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Abstract

With large distributed systems, management of generated events become quickly unman-

ageable. The idea of Grouping By Frequency (GBF) Correlator is to make sense out of

millions of events quickly by sorting them into group instances by its number of occur-

rences. Unlike existing model-based or rule-based systems, minimal information on the

network is required. Once the events are grouped, it is analyzed separately to determine

the root cause. This paper presents general setup for such distributed system for event

analysis and provide detailed description of the GBF Algorithm.

1   Introduction
With the advances and demands to support various transactions over the Internet, we are

flooded with the collection of data that represent various transactions and corresponding

events being generated in such infrastructures. For a large network, several million alarm

messages (events) are generated on a typical day [GARD 98].  These messages/events  do

not carry ID’s of particular transactions, and therefore it is left for us to decide which data/

events are correlated and if possible, to link them to their root causes (events) [HART 95].

Often, the collection of generated events represents the symptoms rather than the cause

[GRUS 99], where one main event triggeres various other events that are most likely to

contain useless information. Therefore, the root cause is obscured by the symptom events,

which complicates the analysis of the collected event data.  It is then important to incorpo-

rate or design a mechanism (usually referred to as event correlation) to help identify the

root cause or the  main event. 

Event correlation  has become an important topic where various techniques have been pro-

posed to isolate the main event of interest.  However, the proposed methods often require

in-depth human intervention and do not scale/adapt well to changing requirements.  In

order to alleviate tedious configuration and manual event correlation, we propose a

Grouping By Frequency (GBF) Correlator.  The GBF Correlator minimizes the human
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intervention in which the analysis of events becomes more manageable and realistic.  The

algorithm works such that large numbers of events are roughly grouped to create an initial

starting point for analysis. With iteration and a small amount of intervention by the system

administrator, the system will reach a stable operating point. This report first reviews cur-

rent approaches then in section 3, the GBF correlator is discussed in detail. Some prelimi-

nary simulation results are shown in section 4 and the conclusion is presented in section 5.  

2   Past/Current Works

Past work on event correlation can be categorized into several methodologies: rule-based,

model-based (deterministic v.s. stochastic), AI-based, and case-based  [GARD 96, LEWI

93].  The most commonly used methodology is the rule-based approach (e.g. “NetFACT”

from IBM [HOUK 95]) in which a set of rules are expressed using a rule-description lan-

guage.  These rules are used by an engine to automatically process the collected events.  In

model-based solutions [KATZ 95], each object that generates failure events is represented

as a set of active terminal objects each with  the corresponding probability of its failure.

These definitions are encupsulated in a more complete system model called the depen-

dency graph, where the dependency from one event to another with a corresponding prob-

ability is also defined.  The system requires detailed analysis of various objects that are

running in the distributed system as well as a complex computation of event dependencies.

In a neural network based solutions [WIET 97], the input and output pair has a fixed num-

ber of ports where training data sets need to be provided to program the correlator.  When

the number of input/output pairs changes, not only must the system be completely re-

trained, but a new internal programming architecture based on the new data sets also needs

to be generated. 

The shortcomings of the rule-based solutions’ are that it requires detailed understanding

of the network and needs a number of iterations to make the system function correctly. It

requires high maintenance as well. Whenever the target system has been re-configured, or

new event types have been created, the system of rules needs to be re-examined and re-

configured, which is non trivial.  The model-based approach requires extensive under-

standing of the system topology and functionality to set up the correlation system.  It has

the same weakness as the rule-based approach in that setup and re-configuration upon

changes in the system are non-trivial.  AI-based approaches, such as the use of neural net-

works have been proposed [WIET 97].  However, AI-based approaches have the draw-
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back of requiring a long training period before they can deliver any value where if the

input and output of the neural net changes, the system must be re-trained from scratch.

Traditional rule-based approaches can be combined with AI modules such as a neural net-

work pattern discovery system [GARD 98]. The Case-based approach tries to overcome

this limitation by making the system more adaptable to changes with less maintenance. It

achieves this by keeping track of various cases that occured in the past and matching them

with the current case. The problem is resolved by applying an appropriate solution from

the case library as opposed to creating specific rules or a specific AI module.  Adaptation

takes place when a new case is resolved and added into the case library (or knowledge

base). As in the case of an AI solution, this approach requires a fairly lengthy learning pro-

cess before it becomes usable.    Most systems use a knowledge base to enhance the corre-

lation process(see Figure 1). 

FIGURE 1. General Event Correlator Setup

The proposed GBF solution is flexible and scalable since it should adapt quickly to the

addition of new event types or configuration changes, and provide accurate solutions with-

out a requirement for excessive human intervention to re-configure/re-train the system.

This is discussed in detail in the next section. 

3   GBF Correlator

GBF is a general solution that can be applied to various types of data sets.  GBF can best

be applied to a scenario in which data (events) to be analyzed have the following charac-

teristics:

• large set is generated  
• strong correlations between most events
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• recurring

Having a larger set of data helps to identify trends within the data set. Strong correlation

between events helps identify groups of related events.  The events must be recurring

within the set of events collected to help identify the groups.

Given the above conditions, GBF correlation simplifies the correlation process by forming

subsets of events that minimize human intervention and are much easier to analyze.

Unlike model based systems, the events do not need to be associated with corresponding

“objects” that have complex computational requirements for event/dependency probabili-

ties.   Unlike case based systems, initial training with the GBF Correlator is minimized,

and the internal algorithm is unaffected by changes in the number of input/output pair.

The GBF correlator looks at  each event as a signal component where the number of event

types can grow without impacting the system.  Each event class is represented by a signal

component with a fixed frequency.  Once the events are collected for time period T,  they

are  analyzed and put through a GBF Correlator, which also accesses and customizes the

knowledge base.  The basic idea is presented in the next section.  The GBF algorithm is

described in detail in section 3.2. 

3.1  Basic Idea

With GBF Correlation, the event correlation process is devided into two layers where the

knowledge base can be used to supplement the correlation process. The information in the

knowledge base can be modified (add/remove) adaptively to better support the future cor-

relation process.  The first part is the GBF correlator which groups relevant events. The

second part is the event filter which works on finding the root event that generated the rest

of the events (assuming one main event generates various other events that are correlated

with the main event).  The administrator has an opportunity to examine grouped events

and make corrections if necessary to identify the correct root event. The main idea of the

GBF correlator is to help reduce the complexity of analyzing a huge set of events or data

generated from a large system by grouping them into smaller sets of correlated events.

Please see the following figure [Figure 2] that shows the event flow in a generalized dis-

tributed system architecture.

Events are collected from all the managed systems and logged into a file.  The file is read

into the GBF correlator to separate events into event group instances. Each group of
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events has a high probability of being “related” in that there is likely one core event

responsible for all the events gathered into the group.

Once the events are separated into groups, the events within the groups are analyzed to

deduce the core event.  If we assume that the events occured “in phase”, meaning that all

events collected in a group happened in sequence and that the core event happened first,

then the deduction becomes a simple process of selecting the event with the smallest time

stamp in the group.  If the collection of events are out of phase, meaning that the sequence

does not start with the core event, then the degree of phase shift needs to be found by

examining the event sequence within the group.  This process is done in the Final Event

Filter shown in Figure 2.  The details of the GBF architecture and algorithm are given in

the rest of this section.   

FIGURE 2. Event Flow Diagram

3.2  GBF Correlation Algorithm

The GBF Correlation algorithm consists of two key components.  The GBF Correlation

System and the Knowledge base.  We first describe the main GBF algorithm and then

explain how the data contained in the knowledge base can support the algorithm. 
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3.2.1 GBF Algorithm

We let each event type to be represented by an integer k. Let K be the total number of

defined event types in a particular distributed system of interest. Each event type is distin-

guished by its description and its origination point.  For each event type, we also define a

function of time t yk(t) that represents all event occurances of the given type.  We collect

events for time period Te, where it is assumed that yk(t) behaves in a periodic manner with

the minimum fundamental period of Te.  We define each event function to be:

(EQ 1)

where nk is the number of events of type k occurring during period Te (e.g. the frequency)

and .  Then we let the total event function to be the sum of  individual event

functions:

       (EQ 2)

The function  is an orthonormal function in which each unique frequency nk

forms the new basis function to represent the event function.  However, since the value of

nk is not unique to each event type k (e.g. event type 3 can have n3 = 23 and event type 15

can have n15 = 23) the number of basis functions forming the vector space for y(t) is less

than total number of event types K.  This will result in some loss of information when we

analyze the function in the frequency domain via the fourier transform (e.g. the frequency

spectrum will show amplitude but not necessarily indicate which event contributed to it).

However, the algorithm keeps track of this information so that it can be used to help aid

the grouping process. This is explained in detail later.  We now look at y(t) in the fre-

quency domain to help understand why looking at frequency of occurance of these events

may help us identify related events. The fourier transform of y(t) is analyzed to help

understand the gist of the GBF algorithm.  Fourier transform for complex exponential is

defined to be:

  (EQ 3)

Then the fourier transform of y(t) can be expressed as:

yk t( ) ejnkw0t=

w0 2π( ) Te⁄=

y t( ) ejnkw0 t

k 1=

K

∑=

yk t( ) ejnkw0t=

F ejw0t[ ] 2πδ w w0–( )=
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(EQ 4)

Figure 3 shows an example of the simple frequency spectrum plot of event function y(t)

where N = 8 and nk for each event type k = 1 to 8 are as follows: n1=12, n2 = 82, n3 = 41,

n4=48, n5=12,  n6=2300,  n7=8000, n8=27. 

 

FIGURE 3. Frequency spectrum of event function

As can be seen from the figure, the transform shows frequencies in which events occur.

The spectrum doesn’t show which events are contributing to the particular frequency

amplitude, but if the amplitude is scaled by factor of 1/2π, it will show how many events

share that particular frequency.  For example, from Figure 3, we see that two event types

have the same frequency at 12 events per Te, which happens to be E1 and E5.

Some events occur much more frequently than others.  This could be because the events

are generated on a periodic basis to respond to periodic queries (e.g., license expired for a

software), or the events are commonly generated by other events.  These events can be

noted and reported separately, and are filtered out from the GBF correlation process.  The

GBF algorithm focuses on low frequency events that are likely to be the main events of

interest.  The low pass filtering is shown as the dotted line in Figure 3.

Figure 4 shows the grouping process in which events that share the same base frequencies

are grouped.  In our example, E1 and E5 have the same frequency of 12, and therefore are

likely to be correlated.  It is assumed that either E1 generated E5 or E5 generated E1.  E4 is

F y t( )[ ] F= ejnkw0t

k 1=

K

∑ 2πδ w nkw
0

–( )
k 1=

K

∑=

ff
12  27  41  4812  27  41  48 8282 2300     80002300     8000

EE 11,E,E 55

EE 88 EE 33 EE 44 EE 22 EE 66 EE 77

YY (f)/2(f)/2ππ

22

1 1 
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an integer multiple of E1 and therefore grouped in with E1 and E5 to form the group

instance 1.  Similarly, E3 and E2 are grouped as group instance 2.

FIGURE 4. The Grouping Process

In summary, the GBF correlator works such that each event is examined and grouped

based on its number of occurences during time period Te. The event set (collection of

events generated for time period Te) is first examined such that the number of occurences

within the time period for each event type are counted (e.g. nk’s are identified).  After the

frequencies of all event types are counted, those with higher frequencies are filtered out

from the analysis.  This is done because high frequency events are more likely to be symp-

tomatic than causative. Low frequency events are removed from the analysis as well

because they are considered to be rare events. Rare events are easier to analyze on their

own since the number of occurances is small. However, both low frequency events and the

high frequency events are reported to the administrator for review. All the events with cor-

responding nk are put into event set.  With the example shown in Figure 3, the event set

can be represented as E = {E1,E2,E3,E4,E5,E6,E7,E8}. 

The algorithm starts working with the lowest frequency event. For example, in Figure 3,

E1 is the lowest frequency event. It goes through the rest of the event set to see if any

event contains nk such that nk is integer multiple of n1. Once the events are identified as

the integer multiples of the starting event currently under analysis (e.g. E1), the events are

grouped as discussed earlier.  This process is repeated until it reaches the highest fre-

quency events unless the pattern is recognized in the event correlation table in the knowl-

ff

12      27 12      27 41  4841  48 8282

Group Ins tance 1:  EGroup Ins tance 1:  E 11 --> E> E 55 --> E> E 44, E, E 44, E, E 44, E, E 44

Group Ins tance 2:  EGroup Ins tance 2:  E 33 --> E> E 22, E, E 22

YY (f)/2(f)/2ππ

22

1 1 

EE 11,E,E 55

EE 88 EE 33 EE 44 EE 22
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edge base (this is discussed in more detail in the next section).  The events in the group

instance are then removed from the original event set (shown in Figure 5). 

FIGURE 5. Event Set

The grouping process is repeated until there is a “small set” of unidentified events in the

event set.  In our earlier example, there were no events left after grouping, but in a real sit-

uation, there will be events that can not be grouped.   At the end of the GBF correlation

process, the events in the original event set are grouped into different group instances (see

Figure 6).

FIGURE 6. Unidentified Events

3.2.2 Out of Phase Event Set

The final event filter then examines the events in each group instance and tries to identify

the root cause. The default basic mechanism of the final event filter is to identify the low-

est frequency with the smallest time stamp to be the root cause. However, if the events are

collected out of phase, then the starting point of the sequence within the group must first

be identified.  This is illustrated in Figure 7.
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FIGURE 7. Event Files (a) In Phase (b) Out of Phase

In Figure 7, event sequence works such that event E1 triggers a series of other events (E1 -

> E5 -> E4, E4, E4, E4 ).   If the file starts with some event other than E1, then the seqence

is out of phase.  The algorithm first needs to find the start of the sequence.  The starting

event can be found by referencing the event correlation table in the knowledge base as dis-

cussed in the next section.  The lowest frequency events within the group instance become

the candidate for the starting event where timing correlation can be used to accurately

identify the starting event.

Another problem with an out of phase event file is that the complete sequence of events

may not be captured.  For example, the event file can miss the first initiating event and

stop before logging the complete sequence. 

Therefore, when examining the correlation, it can not be assumed that the frequency of the

related events occurs at an exact integer multiple.  The offset can be calculated by calcu-

lating how many events of the event under examination can occur during one “period” of

the root event currently under analysis.

Let event type r is the root event currently under analysis and the event type t is the event

under the multiplicity test.  If we use the complex exponential to represent the event func-

tions, Tt = Te/nt and Tr = Te/nr then,

# of events of type t occuring during Tr  (EQ 5)
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But , and therefore

# of events of type t occuring during Tr  (EQ 6)

Intuitively, it makes sense that the we allow the testing event to occur one cycle over the

exact sequence.   So, the offset ε used in our algorithm is defined to be:

(EQ 7)

Therefore, during the examining process, the GBF correlator will pick the lowest event

(the cause event) and look for events that have frequencies within integer multiples of the

cause event plus ε to form the group instances.   This means that the examinng process

looks at the inequality below for increasing m:

 (EQ 8)

substituting (7), we have

 (EQ 9)

Let

 (EQ 10)

 (EQ 11)

After rearranging, we get

 (EQ 12)

Substituting (10) and solving for nr, we have

 (EQ 13)

The figure below shows the plot of (13) with nr as a function of R and m where the ine-

qualitiy is replaced with an equality.

Tr Te⁄ 1 nr⁄=

nt nr⁄=

ε 2 n⋅ t nr⁄=

nt m nr⋅( )– ε≤

nt m nr⋅( )– 2 n⋅ t nr⁄≤

R nt nr⁄=

nt m nt R⁄( )⋅( )– 2 R⋅≤

nt 2R
2( ) R m–⁄≤

nr 2R( ) R m–⁄≤
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FIGURE 8. nr as a function of R and m

As the figure shows, the function diverges as the ratio  R increases.  When m = R, nt meets

the requirement of R resulting in left expression to be infinity, permitting the algorithm to

include nt as the group instance.  As evident from the figure as well as (12), when m = R-1

or R+1, the integer multiple is offset by 1.  In this case, we see that the following set of nt

will be included in the group instance:

 (EQ 14)

After substituting (10), we have

 (EQ 15)

(15) means that any nt that satisfies this condition is included as group instance.  In order

to make sure that for m = R-1 or m=R+1, above nt doesn’t get included in the goup

instance, we need to make sure that 

 (EQ 16)

nt 2 R
2⋅≤

nt nr
2

2⁄≥

nt nr
2

2⁄<
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As we increase Te, nr increases accordingly and therefore easy to satisfy condition (16).

Hence the algorithm is more accurate as we have larger data set with longer Te.  After sub-

stituting (10), (16) can be expressed as

 (EQ 17)

This shows that the algorithm is accurate as long as ratio R is small compared to the num-

ber of occurence of event r within Te.  Again, nr can be made large by increasing Te.

We can do similar analysis for m = R-2 or m=R+2. The end results that are comparible to

(16) and (17) are:

 (EQ 18)

and

 (EQ 19)

Above shows the requirement in which nt is not included in the group instance for m=R-2

or m=R+2.  As you can see the requirement is bit relaxed compared to the requirement for

the condition to not include nt for m=R-1 or m=R+1.  The requirements are cumilative in

that requirement for R-2 is included in the requirement of R-1 and the requirement for R-3

is included in the requirement of R-2 etc.  Therefore, the requirement to not include event

which has the integer multiples of  m=R-1 covers all of other integer multiples that are not

R.

Once the group instances and the probable cause event are identified (by GBF Correlator

and Final Event Filter), the results are presented to the system administrator for furthur

analysis. The administrator has an option to examine the entire events in the group

instance for verification purposes and make appropriate changes to the presented data (e.g.

change the cause event to something else that makes more sense or redefine group

instances).  The corrected information is then registered with the event correlation table  in

the knowledge base for future references.  The use of event correlation table in the knowl-

edge base is discuessed in the next section.

R nr 2⁄<

nt nr
2<

R nr<
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3.2.3 Event Classifications

In this section various event types and the corresponding effectiveness of the GBF Corre-

lator are discussed.  Simulation results for each event type are discussed in section 4.  We

define three different event class:  

•Completely Independent Event Sequences
•Shared Event Sequences
•Uncorrelated Independent Events

We first define the event group for a particular event set E.  The event group consists of a

collection of events that make the group instances (i.e. Event Sequences) for a particular

event set E.  We denote each group event to be Sm  where M is the total number

of group instances found in event set E.  For example, if the first group instance is {E1, E5,

E4, E4, E4, E4}, then the corresponding event group S1 = {E1, E5, E4}. The complete event

group S = {S1, S2, .... SM} and the complete event set in terms of event group is:

 E =   

If we let event group Sm to be denoted by event index i:

Ia = {  :   }       

and assuming that event set E contains events occuring “in Phase”, then the terminology

can be used to define the above event classes.

Completely Independent Event Sequences

Completely Independent Event Sequences meet the following conditions:

1)     for               

2)              for             

3)             for           

For example, if S={S1, S2} (e.g. only two event group) and if we have the following event

sequences:

Sequence 1:  E1 -> E2 -> E3

Sequence 2:  E4 -> E5

m 1 M,∈

Si

i M∈
∪

i M∈ Ei Sa∈ a 1 M,[ ]∈

ni knj= k I∈ i Ia∈ j Ib∈ a b= a b, S∈

ni knj≠ k I∈ i Ia∈ j Ib∈ a b≠ a b, S∈

Ia Ib∩ ∅{ }= a b≠ a b, S∈
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then we see that Is1 = {1, 2, 3} and Is2 = {4, 5} are mutually exclusive meeting the  third

condition: 

Shared Event Sequences

Shared Event Sequences inherit the condition 1 and 2 given for the completely indepen-

dent sequences for all the non shared events.  The set of indexes for the Shared events can

be defined as:

     

Where .  For example, if S={S1, S2} (e.g. only two event groups) and if we

have the following event sequences:

Sequence 1:  E1 -> E2 -> E3

Sequence 2:  E4 -> E2 -> E5

then we see that Is1 = {1, 2, 3} and Is2 = {4, 2, 5} has the shared event E2 and therefore,

.

Uncorrelated Independent Events

Uncorrelated ramdom events have a set of events such that events do not occur in patterns

with respect to other events.  Such events are generated independently of other events and

are therefore completely uncorrelated.

GBF Correlator works best with completely independent event sequences.  For the shared

event sequence, the GBF Correlator can currently identify group instances except for the

shared events.  However, with trend analysis and feedback, this can be worked on.  GBF

Correlator can not be applied to Uncorrelated Independent Events.  This grouping will not

make any sense in this case. 

3.2.4 Knowledge Base Data Representation

The knowledge base assumed in this report is a very simple set of data.  All the data in the

knowledge base is kept in a disk file.  The table is called an event correlation table. It con-

tains possible group instances, corresponding core event(s), and the probability of each

group instance occuring based on the past occurences.  The following figure will clarify

Is1 Is2∩ ∅{ }=

Ish Ia Ib∩( )
a b≠
∪= a b, S∈

Ish ∅{ }≠

Ish I= s1 Is2∩ 2{ }=
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the table structure.  The table consists of possible group instances with their core event(s)

and their probabilities of occurence.

FIGURE 9. Event Correlation Table in the Knowledge Base

The event correlation table is created when the GBF algorithm goes through the grouping

process. The group instances in the event correlation table are referenced to help identify

group instances in the event set during the grouping process as well. During the grouping

process, the initial group members are sent to the knowledge base in order to search for the

pattern. When the pattern is recognized, the events composing the event group are sub-

tracted from the event set.  The detailed algorithm of the pattern matching is beyond the

scope of this report and is therefore not discussed.

4   Simulation

This section discusses some simulation results.  The simulation uses an event set file cor-

responding to the three event classes described in the previous section: independently

sequenced events, shared sequenced events, and uncorrelated independent events. The

purpose of the simulator is to show how the GBF Correlator can support the grouping of

events to help analyze large event sets.  The GBF Correlator system is written completely

in Java, where sample points have been manually created for each event class.  The basic

algorithm is shown below:

E1
E5
E4
E4
E4
E4

E1

P(grp 1)

Group 1 Group 2                    Group 3                      Group 4                                        Group N

Event Correlation Table

E2
E3

E2

P(grp 2)

E8
E10
E12
E12
E33

E8

P(grp 3)

E9
E5
E17
E17
E28
E29

E9

P(grp 4)

E18
E20
E21
E22
E38

E18

P(grp N)
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for (int i = 1; i <= K; i++) {

let i be the first group instance member

for (int j = i+1; j <= K; j++) {

for (int k = 1; m < maxMultiple; m++) {

if ( abs(nj - m*ni) <= 2*(nj/ni) ) {

add j into group instance

}

}

}

proceed to the next group instance

}

where events are ordered such that lowest events has the smaller event id (e.g. i for ni). K

is the total event types and maxMultiple is the maximum integer multiple we will be inter-

ested in relating various events.  maxMultiple has been set to 10 in this simulation.

Completely Independent Event Sequences

For the completely independent Event Sequences, the event file was created with the fol-

lowing event sequences:

Sequence 1:  E1 -> E2 -> E3

Sequence 2:  E4 -> E5

Sequence 3:   E8

The event file was also out of phase such that sequence 1 started with event 2. and as can

be seen from the output, E1, E2, and E3 are not exact integer multiples of each other.

However, the algorithm accounted for the offset e based on the proposed calculations dis-

cussed in section 3, and therefore was able to identify the event sequence in the form of a

group instance.

event 1 occurred 138 times

event 2 occurred 280 times

event 3 occurred 280 times

event 4 occurred 364 times

event 5 occurred 364 times

event 8 occurred 112 times

event 9 occurred 1 times
 

   Group Instance 1 = E1, E2, E3
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   Group Instance 2 = E4, E5

Group Instance 3 = E8

Shared Event Sequences

In this event file, the event sequences were made such that E2 was an event shared by

event sequence 1 and event sequence 2 as shown below:

Sequence 1:  E1 -> E2 -> E3

Sequence 2:  E4 -> E2 -> E5

   event 1 occurred 275 times

event 2 occurred 1265 times

event 3 occurred 715 times

event 4 occurred 715 times
 

   Group Instance 1 = E1, E3

Group Instance 2 = E2

   Group Instance 3 = E4, E5

The GBF Correlator can find the non-shared events within the sequence.  However, the

shared-event E2 is recognized as an independent Group Instance.  It is highly likely that

the shared events are not that helpful in determining the cause event and therefore can be

eliminated from the analysis anyways.

Uncorrelated Independent Events

In this simulation, events are generated from a pseudo number generator where all events

are uniformly distributed.  

event 1 occurred 244 times

event 2 occurred 255 times

event 3 occurred 236 times

event 4 occurred 224 times

event 5 occurred 248 times

event 8 occurred 231 times

event 9 occurred 238 times
 

   Group Instance 1 = E1

   Group Instance 2 = E2

Group Instance 3 = E3, E9
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Group Instance 4 = E4

Group Instance 5 = E5

Group Instance 6 = E8

As you see from the results, the frequencies are very close across all the events.  This is

because the occurrences are uniformly distributed.  This is not a realistic scenario, how-

ever this can be viewed as the worst case scenario in which the frequencies for all events

are similar and therefore really test the robustness of GBF Correlator. As the results show

the GBF Correlator recognizes that the events are independent.  Though it is not perfect

and we see E3 and E9 are both grouped together as group instance 3.  However, examining

the event file and looking at its sequence, it will become evident that the E3 and E9 are

uncorrelated.

5   Summary  and Conclusion 

In this report, we have proposed an algorithm that will make an analyses of large sets of

data more manageable.  GBF Correlator takes in a large set of events and groups them into

group instances based on the number of occurrence for each event type (event frequen-

cies).  When events are correlated, it is highly likely that the correlation trend will  be evi-

dent in their event frequencies.  Reducing events or messages into smaller subsets makes it

easier to do analysis and manage events. The final event filter is responsible for examining

the group instances and determining the cause event.  Correlation in the time domain can

be used to make sense of the events.  The GBF Correlator works best on large numbers of

events where events are highly correlated and recurring.  Simulation results show that

GBF Correlator can work best on Completely Independent Event Sequences.  Currently,

GBF Corrlator is unable to map shared-events into each of its group instances. However,

with further analysis this can be accomodated as well.  GBF Correlator is easy to imple-

ment and incorporate into existing systems.  Compared with other proposed approaches, it

requires minimal learning and minimal maintenance.  Though the simulation results show

the robustness of GBF Correlator in terms of separating independent events and recogniz-

ing the event sequences, with current basic implementation, the results may be inaccurate

in realistic systems where event sequences include shared events. However, with the intro-

duction of a knowledge base that gives reliable feedback to the algorithm and some analy-

sis on the timing of the event occurrences, the GBF Correlator can be made to provide an

accurate analysis of the event sets.  
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