
Message Tracking in
SOAP-based Web Services

A. Sahai, V. Machiraju, J. Ouyang, and K. Wurster
Hewlett-Packard Laboratories
1501 Page Mill Rd MS 1U-14
Palo Alto, CA 94304
USA
{asahai,vijaym}@hpl.hp.com

Abstract
As web services become more prevalent, the nature of electronic transactions on the
Internet changes from simple browser-to-business clicks to an orchestrated flow of
messages between cross-enterprise services. Consequently, more than one service
could participate in the federated execution of a single transaction. In such cases, the
problem of end-to-end management becomes very important. The inherent cross-
enterprise or distributed nature of the problem, security of information exchanged,
and the complexity in correlating related messages into a single transaction make this
problem challenging. In this paper, we present an approach to track and correlate mes-
sages between web services that are part of a single transaction. We do this by propos-
ing management information exchange agreements between service providers, and a
distributed message tracking algorithm that is executed within each service provider.
We also explain the techniques for realizing our solution in the case of web services
that communicate using the Simple Object Access Protocol (SOAP).

Keywords
End-to-end management, web services, message tracking, cross-enterprise manage-
ment, SOAP.

1. Introduction

Web services can be described broadly as applications capable of executing transac-

tions1 via the Internet. One refers to a web service on the Internet through a Uniform
Resource Locator (URL) and invoke its transactions by sending messages in a vocab-
ulary it understands. Web services are set up to be accessed either by clients (e.g.,
browsers, appliances) or by other web services. Enabling interoperation between
these services requires agreement on several standards. UDDI (Universal Descrip-

1. We use the word transaction in a weak sense to refer to portions of business logic that are
executed by a service. This is in contrast to the usage of this term in the database literature.

tion, Discovery, and Integration) [1] is an emerging standard for web services to reg-
ister and make themselves available to clients or other web services. WSDL (Web
Services Description Language) [2] is another standard for web services to describe
their capabilities or transactions. Simple Object Access Protocol (SOAP) [3] defines a
base communication protocol for clients and services to exchange XML messages
with each other. Several other domain-specific standards (e.g., ebXML [4]) are
emerging to define semantics of messages exchanged between web services.

SOAP is a protocol for exchange of information in a decentralized environment
such as the Internet. It is an XML based protocol that defines how messages should be
created and exchanged between web services. More precisely, SOAP consists of three
parts: an envelope that defines a framework for describing what is in a message and
how to process it, a set of encoding rules for expressing instances of application-
defined data types, and a convention for representing remote procedure calls and
responses. SOAP can work over a variety of communication level protocols, most
implementations support at least HTTP.

Transactions in web services are federated across enterprises, and SOAP enables
such federation by defining a protocol for exchange of messages between web ser-
vices. A transaction is a portion of business logic with a clearly defined begin-point
and end-point. As part of executing a transaction, a web service can send one or more
SOAP messages to other web services and/or receive one or more SOAP messages.
The problem of message tracking is to be able to track all the messages that are part of
one such transaction through all the web services the transaction executes in. Message
tracking helps in end-to-end management of web services since one can infer metrics
for the whole transaction and for portions of the whole transaction from messages that
flow between web services.

In this paper, we describe an infrastructure for tracking messages that enables
end-to-end management in federated web services. We assume that these web ser-
vices interact using SOAP or other similar protocols. The rest of this paper is orga-
nized as follows: In section 2, we provide examples of web services and SOAP
messages, and explain the problem of end-to-end management in detail. Section 3
describes our approach to solving the problem. In section 4, we describe typical
implementations of our approach, and we summarize our conclusions and directions
for future work in section 5.

2. Background and Problem Definition

Web services are federated in nature as they interact across management domains and
enterprise networks. Their implementations can be vastly different in nature. Some of

the common technologies for implementing web services are J2EE1, SUNONE2, and

.Net3. Figure 1 shows a fictional example of interacting web services. Employees in a

1. Java 2 Enterprise Edition from Sun Microsystems (http://java.sun.com/j2ee)
2. Sun Open Net Environment from Sun Microsystems (http://www.sun.com/sunone)

company (workhard.com) use their internal web service (supplies.workhard.com) to
order day-to-day supplies and stationery. The internal supplies web service in turn
uses a supplies marketplace (supplies.marketplace.com) to find the best deals. The
marketplace requests bids from two supplies companies (stationery.com and office-
supplies.com) to fulfill orders. Both the suppliers use a shipping service
(shipme.com) for shipping the ordered products directly to the consumer.

Figure 1: Interacting web services

When two web services connect to each other, they have to agree on a document
exchange protocol and the appropriate document formats. From then on they can
interoperate with each other exchanging documents. SOAP defines a common layer
for document exchange. Services can define their own service-specific content on the
top of SOAP. The execution of a single business transaction can involve multiple
messages being exchanged between web services. For example, a purchase order
transaction that begins when an employee orders supplies and ends when he or she
receives a confirmation could result in ten messages being exchanged between vari-
ous services as shown in Figure 2.

Figure 2: SOAP messages exchanged between web services

3. .Net from Microsoft (http://www.microsoft.com/net/default.asp)

supplies.
workhard.com

officesupplies.com

supplies.
marketplace.com

stationery.com

shipme.com

supplies.
workhard.com

officesupplies.com

supplies.
marketplace.com

stationery.com

shipme.com

officesupplies.com

supplies.
marketplace.com

stationery.com

shipme.comsupplies.
workhard.com

1
2

3

4

5

1 0

7

6

9

8

1. purchase order
2. part of the purchase order
3. the other part of the purchase order
4. shipping request
5. shipping request

6. shipping confirmation
7. shipping confirmation
8. order confirmation
9. order confirmation
10. purchase order confirmation

officesupplies.comofficesupplies.com

supplies.
marketplace.com

supplies.
marketplace.com

stationery.com

shipme.comshipme.comsupplies.
workhard.com

supplies.
workhard.com

1
2

3

4

5

1 0

7

6

9

8

1. purchase order
2. part of the purchase order
3. the other part of the purchase order
4. shipping request
5. shipping request

6. shipping confirmation
7. shipping confirmation
8. order confirmation
9. order confirmation
10. purchase order confirmation

One such message encapsulated in SOAP is shown in Figure 3. Note that every
SOAP message has a clearly defined header (SOAP-ENV:Header) and body (SOAP-
ENV:Body). The service-specified content is enclosed within the body of a SOAP
message. Headers are typically used to represent meta-information about messages
(e.g., message identifier).

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Header>

 <Id>1</Id>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <PurchaseOrder>
 <Item count = 100>Postit stick notes</Item>
 <Item count = 200>Stapler</Item>
 </PurchaseOrder>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 3: SOAP message

The exchange of messages between web services could be asynchronous. Ser-
vices sending a request message need not be blocked waiting for a response message.
In some cases, all the participating services are like peers, in which case there is no
notion of a request or a response. Some of the message flow patterns that result from
this asynchrony are shown in Figure 4. The first example in Figure 4 shows a single
request resulting in multiple responses. The second example shows a broker-scenario,
in which a request is sent to a broker but responses are received directly from a set of
suppliers.

Figure 4: Asynchronous message patterns between web services

Management of web services is a challenging task because of their heterogeneity,
asynchrony, and federation [5, 6]. Motivations for end-to-end web service manage-
ment arise from the perspective of both clients and service providers. Clients are
interested in tracking their requests and in understanding bottlenecks or causes for
failure of their requests. Measurements taken at various points along the execution of
a transaction are very helpful in analyzing end-to-end quality of the transaction. Ser-
vice providers that are using other services to provide composite services would like
to know how the component services are behaving. By studying and observing their
behavior a composite web service would be able to optimize itself by either changing
its component sub services or by instructing the existing component sub services to
improve performance.

(a) multiple
responses

(b) broker
(a) multiple

responses
(b) broker

Message tracking is an enabler for end-to-end transaction management. It
enables clients and web services to track the flow of messages related to a single
transaction between web services. More formally, using the terminology from graph
theory, the problem of message tracking is to be able to build a forest of trees where:

• Each tree in the forest represents a transaction.
• Each node in a tree represents a message exchanged between web services as

part of executing that transaction.
• A parent-child relationship between two nodes indicates that the message

corresponding to the child node was exchanged in the context of the message
corresponding to the parent node.

• Each node can have a number of associated management attributes.
Figure 5 shows an example of a tree corresponding to the exchange of messages

from Figure 2.

Figure 5: A tree of messages that are part of a single transaction

There are various constraints for solving this problem. Some of these arise by the
nature of the web services interactions. Others are desirable for a scalable solution
involving a large number of interacting web services.

• Since web services are autonomous, the message tracking process should
also be executed in a decentralized way and should not assume the existence
of a centralized consolidator.

• If the message tracking process requires exchange of additional information
between the participating web services, such information should be captured
and agreed upon between the services through explicit agreements.

• The message tracking process should be able to handle asynchronous com-
munication of messages between web services.

3. Message Tracking

Our approach to message tracking hinges on two concepts that we have defined: mes-
sage detail records (MDRs) and agreements between service providers. These two
concepts are explained next.

3.1 Message Detail Records (MDRs)

A message detail record is a collection of management attributes that is padded to
every message flowing between web services. The structure of an MDR depends on
the management information that is agreed to be exchanged between two parties (see
next section for a complete discussion on agreements). The sender of the message

1

9

2

4

7

5

3

68

10

1

9

2

4

7

5

3

68

10

could fill in some of the attributes in an MDR, while the receiver fills in the rest. For
example, a simple MDR structure could consist of a unique identifier for the message,
a time stamp when the message was sent, and a time stamp when the message was
received. In this example, the sender should fill in the first two attributes and the
receiver fills in the last one.

When a new message is sent out by a service, this message is either the first mes-
sage originating a new transaction, or is a message that is being sent out in the context
of another earlier message, which already originated a transaction. In the first case,
the MDR of the new message does not have any relationship with other MDRs. In the
second case, however, the MDR of the new message is related to the MDR of the ear-
lier message through a parent-child relationship. This relationship captures the ongo-
ing trace of distinct messages being exchanged as part of a single transaction. A
complete definition of a typical MDR that captures the parent-child relationships is
shown in Figure 6.

MDR
{
 parent_mdr : message detail record of the parent message
 message_id : unique identifier of the message
 message_type : type of the message
 source : identifier of the service originating the message
 target : identifier of the service receiving the message
 time_sent : time when the message was sent by source
 time_recd : time when the message was received by target
}

Figure 6: Message detail record (MDR)

In the case of SOAP messages, the SOAP header is a convenient place to insert
an MDR. A sample SOAP message with an MDR is shown in Figure 7.

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Header>

 <MDR>
 <parent_mdr></parent_mdr>
 <message_id>1122-3551-5721-8834</message_id>
 <message_type>PurchaseOrder</message_type>
 <source>supplies.workhard.com</source>
 <target>supplies.marketplace.com</target>
 <time_sent>2001-06-12 12:00:23</time_sent>
 <time_received></time_received>
 </MDR>
 </SOAP-ENV:Header>
 <SOAP-ENV:Body>
 <PurchaseOrder>
 <Item count = 100>Postit stick notes</Item>
 <Item count = 200>Stapler</Item
 </PurchaseOrder>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 7: MDR in a SOAP message

3.2 Agreements

The nature of the management information exchanged between web services and the
security of such information is captured in agreements. An agreement is a description
of:

• The list of attributes that are part of an MDR
• The rules for propagating those attributes to other web services.
An agreement is always formed between two web services. All the web services

along the chain of a business transaction should have separate pair-wise agreements
between each other. This is usually the case in traditional service-level-agreements
(SLAs) where services agree pair-wise on the terms of their relationship. While SLAs
capture the terms regarding the execution of each other's transactions and the associ-
ated quality parameters, the agreements we refer to here are about the exchange of
special management information. A possible implementation of our agreements is to
include them as additional clauses in traditional SLAs.

Why should web services exchange additional management information? The
reason is for them to collaborate in order to do end-to-end management. No single
web service can create a complete picture of the end-to-end transaction. Exchanging
management information allows each of the participating web services to define and
measure end-to-end metrics, and maybe even enforce certain end-to-end goals, which
are not captured in individual SLAs.

The additional management information in our approach is described through
MDRs. One set of clauses in the agreement is regarding the structure of an MDR. For
example, two services may agree upon exchanging time stamp information with each
other. Two other services may agree upon exchanging QoS expectations as part of an
MDR. In the worst case, the two services may agree to exchange no MDRs in their
messages.

A second set of clauses is needed around the security of MDRs. We have already
discussed how a service can propagate an MDR that it received as a parent of a new
MDR that it created. Consider a service A that sends a message X to service B. In the
course of handling message X, service B creates a new message Y to be sent to ser-
vice C. To create an MDR for Y, service B has the option of (Figure 8):

1. Just including the MDR of Y in message Y.
2. Including the MDR of Y, but also including the MDR of X as the parent of

Y's MDR.

Figure 8: Propagation of MDRs

X Y X Y

X

A B C A B C

option 1 option 2

X Y X Y

X

A B C A B C

option 1 option 2

In the second case, some of the attributes of the message exchanged between A
and B are shared with C. The security of such information depends on the exact
nature of the attributes. For example, if the attribute is an opaque identifier that does
not reveal the identity or any other characteristic of A, then A may allow it to be prop-
agated to C. In either case, whether an attribute of an MDR can be propagated by the
receiver to its component services has to be explicitly stated as part of the agreement.
An example of an agreement between two web services is shown in Figure 9.

Agreement
{
 parent_mdr : propagate
 message_id : propagate
 message_type : do not propagate
 source : do not propagate
 target : propagate
 time_sent : propagate
 time_recd : propagate
}

Figure 9: Agreements

3.3 Distributed Message Tracking Algorithm

We are now ready to present a message-tracking algorithm that executes decentrally
within each service provider. The algorithm has two parts - a part that executes when-
ever a service sends out a message, and a part that executes whenever a service
receives a message. As the algorithm is executed, a data structure call MDRForest
gets built, which corresponds to the forest of trees described in section 2. The
MDRForest is empty when the algorithm starts execution.

The portion that executes before a message is sent out is shown in Figure 10. To
summarize, a new MDR is created and stored with the right parent-child relationships
in the MDRForest. Then, an appropriate sub-tree of the tree containing the new MDR
in MDRForest is inserted into the message. This requires trimming the tree (removing
certain attributes or removing nodes from the tree) to ensure that all agreements as
described in section 3.2 are satisfied.

Before sending a message M in the context of message C
{
 1. Create new unique identifier (new_id).
 2. Create a new mdr and add identifier from step 1 to mdr
 new_mdr.id <- new_id
 3. Fill up other fields in new_mdr
 4. Search for C’s mdr in MDRForest (c_mdr)
 5. add new_mdr as the child of c_mdr in MDRForest
 c_mdr.children <- new_mdr
 6. Get agreement-compliant sub-tree of new_mdr from MDRForest
 (mdr_sub_tree)
 7. Set mdr_tree in message header.
 M.header.mdr <- mdr_sub_tree
}

Figure 10: Message tracking algorithm for outgoing messages

The portion that executes whenever a message is received is shown in Figure 11.
The first step is to extract the MDR from the incoming message and fill up any fields
in that MDR. The second step is to merge the MDR with the MDRForest. Merging
involves replacing any of the existing nodes in the MDRForest with new nodes from
the incoming MDR, if they represent the same message. This ensures that the infor-
mation in MDRForest is always up-to-date.

After receiving a message M
{
 1. Extract mdr_tree from M.header
 2. Merge mdr_tree with MDRForest
 MDRForest.merge <- mdr_tree
}

Figure 11: Message tracking algorithm for incoming messages

As the algorithm is executed at each web service, the MDRForest that gets built
up gets richer and richer with every incoming or outgoing message. Agreements per-
mitting, every web service will be able to see the entire tree of messages along a
transaction chain starting with the first message that started the transaction, and end-
ing with the last message that is sent out by that web service as part of that transac-
tion. Figure 12 shows a trace of this algorithm as it executes for the messages from
Figure 2.

Figure 12: A trace of message tracking algorithm

The vertical lines in the above picture show the enterprise boundaries; the trees
that get built up as part of the MDRForest within each web service are shown under

officesupplies.com

supplies.
marketplace.com

stationery.com

shipme.comsupplies.
workhard.com

1
2

3

4

5

10

7

6

9

8

1
1

2

4

1

2 3

1

5

3

6

8

1

5

3

1

9

2

4

7

1

5

32

4

671

9

2

4

7

5

3

6

8

101

9

2

4

7

5

3

6

8

10

time

officesupplies.comofficesupplies.com

supplies.
marketplace.com

supplies.
marketplace.com

stationery.com

shipme.comshipme.comsupplies.
workhard.com

supplies.
workhard.com

1
2

3

4

5

10

7

6

9

8

1
1

2

4

1

2

4

1

2 3

1

2 3

1

5

3

6

8

1

5

3

1

5

3

1

9

2

4

7

1

5

32

4

67

1

5

32

4

671

9

2

4

7

5

3

6

8

101

9

2

4

7

5

3

6

8

10

time

the corresponding web service. The second set of trees within each web service get
merged with the first set of trees, thereby resulting in only one tree for this transaction
at every web service.

The trees shown in Figure 12 are a result of all the web services agreeing to prop-
agate MDRs to each other. If one of the web services along the chain of transaction
does not propagate an MDR or propagates only portions of an MDR, then subtrees of
those shown in Figure 12 would result.

There are issues in the message-tracking algorithm that need further clarification:
How does one specify the contextual relationship between two messages? Can the
relationship be automatically inferred by the algorithm or should it be specified by the
web service developer? These issues are addressed in the next section, where we
describe our demonstrative implementation of the message-tracking algorithm over
SOAP infrastructure.

4. Implementation

We implemented the web services shown in Figure 1 using a standard J2EE-compli-
ant application server and web server. Each of the web services was implemented as a
servlet capable of receiving and sending messages. The messages were themselves
implemented as SOAP messages, and for this purpose we used the Apache SOAP

toolkit1. HTTP protocol was used as the transport for SOAP messages. Using stan-
dard Internet protocols such as HTTP and infrastructure such as web servers helped
us cross firewall boundaries between web services while leveraging existing security
mechanisms. Higher levels of security (e.g., application-level security) can be
achieved by adding additional fields in SOAP headers. The issue of time synchroniza-
tion between web services was not handled as there are existing protocols to provide
time synchronization in such cases [7].

The message-tracking algorithm was implemented as an agent. Web services
used the agent’s API to inform it of incoming or outgoing messages. We first describe
this API-based approach in the next sub-section. We also describe an interception-
based approach at the end of this section.

4.1 Message Tracking API and Agent

Based on the data structures and distributed correlation algorithms presented
above, an API to interact with the message-tracking agent has been developed. The
agent can be used to monitor message flows, measure, and break down the response
times of web service transactions. The agent also has a user interface to visualize the
messages and transactions. The API is defined as follows.

public class Mtrack
{
 public static void init();
 public static String sendMessage(String xmlMsg,

1. Available for download at http://xml.apache.org/soap/

 String parentMsgId,
 String msgType,
 String srcService,
 String desService);
 public static String recvMessage(String xmlMsg);
}

Figure 13: Message tracking agent API

When a web service gets started, it calls Mtrack.init() to initialize the message
tracking agent. Before sending a message, the web service calls Mtrack.sendMes-
sage() by passing the message to be sent, the parent message ID, the message type,
and the identifiers of the sending and receiving services. The agent constructs the
MDR as per the algorithm described above, attaches the MDR to the message, and
returns the modified message. After receiving a message, the web service needs to
call Mtrack.recvMessage() by passing the received message.

The agent builds the MDRForest and a collection of aggregate metrics such as
average transfer times, average processing times, average response times, and
counters on number of messages received or sent. The transfer time for any message
is the duration between the times the message is sent by one service and received by
the other. The average transfer time for a type of message is the sum of transfer times
for the message instances of this type, divided by the number of such messages
recorded. The processing time at a service is defined for every incoming message as
the duration between the time it was received and the time when the next message is
sent out in the context of the incoming message. The response time at a service is
defined for every outgoing message as the duration between the time when a request
is sent out and the time when the response is received.

Figure 14 and Figure 15 show snapshots from the user interface of the message
tracking agent in workhard.com. The first graph shows aggregate metrics for a partic-
ular type of business transaction - average transfer times and the number of messages
for each type of message. The second graph shows a drill-down view into an instance
of a business transaction at workhard.com. On this graph, one can see the exact time
stamps at each of the web services the transaction executed through. Figure 16 is a
visualization of the same type of information collected by the message tracking agent
at officesupplies.com. One can notice the difference in the end-to-end views as
observed from different services along the business transaction.

4.2 Message tracking by interception

The implementation approach described in the previous section requires the web ser-
vice developer to use the message tracking API and insert calls to this API in the code
for the web service. The task of relating one message to the next is faciliated by the
API described in Figure 13 (parentMsgId argument in sendMessage method). In that
approach, a web service developer who understands the business logic behind mes-
sages sent and received will be able to use the API calls to establish the relationships
between incoming and outgoing messages. There is an alternate approach that is non-

intrusive in nature to the web service. This approach is called message tracking by
interception and is described below.

Figure 14: Aggregate view from the agent in workhard.com

Figure 15: Transaction view from the agent in workhard.com

Figure 16: Aggregate view from the agent in officesupplies.com

wokhard.com supplies.
marketplace.com

shipme.com

officesupplies.com

stationary.com

PlaceOrder Avg:457.3 count:6

Ship Avg: 586.167 count:6

ConfirmShip Avg: 786.167 count:6

Ship Avg: 586.167 count:6

ConfirmShip Avg:786.167 count:6

BuySupplies Avg: 674.33 count:6

ConfirmBuySupplies Avg: 552.5 count:6

BuyStationary Avg:597.66 count:6

ConfirmBuyStationary Avg:1,018.67 count:6

wokhard.com supplies.
marketplace.com

shipme.com

officesupplies.com

stationary.com

PlaceOrder Avg:457.3 count:6

Ship Avg: 586.167 count:6

ConfirmShip Avg: 786.167 count:6

Ship Avg: 586.167 count:6

ConfirmShip Avg:786.167 count:6

BuySupplies Avg: 674.33 count:6

ConfirmBuySupplies Avg: 552.5 count:6

BuyStationary Avg:597.66 count:6

ConfirmBuyStationary Avg:1,018.67 count:6

wokhard.com supplies.
marketplace.com

shipme.com

officesupplies.com

stationary.com

PlaceOrder 70

Ship 701

ConfirmShip 671

Ship 611

ConfirmShip 982

BuySupplies 580

ConfirmBuySupplies 140

BuyStationary741

ConfirmBuyStationary 1983

ConfirmOrder 731

ConfirmBuyStationary
Sent 09:47:33:930

Received 09:47:35:913

wokhard.com supplies.
marketplace.com

shipme.com

officesupplies.com

stationary.com

PlaceOrder 70

Ship 701

ConfirmShip 671

Ship 611

ConfirmShip 982

BuySupplies 580

ConfirmBuySupplies 140

BuyStationary741

ConfirmBuyStationary 1983

ConfirmOrder 731

ConfirmBuyStationary
Sent 09:47:33:930

Received 09:47:35:913

supplies.
marketplace.com

shipme.com

officesupplies.com

PlaceOrder Avg 432.33 count: 6

ShipAvg: 250.167 count:6

ConfirmShipAvg 330.5 count:6

BuySuppliesAvg: 452.33 count:6

Most of the web services are built on middleware platforms. These platforms
provide communication services among others. A SOAP communication service, for
example, helps in creating, sending, receiving, and parsing SOAP messages. Such a
communication service could be instrumented to execute special logic whenever a
message is sent or received. Most of the middleware platforms provide hooks (e.g.,

ISAPI/NSAPI1 filters in web servers, servlet redirection in application servers, hooks
for inserting plug-ins in SOAP engines, etc.) for adding such instrumentation [8, 9].
One can create instrumentation modules to automatically call the message tracking
agent described in section 4.1. Besides freeing service developers from having to
instrument their web services, this approach also allows legacy web services to take
advantage of message tracking.

However, there is one drawback with this approach. The middleware-based
approach will not be able to correlate one message with another. In other words, it
will not be able to tell if a message is sent in the context of another. For this to be done
automatically, we need a higher level of middleware - a middleware platform that
understands not only the template for messages, but also the types of messages, and
the flow pattern of messages. For example, a conversation engine or a process-flow
engine [10, 11] would be able to correlate messages by putting one in the context of
another.

5. Conclusion

Tracking messages that are part of a business transaction as the transaction flows
through multiple web services is an important enabler for end-to-end management.
We have proposed a message tracking algorithm that executes within each service
provider in a decentralized manner. This algorithm does not require any additional
messages between web services to perform such tracking. Instead, it pads messages
from ongoing interactions with extra management information. The extra manage-
ment information is represented in a data structure called message detail record
(MDR) and can easily be inserted into the header of a SOAP message. Further, the
exact information that is put into an MDR is flexible, thereby allowing different forms
of end-to-end management. For example, if one uses MDRs to insert message time
stamp data (the times when a message is sent or received), one can perform end-to-
end transaction performance management. Similarly, if one inserts source and target
service identifiers into an MDR, one will be able create end-to-end service topology
views.

The security around propagating management information is governed by pair-
wise agreements between web services. These agreements form the basis for how
much information can be propagated from one service to another by a service that
resides between the two. Such agreements can be pre-negotiated between the partici-

1. ISAPI (Internet Server API) and NSAPI (Netscape Server API) are programming APIs for
Microsoft Internet Information Server and Netscape Server respectively.

pants ahead of time (for all the transactions over a period of time) or can perhaps be
automatically negotiated on a transaction-by-transaction basis in the future.

As more advanced forms of middleware platforms become available, one will be
able to perform message tracking and end-to-end management in a manner that is
non-intrusive to web service developers. Research into such forms of middleware and
intelligent analysis of collected end-to-end data are topics for further research.

References

[1]. Universal Description, Discovery, and Integration, http://www.uddi.org.

[2]. Web Services Description Language, http://www.w3.org/TR/wsdl.

[3]. Simple Object Access Protocol, http://www.w3.org/TR/soap.

[4]. E-business XML, http://www.ebxml.org.

[5]. Brown, A., Kar, G., Keller, A., An Architecture for Managing Application Services over
Global Networks. Proceedings of the 7th International IFIP/IEEE Symposium on Inte-
grated Management (IM 2001), IEEE Press, May, 2001

[6]. Ensel, C., Keller, A., Managing Application Service Dependencies with XML and
Resource Description Framework., 7th International IFIP/IEEE Symposium on Integrated
Management (IM 2001), Seattle, WA, USA, May, 2001

[7]. D. Mills. Simple Network Time Protocol. RFC 2030, 1996

[8]. Gschwind, Thomas; Eshghi, Kave; Garg, Pankaj K.; Wurster, Klaus. Web Transaction
Monitoring. HPL-2001-62, http://www.hpl.hp.com/techreports/2001/HPL-2001-
62.html

[9]. Frolund, Svend; Pedone, Fernando; Pruyne, Jim; van Moorsel, Aad. Building Dependable
Internet Services with E-speak. HPL-2000-78.http://www.hpl.hp.com/techreports/
2001/HPL-2000-78.html

[10]. Harumi Kuno, Mike Lemon, Alan Karp. Transformational Interactions for P2P E-
Commerce. Thirty-fifth Annual Hawai’i International Conference on System Sciences
(HICSS 2002). Also HPL-2001-143, http://www.hpl.hp.com/techreports/2001/HPL-
2001-143.html

[11]. Web Services Flow Language, http://www.ibm.com/software/solutions/webser-
vices.

