok”,corr.parent);
else

abort: send(“cancel”,corr.children);
wait until all responses
abort(corr.CTPHandle);
corr.status ← “canceled”;
send(“aborted”, corr.parent);

else if (checkpoint) then
for (each local transation)

corr ← t.correlator;
if(corr.checkpoint >= δ(deadline) &&

corr.status =“self-committed”) then
send(“update”, corr.parent);
if (reply = “allowed”) then
d[] ← retrieve(corr.CTPHandle);
thread(ϕ, corr.CTPHandle, d[]);

else if (“not allowed”) then
d[] ← retrieve(corr.CTPHandle);
ϕ(d[]);
goto abort;

else if (update) then
if (corr.status = “locally committed”)
then send(“wait”, evt.CTPHandle);
else

send(“update”, corr.parent);
if (reply = “allowed”) then
corr.updates++;
if (corr.status = “self-committed”)
then corr.status ← “pre-commit”;
send(reply, evt.CTPHandle);

else if (local commit) then
if (no error) then

send(“local_commit”,corr.children);
wait until all responses

if (corr.status = “pre-commit”
&& no error) then
commit(corr.CTPHandle);

if (no error) then
corr.status ← “locally committed”;
send(“locally-committed”,corr.parent);
if (error) then

goto abort;
else if (global commit) then

corr.status ← “globally committed”;
send(“global_commit”,corr.children);
wait until all responses
send(“globally-committed”,

corr.parent);
else if (cancel) then

if (corr.status = “canceled”) then
send(“aborted”, corr.parent);

if (corr.status = “pre-commit”) then
goto abort;

else
d[] ← retrieve(corr.CTPHandle);
ϕ(d[]);
goto abort;

end

Note that the conversational transaction protocol does
not specify how a component transaction should be
committed locally. It is our intention to separate this
from the protocol. Therefore, any existing transaction
managers can participate in CTP without any
modifications.

To demonstrate how CTP works, figure 4 shows an
example where a travel e-service is making a travel
arrangement by interacting with a flight, a car, and a
hotel e-service. For simplicity, figure 4 only displays the
CTP messages between the e-services whereas the e-
service-specific messages are not included.

flight cartravel hotel

Figure 4. A CTP workflow

In the example, the flight and car e-services book and
confirm a flight and a car, then commit the transactions
accordingly. Due to some delay at the hotel e-service
(e.g., no vacancy), it is about to reach a point when the
booked flight cannot be canceled while a hotel room has
not been booked. After being informed of the status of
the flight transaction, the travel transaction decides to
continue this arrangement and knows that it will not
only hear from the hotel transaction, but also get a flight
update from the flight transaction. When receiving the
decision, the flight transaction cancels the confirmed
flight. Based on the logged flight request, it will then
book another flight and send an update to its parent. But
this time, the flight transaction will not commit itself
until it hears from the travel transaction. After receiving
the flight update and the hotel confirmation, the travel
transaction requests each sub transaction to
commit the flight transaction has not committed the
other two have already committed. Once receiving the
responses from the sub transactions, the travel
transaction sends a “global commit” message. The
message informs each participating entity that the
conversational transaction has committed, and the local
transaction can be discarded.

4th. Proof of correctness

We prove in this section the correctness of the
conversational transaction protocol. The protocol must
ensure the safety and liveness properties.

Lemma 1 The conversational transaction protocol is
deadlock free.

Proof:
First, we prove that the root transaction will commit or
cancel a conversational transaction within a definite
amount of time. Suppose that root transaction t0 has
initiatied conversational transaction T. If t0 has not
received responses from some component transactions
within a timeout interval, a timeout event is generated,
and a “ping” message is forwarded to each ti (0 < i < n).
If errors are detected, t0 will abort T to avoid a potential
deadlock. Otherwise, t0 will eventually receive the
response from each ti (0 < i < n) because the latencies
due to asynchronous processing and network delivery
are bounded. Following the business logic, t0 will send
two rounds of synchronous messages. If errors are
detected in the first phase, t0 cancels T; otherwise it
commits T. t0, after every certain interval, will keep
sending the final commit or cancel message until it
receives the response from each ti (0 < i < n). This will
not lead to a deadlock as we assume each e-service is
able to recover from a failure within a definite amount
of time. Thus, each ti (0 < i < n) will eventually receive
the commit or cancel decision, so will t0 receive all the
responses.

Second, we prove that each ti (0 < i < n) will not be
blocked indefinitely. In CTP, ti behaves independently
except for two points where ti can be blocked: waiting
for a reply after sending its parent an “update” request;
and waiting for a “global commit” or “cancel” message.
For the same reason as above, this will not lead to a
deadlock.

Lemma 2 The conversational transaction protocol is
livelock free.

Proof:
A livelock would occur if ti, before receiving the “local
commit” message, is committed and undone repeatedly
due to the checkpoint events. CTP prevents this by
allowing ti to be undone at most once before t0 commits
or cancels T. When a checkpoint event occurs, ϕ(d[]) is
called to undo the transaction, perform the business
logic one more time, and change ti‘s status from “self-
committed” to “pre-commit”. That is, the following
checkpoint events will have no impact on ti. Hence no
livelock. ti will not proceed until receiving a “local
commit” or “cancel” messsage. Again, this will not lead
to a deadlock, as proved in Lemma 1.

E. THE CTP API

Based on the conversational transaction protocol, we
propose an application programming interface for the
development of conversation-based e-services. The API
is defined in the CTransaction class.

public class CTransaction extends Object {
// Public Constructors
 public CTransaction();
// Public Instance Methods
 public XMLDocument
 push(XMLDocument doc,
 CTPHandle Handle);
 public CTPHandle
 pull(XMLDocument doc);
 public CTPHandle
 begin(Time Checkpoint);
 public CTPHandle
 begin(CTPHandle Parent,
 Time Checkpoint);
 public int
 query(CTPHandle Handle);
 public short
 end(CTPHandle Handle,
 int CompletionType);
}

ctran = new CTransaction()

parent = ctran.begin(checkpoint)

Request = ctran.push(Req, parent)

Send the request to the server

 ctran.end(parent, "commit")

 Client

 Receive the confirmation from server
 parent = ctran.pull(Response)

stran.end(child, "commit")

Response = stran.push(Res, child)
Send the response to the client

 Receive a service request from the client

Performs the business logic

Server

parent

stran = new CTransaction()
parent = stran.pull(Request)
child = stran.begin(parent, checkpoint)

Request

parent

child

Response

 Figure 5. The CTP API

Method push() is used to tag the outgoing service
request/response with the CTP handles of the local
transaction and its parent (if a response). When
receiving a request or response, method pull() is called
to log the message, and retrieve the CTP handle of the
parent or local transaction. There are two versions of
begin(). One version is used to start a root transaction
while the other is used to start a component transaction.
Method query() is called to get the number of
transactions in update. A transaction can commit only
after it receives the response from each child transaction

in update. Method end() is called to commit or abort a
root/component transaction, depending on the
transaction completion type. Figure 5 is a simplest
sample demonstrating how the CTP API is used.

F. CONCLUSION

E-services are federated, composite, and autonomous.
Due to the nature of e-services, the traditional
transaction processing mechanisms do not serve well in
the e-service world. We proposed in this paper a new
optimistic commit protocol called CTP to provide
transaction support for e-service transactions (i.e.,
conversational transactions). That is to provide all-or-
nothing semantics for conversational transactions. A
reference API was also proposed to enable the
development of the conversation-based e-services.

G. REFERENCES

[1] Object Management Group. The common object request broker:
 Architecture and specification. Revision 2.0, July 1995
 http://www.omg.org

[2] D. Rogers. BizTalk service framework. Microsoft Corporation.
 http://www.biztalk.org

[3] Hewlett-Packard Company. E-Speak Architecture Specification. Version
 Beta2.2. December 1999.
 http://www.e-speak.net/library/pdfs/E-speakArch.pdf

[4] A. Dan and F. Parr. An Object implementation of network centric
 business service application (NCBSAs): conversational service
 transactions, service monitor, and an application style. OOPSLA’97,
 Business Object Workshop III.

[5] K. Evans, J. Klein, and J. Lyon. Transaction Internet Protocol –
 Requirements and supplemental information. 1998.
 http://www.landfield.com/rfcs/rfc2372.html

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control
 and Recovery in Database Systems. Addison-Wesley, Reading, 1987.

[7] XML at World Wide Web (WWW) Consortium.
 http://www.w3.org/xml

[8] J. Ouyang and P. Maheshwari. Supporting cost-effective fault tolerance
 in distributed message-passing applications with file operations.
 Journal of Supercomputing, 14, 207-232, 1999.

[9] R. Strom, S. Yemini, and D. Bacon. A recoverable object store.
 In Proceedings of International Conference on System Sciences,
 Vol. 2, 215-221, 1988.

[10] H. F. Korth, E. Levy, and A. Silberschatz. A formal approach to recovery
 by compensating transactions. In Proceedings of the 16th International
 Conference on Very Large Databases, Brisbane, pages 95-106, 1990.

[11] E. Levy, H. F. Korth, and A. Silberschatz. An optimistic commit
 protocol for distributed transaction management. In Proceedings of
 ACM-SIGMOD 1991 International Conference on Management of
 Data, pages 88-97, 1991.

[12] A. Sahai, J. Ouyang, and V. Machiraju. End-to-end e-service transaction

 and conversation management through distributed correlation. Technical
 Report HPL-2000-145, Hewlett-Packard Labs, 2000.

[13] Vantage Point Web Transaction Observer
 http://www.openview.hp.com/products/webtransobserver/

