[

Implementing Content Negotiation using CC/PP and
WAP UAProf

Mark H. Butler

Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2001-190

August 7t 2001*

E-mail: marbut@hplb.hpl.hp.com

device Content negotiation is a technique relevant to device
independence, independence that allows servers to provide clients with
content the most appropriate resource from a number of
negotiation, alternates. Several standards have been proposed for
composite content negotiation including HTTP/1.1 server based
capabilities / content negotiation, media feature sets and most recently
preferences the Composite Capabilities / Preferences Profile (CC/PP).
profile, CC/PP, unlike the other two methods, is only concerned
CC/PP, with the client profile and does not specify mechanisms for
resource describing alternate versions of content or matching client
description profiles to content descriptions. In order to better
framework, understand how CC/PP may be used this report describes
RDF, jena, an implementation of HTTP/1.1-style content negotiation
WAP, wireless that uses CC/PP client profiles and RDF content
access descriptions. The Jena RDF Framework developed at HP
protocol Labs is used to implement a negotiation algorithm similar
forum, user to that used by Apache Web Server. As CC/PP is
agent profile, compatible with the forthcoming Wireless Access Protocol
UAProf (WAP) User Agent Profile (UAProf) these techniques are

* Internal Accession Date Only

applicable to the next generation of WAP devices. This is
demonstrated using an example profile taken from the
current WAP Forum documentation.

Approved for External Publication

o) Copyright Hewlett-Packard Company 2001

1 Introduction

Content negotiation dlows servers to provide a client with the most appropriate
reource from a number of dternates and is a useful technique for device
independence. Specificdly the chief difference between device independence' and
web accessibility is that accessibility guideines® require that al non-textua content
has a text dternate whereas device independence may require multiple aternates. For
exanple we might require different Szed versons of the same image in different
formats for a PC and WAP phone.

Several sandards have been proposed for content negotiation including HTTP/1.1
server based content negotiatior®, media festure sets’, user agent string detectior? and
Composite Capabilities / Preferences Profile (CC/PP)°. CC/PP, unlike server based
content negotiation or media feature sets, is only concerned with the client profile and
does not specify mechanisms for describing dternate versons of content or matching
client profiles to content descriptions. CC/PP is designed to be compatible with the
Wireless Access Protocol (WAP) Forum’ standard User Agent Profile (UAProf). This
defines the device profile that will be used in the second generation of WAP devices.

In order to better understand how CC/PP may be used this report describes an
implementation of HTTP/L.1-style content negotiation that uses CC/PP client profiles.
As CC/PP is based on the W3C Resource Description Framework (RDF)® it was
decided to use RDF to describe dternate versons of content. The Jena RDF
Framework® developed by Brian McBride a HP Labs Bristol has been used to
implement a negotiation agorithm derived from the one in the Apache Web Server'.
The implementation can be configured to use different CC/PP vocabularies via an
externd XML file so that it can process UAProf profiles. This is demondrated using
an example profile from the current WAP Forum Working Draft specification on
UAProf'!. The implementation of the negotiation agorithm, written in Java, is
available from the external HP Labs website'® under an open source license'®.

2 An overview of HTTP/1.1 Content Negotiation

The HTTP/L1 specificatio’ describes server based content negotiation. This
particular type of content negotiation tries to match resources to a client based on
collections of attributes. For example a resource in the JPEG file format is only sent to
the dlient if it is cgpable of displaying JPEGs. This matching process requires the
attribute of the client to exactly match the corresponding attribute on the resource or a
wildcard attribute of the client to match the corresponding attribute on the resource.

In addition, it is posshble to specify preferences for atributes of a specific vaue in the
client profile as well as preferences for specific variants of a resource i.e. that a client
prefers French documents to English documents or a GIF image resource is preferred
over an ASCIl at image resource. The dlient profile can dso specify the maximum
gze of a resource with a specific atribute that the client is willing to accept. For
example this means that a client can specify it will not accept JPEG files over a
cetan maximum Sze. Where multiple resources are acceptable to a dient, the
negotiation agorithm multiplies the preference vaues together in order to determine
an overdl preference for each resource and then picks the resource with the highest
vaue. Subsequent sections will describe the format of these client and resource

profiles dong with a more forma description of the negotiation agorithm in pseudo-
code.

3 HTTP/1.1 Accept Header Fields

When a client tries to retrieve a resource from a web server using HTTP, it sends a
request to the server. This request contains some information known as an Accept
header. Currently HTTP/1.1 uses four Accept header fields to describe the capabilities
and preferences of the client: Accept, Accept-Charset, Accept-Encoding and
Accept - Language. The Accept field describes which MIME* types are accepted by
a browser. MIME is an acronym for Multipurpose Internet Mail Extensons, a
standard defined by the Internet Engineering Task Force (IETF)*,'® and controlled by
the Internet Assigned Numbers Authority (IANA)Y. The other Accept header fidds
describe preference for character set, encoding and language respectively. Here are
two examples of the Accept header fields produced by different browsers:

Internet Explorer 5.0

Accept: image/gif, inmagel/x-xbitmap, imagel/jpeg, inmagel/pjpey,
appl i cation/vnd. ns- power poi nt, application/vnd. ns-excel
application/ nsword, */*

Accept - Language: en-gb

Accept - Encodi ng: gzip, deflate

Netscape Navigator 4.73

Accept: image/gif, imagel/x-xbitmap, image/jpeg, inmagel/pjpeyg,
i mge/ png, */*

Accept - Encodi ng: gzip

Accept - Language: en

Accept - Charset: is0-8859-1,*,utf-8

Although it does not directly affect the implementation presented here, it is important
to note that neither of these browsers correctly obeys the HTTP/1.1 content
negotiation standard. They both use wildcards to specify their Accept preferences and
there are severd MIME types missng, such as text/html and text/plain.
Unfortunately this means that it is not possble for servers to perform server-based
content negotiation. One possble explanaion for this is that the companies producing
the browsers are concerned about the size of the Accept headers required to fully
implement server based content negotiation. If the browser liged dl the MIME types
it could interpret in the header, the Accept header would be very big. This could be an
issue because an Accept header is sent as part of every request for a resource made by
a client. Therefore browsers use wildcards in order to reduce the size of their Accept
headers.

Under HTTP/1.1, browsers can use two additiona parameters for content regotiation
purposes. g and mxb. g represents the quality factor between 0 and 1. If omitted, 1 is
assumed. This indicates the desrability of various posshle dternative versons of an
object. For example

Accept - Language: fr; q=1.0, en; g=0.5

indicates that French resources are preferred to English resources. nxb is the
maximum sSize in bytes of a resource that is acceptable by the browser or the user.
This can dso be associated with different types in a Smilar way to the previous
parameter. For example

Accept: image/jpeg; mxb=5000, text/htnl

indicates that browser only wants JPEG images smdler than 5000 bytes.

4 Representing Header Fields In CC/PP

It is beyond the scope of this report to provide an introduction to CC/PP so readers are
referred to the CC/PP specification® and the RDF specification'®. Instead this section
will describe the design decisons involved in cregting a CC/PP vocabulary that can
express HTTP/1.1 Accept headers. In essence CC/PP profiles consst of severd
sections known as components describing client attributes. The names and meaning of
these components and attributes are dependent on the particular CC/PP vocabulary in
use. For example the vocabulary for PCs currently described in the CC/PP
specification is different to the vocabulary for WAP devices described in the UAPYof
gpecification. On a PC, typicd components could be HardwareProfile,
Sof twar eProfile and Termi nal Browser whereas on a WAP phone they will be
Har dwar ePl at f orm Sof t war ePl at form, Browser UA, WAPChar acteristics,
Net wor kChar acteristics and PushCharacteristics. UAProf includes the
dtributes CcppAccept, CcppAccept-Language, CcppAccept-Charset and
CcppAccept - Encodi ng that correspond to the fidds in a HTTP request header.
Attributes are located in specific components, so for example CcppAccept is located
in Browser UA. The implementation described here provides support for different
vocabularies via an externd XML configuration file. This will be discussed in more
depth in alater section.

Secondly it was necessary to come up with a more complex way of grouping attribute
data than described in the examples in the CC/PP specification. CC/PP attribute data
comes in two types smple literal text vaues such as URI's, text, integer numbers and
rationd numbers or complex sets of values expressed using the RDF bag construct.
As Accept header attributes condst of a sat of vaues they are naturaly described
usng RDF bags. However in order to accurately mimic HTTP/1.1 content negotigtion
it is necessary to express preferences for different file types (q vaues) and maximum
resource sizes (b vaues). In CC/PP this can be done by making the Accept type, q
vaue and mxb value dl attributes of asingle anonymous node as shown in Figure 1.

httpneg#q

httpnegé#mxb
hitpneg#MIME

file:RDFAnanido1

()
imagesjpeg

Figurel - Usng Anonymous nodesin CC/PP

The UAProf specification does not alow anonymous nodes to be used in this way S0
it is not possble to express preferences for file types or maximum file szes in the
UAProf client profile. This is because dthough UAProf profiles are expressed in RDF
they do not utilize its full descriptive power; rather they are best thought of as
consgting of severd tables, each table corresponding to a component, each containing
a dgngle tier of ether atribute vaue pars or atribute vaue sats. The implementation
described here can detect whether anonymous nodes are being used to provide
complex grouping of attribute data and hence determine whether it is deding with an
extended CC/PP or UAProf profile. In order to better understand this, consider the
HTTP Accept header:

Accept: text/htm; q=1.0, text/plain; g=0.8, inmage/jpeg; g=0.6
Accept - Language: fr; g=1.0, en; g=0.5

This Accept header can be represented by the RDF graph shown in Figure 2 and
Fgure 3. All the graphs generated in this report have been generated using the W3C's
SIRPAC tool®®. The profile shown in Figure 2 uses the UAProf component scheme.
Each component is labelled usng an <rdf : t ype> attribute as described in the UAProf
and CC/PP specifications. The BrowserUA component is shown in more detall in
Figure 3. It contains two bags, one for the Accept field and the other for the Accept -
Language field. Specific object types are represented by anonymous nodes with
attributes as described above.

" i T
-~ jleﬁmf.-:er‘.l-’x) rokty - "'J:l::mf:ﬂ;h:ﬂ'.'.ﬁ
A uaproREomparen —_— \“‘——q____ﬂ—f'
ey
z/ _'-'—_"'_'_F‘--H_ ——
- —— - ———
/'J‘J __a-’“’ﬁ uaproffcnmporsnt _@;mwmﬁj refitype uaproEHardwamF latfonm _).
—— e B e — P
(ﬂp Heoorw.profiles l:-r\g.'_]umad:h'.-:m uaprofEnampore
—_— —— —_— — ik — —
e S ql___"T’- ﬁlerﬁu‘xmeﬁ-m--—w? uaprofSoitwareFlatiom >
e - uaproBEzomporsn 0 e -+
~, _\-\-‘_\-____ - ——
\\‘\x -u______h____ = W
- _\-_\.*H_,_F'_ _\-\'-\-‘-\. s ; '.o-"'__‘-'_ _\-____
H'"x_H uaproffcomporeni i fllel’l"-"'.'up':hala.:l-:u:llci> J -ﬂ"-—h-(____unprd%‘-fﬂ:ﬂ:hal:cttn:tl::_:_j
— — g o B =
e
—

Tl — i .-'-"_'__'—__\"_
£ ﬁl-rH'-tlanCImraﬂafts@—"W-—{ llzprMthhar&narmicD
e B T E

= =
—_——— —_—— ——

Figure2 - CC/PP Profile: use of components

file#image/jpeg
clt#specifier

rof# 3 file#text/plain
cl#specifier

file#RDF Anonlde3 i -

file#RDF Anonld23 Eirg

iprof#hletwork Characteristics rfg 2

- hiétspecifier
relfé 1 file#RDF Anonld16 e w{ fils#text/himi
file#RDF Anonld17

rdfitype clty

"0e"
i
rdf#type
file#RDF Anonld23
clt#y
rofé 2

clt#specifier
£ uaprofBrowserUA redf#_1 file#RDF Anonld34 w{ filsttan

il

clt##y "
clt#specifier

file#RDF Anonld27

uaprof#HardwarePlatform 0

fG

uaprof#SoftwarePlatform

i

Figure 3 - CC/PP Profile: representation of Accept headers
The XML seridisation of the profile shown in Figure 2 and Figure 3 isasfollows:

<rdf:RDF xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:ccpp="http://www.wapforum.org/profilesslUAPROF/ccppschema-20010426#"
xmins:clt="http://marks.profile.org/2001/05-clt#" >
<rdf:Description about="http://www.profiles.org/jornada1000" >
<ccpp:component>
<rdf:Description ID="BrowserUA" >
<rdf:type resource="http://www.wapforum.org/profiles/[UAPROF/ccppschema-20010426#BrowserUA"/>
<ccpp:CcppAccept>
<rdf:Bag>
<rdf:li rdf:parseType="Resource">
<clt:specifier>text/html </ clt:specifier>
<clt:g>1.0</clt:q>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<clt:specifie>text/plain</ clt:specifier>
<clt:q>0.8</clt:g>
</rdf:li>
<rdf:li rdf:parseType="Resource">
<clt:specifier>image/jpeg</ clt:specifier>
<clt:q>0.6</clt:g>
</rdf:li>
</rdf:Bag>
</ ccpp:CcppAccept>
<ccpp:CcppAccept-Language>
<rdf:Bag>
<rdf:li rdf:parseType="Resource">
<clt:specifier>fr</ clt:specifier>
<clt:g>1.0</clt:g>

</rdf:li>
<rdf:li rdf:parseType="Resource">
<clt:specifier>en</ clt:specifier>
<clt:g>0.5</clt:q>
</rdf:li>
</rdf:Bag>
</ ccpp:CcppAccept-Language>
</ rdf:Description>
</ ccpp:component>
<ccpp:component>
<rdf:Description ID="HardwarePlatform" >
<rdf:type resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010426#HardwarePlatform"/ >
</ rdf:Description>
</ ccpp:component>
<ccpp:component>
<rdf:Description ID="SoftwarePlatform" >
<rdf:type resource="http://www.wapforum.org/profilesslUAPROF/ccppschema-20010426#SoftwarePlatform" />
</ rdf:Description>
</ ccpp:component>
<ccpp:component>
<rdf:Description ID="NetworkCharacteristics"' >
<rdf:type resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010426#NetworkCharacteristics'/ >
</ rdf:Description>
</ ccpp:component>
<ccpp:component>
<rdf:Description ID="WapCharacteristics' >
<rdf:type resource="http://www.wapforum.org/profiles/lUAPROF/ccppschema-20010426#WapCharacteristics'/ >
</ rdf:Description>
</ ccpp:component>
<ccpp:component>
<rdf:Description ID="PushCharacteristics' >
<rdf:type resource="http://www.wapforum.org/profiles/lUAPROF/ccppschema-20010426#PushCharacteristics'/>
</ rdf:Description>
</ ccpp:component>
</rdf:Description>
</rdf:RDF>

5 Representing Variant Maps using RDF

The Apache Web Sever currently uses files cdled variant maps to describe
information about dternate variants. The variant mgp has an entry for each variant,
describing the content type and optiondly the content language, content encoding,
content character set, the source qudity and the file sze. In addition variant
preferences can be expressed using the source qudity parameter gs. This could be
used to identify a JPEG resource as being preferable to an ASCII art resource. For
example the variant map

URI: foo

URI: foo.jpeg
Content-type: image/jpeg; gs=0.8

URI: foo.gif
Content-type: image/gif; gs=0.5

URI: foo.txt
Content-type: text/plain; gs=0.01
Cont ent - Language: en

indicates that foo.jpeg is preferred to foo. gi f. Hence source qudity works in a
amilar way to the qudity factor in the device profile.

For the purposes of the implementation it was decided to represent the variant map in
RDF in order to amplify the negotiation process. The RDF graph for the variant map
condsts of a sngle bag that contains dl the variants. Each variant is described by an

anonymous node with associated properties in a smilar way to that used in the device
profile. Part of the RDF graphis shown in Figure 4.

file#image/jpeg
clt#specifier

fils#RDF Anonld63 ity -

" g

rdf# 3 file#text/plain
clt#specifier
It
file#RDF Anonld23 Bl = "05"
Characteristics rdftt 2
i

e i clt#specifier

file#ROF Anonld16 m=-{ file#ext/html

nonld17

rdffitype cli#g

rdffitype

rdf 2

nonld28
cli#g

wserlJA relfi_1 file#RDF Anonld34 clt#specifier _@
It
-arePlatform file##RDF Anonld27 clt#g w{ "1
clt#specifier

arePlatform

VAURY

Figure4 - Subgraph of RDF Representation of Variant Map
Thisisthe XML seridisation of variant map:

<rdf:RDF xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins:vrt="http://marks.profile.org/2001/05-vrt#"
xmins:ccpp="http://www.wapforum.org/profiles/lUAPROF/ccppschema-20010426#" >
<rdf:Description about="http://www.mywebsite.com/foo" >
<vrt:variantList>
<rdf:Bag>
<rdf:li rdf:parseType="Resource">
<vrt:contentLoc >http://www.mywebsite.com/foo.jpg</ vrt:contentLoc>
<ccpp:CcppAccept>image/jpeg</ ccpp:CcppAccept>
<vrt:qs>0.8</vrt:gs>
<vrt.variantSize>3000</ vrt:variantSize>
</ rdf:li>
<rdf:li rdf:parseType="Resource">
<vrt:contentLoc>http://www.mywebsite.com/foo.gif</ vrt:contentLoc>
<ccpp:CcppAccept>image/gif</ ccpp:CcppAccept>
<vrt:qs>0.5</ vrt:gs>
<vrt.variantSize>4000</ vrt:variantSize>
</ rdf:li>
<rdf:li rdf:parseType="Resource">
<vrt:contentLoc>http://www.mywebsite.com/foo.txt</ vrt:contentLoc>

<ccpp:CcppAccept>text/plain</ ccpp:CcppAccept>
<ccpp:CcppAccept-Language>en</ ccpp:CcppAccept-Language>
<vrt:qs>0.1</ vrt:qs>

</rdf:li>

<rdf:li rdf:parseType="Resource">
<vrt;contentLoc >http://www.mywebsite.com/foo.mpg</ vrt:contentLoc>
<ccpp:CcppAccept>application/mpeg</ ccpp:CcppAccept>
<ccpp:CcppAccept-Language>en</ ccpp:CcppAccept-Language>
<vrt:gs>0.4</ vrt:qs>
<vrt:variantSize>210000</ vrt:variantSize>

</ rdf:li>

</rdf:Bag>
</vrt:variantList>
</rdf:Description>
</rdf:RDF>

6 Negotiation

The negotiation dgorithm condss of three phases supplying default preference
vaues to the capability profile where necessary, supplying default preferences vaues
to the variant map where necessary and the actua negotiaion proper. The negotiation
is based directly on the agorithm used by the Apache Web Seaver with one
refinement: it is possble to specify which Accept fidds must be maiched (hard
condraints) and which will be matched if possble (soft condraints). For example if
the Accept field is a hard condraint i.e. if a device only accepts WML files then if the
saver has no gquitable dternate it will return nothing. The other fidds ae soft
condraints i.e. if a device requests French aternate then a server will return a French
dternate if one exids otherwise it will return a resource in any language. Attribute
fidds can easly be configured as hard or soft condraints via the external XML
vocabulary definition file. In order to better understand the negotiation agorithm, here
is a pseudo- code description:

default client profile
foreach attribute type
if the profile contains a bag for this attribute type
foreach node in the bag
if node is aliteral then
this is a UAProf profile, do nothing
else if node is a resource then
this is an extended CC/ PP profile
if node does not have quality factor property
add quality factor property with default val ue
end if
end if
next
end if
next

default variant map
foreach vari ant
if variant does not have source quality property
add source quality property with default val ue
end if
next

negotiate
add defaults to client profile
add defaults to variant nmap
for each vari ant
variant size =0
get the source quality property of the variant
if the variant has a size property
get the size property of the variant

10

end if
preference = mat chAxesOf Negoti ati on()
if preference is greater than hi ghest preference found so far
this variant becones preferred variant
end if
next

meatch axes of negotiation
clear collection of maxsize constraints
for each variant property
if the property is an attribute
if attribute is a hard constraint then
clientpref = 0 as must match this in profile
el se
clientpref = 1 as match not essentia
end if
if the profile contains a bag for this attribute
for each node in bag
clientpref = matchnode(node)
else if the profile contains a single value for this attribute
clientpref = matchnode(attributenode)

end if
pref = pref * clientpref
end if
next
if variantSize > any maxsize constraint
pref =0
end if
matchnode

if the node is a resource
this is an extended CC/ PP profile
if the node matches the variant attribute
client pref = quality property of node
if the node has an mxb property
add nxb to the naxsize collection

end if
end if
el se
this is a uaprof profile
if the node matches the variant attribute
clientpref =1
end if
end if

7 Configuring CC/PP Vocabularies

As noted previoudy, different CC/PP vocabularies use different component names
and different client atributes In order to smplify the process of adgpting the
negotigtion dgorithm to different vocabularies, it uses an XML configuration file
cdled vocab. xm shown below. The file contains component eements corresponding
to components and negaxis dements corresponding to attributes. The name negaxis
was chosen to avoid confuson with XML attributes. In the file both the component
name and attribute name are configured usng the name attribute of the appropriate
edement. The file dso indicaes if client atributes are sets (like CcppAccept) or Sngle
vaues (like Col or Capabl e) usng the accept bag attribute. Findly it is possble to
configure if the atribute is a hard condraint or a soft condraint usng the nust mat ch
dtribute. The accept bag and nust mat ch atributes both accept Boolean vaues. For
example hereisaconfiguration file for basc HTTP/1.1 content negotiation:

11

<?xml version="1.0" encoding="UTF8"?>
<ccppVocab>
<component name="BrowserUA" >
<negaxis name="CcppAccept" mustmatch="true" acceptbag="true"/>
<negaxis name="CcppAccept-Charset" mustmatch="false" acceptbag="true"/>
<negaxis name="CcppAccept-Language" mustmatch="false" acceptbag="true"/>
<negaxis name="CcppAccept-Encoding" mustmatch="false" acceptbag="true"/>
</component>
<component name="HardwarePlatform"/>
<component name="SoftwarePlatform" />
</ ccppVocab>

and thisisalonger configuration file suitable for a UAProf device:

<?xml version="1.0" encoding="UTF8"?>
<ccppVocab>
<component name="BrowserUA" >
<negaxis name="CcppAccept" mustmatch="true" acceptbag="true"/>
<negaxis name="CcppAccept-Charset' mustmatch="false" acceptbag="true"/>
<negaxis name="CcppAccept-Language" mustmatch="false" acceptbag="true"/>
<negaxis name="CcppAccept-Encoding" mustmatch="false" acceptbag="true"/>
<negaxis name="FramesCapable" mustmatch="true" acceptbag="false"/>
<negaxis name="TablesCapable" mustmatch="true" acceptbag="false"/>
</component>
<component name="HardwarePlatform" >
<negaxis name="ScreenSize" mustmatch="false" acceptbag=""false"/>
<negaxis name="ImageCapable" mustmatch="true" acceptbag="false"/>
<negaxis name="BitsPerPixel" mustmatch="false" acceptbag=""false"/>
<negaxis name="ColorCapable" mustmatch="true" acceptbag=""false"/>
</component>
<component name="SoftwarePlatform" />
<component name="NetworkCharacteristics"/>
<component name="WapCharacteristics"/>
<component name="PushCharacteristics'/>
</ ccppVocab>

8 Conclusions

This technica report has described an implementation of a content negotiation
agorithm based on HTTP/1.1 that works with CC/PP and UAProf. Credting this
implementation has been very indructive as there are currently no fredy available
exanples of dgorithms that process CC/PP profiles. This invedigaion has
highlighted a number of issues that will be discussed in this section.

8.1 Negotiation algorithms must be able to deal with
extensible vocabularies

The implementation described here has one big advantage over HTTP/1.1 content
negotiation: it is extendble For example HTTP/1.1 content negotiation is insufficient
for device independence as devices of different types (eg. PDAs and PCg might
accept the same MIME type but require different resources (eg. a PDA requires a
gndler image). In the implementation described here it is easy to add a new éttribute
usng the vocab.xm file (for example Deviced ass) with severd vaues (for
example HandHel d and PC) that can be used to sdect the appropriate variant of a
resource. Extenghility is a necessty for any negotiation dgorithm as it is likey that
there will never be a sngle CC/PP vocabulary for device independence particularly as
we dready have a legacy profile in the form of UAProf. Therefore negotiaion
agorithms must be able to cope with multiple vocabularies. One way to achieve this
isto use externd configuration files

12

8.2 Vocabularies must be well designed

Despite the likdihood of a proliferation of profile vocabularies, it is dedrable that
device manufacturers use a smal number of carefully desgned and standardized
vocabularies. Furthermore these vocabularies need to be aufficiently flexible to
represent not just the device capabilities but dso user preferences. Therefore it is
proposed that there is a need for more work both on vocabularies and on profile
processing in order to come up with some guiddines for vocabulary creators. For
example the negotiation agorithm implemented here is farly smple but it was not
possble to implement the full negotigtion adgorithm usng the UAProf vocabulary.
This was because dl attributes in a UAProf profile, whether smple or complex, can
only have a sngle item of associated data This mekes it difficult to pecify
preferences as this requires the attribute vaue and its associated preference vaue
There are ways in UAProf of associating more than a sngle vaue with an atribute:
for example in UAProf the aitribute ScreenSi zeChar USes x as a Separator between
two parameters e.g.

<prf:ScreenSi zeChar >15x6</ prf: ScreenSi zeChar >

however such agpproaches mean tha the profile is no longer truly XML readable as
non-XML separators are used.

8.3 More complex matching algorithms may be necessary

One problem with negotiation agorithms based on HTTP/11 is that the matching
process is too smpligic. Firdly in the current framework dthough devices can have
multiple vaues for attributes in profiles, resources cannot have multiple vaues for
atributes in variant maps. This could cause problems for example a resource might
be viewable by devices where the Accept Language dtribute is either EN- US or EN- GB
as both devices are specifying a preference for English documents. Secondly more
flexible methods of matching then smple equdity is needed. The IETF media feature
st method of content negotiation used relational operators such as less than, greater
than, less than or equals etc. 0 that resources can specify the condraints that are
necessary for a resource to be displayed. For example a resource might require a
device with a screen bigger than 640 pixds in width in order to display a particular
image.

8.4 More complex ways of grouping attributes may be
necessary

The IETF proposd dso dlows dient attributes to be described in a more complex
way than the agorithm described here. For example it is possble to express that
certain attributes of a device may be associated with certain media types or certain
modes eg. a device might be able view streamed video resources up to 640 x 480
pixes in size and JPEG images up to 1024 x 768 pixels in sze. In media feature sts,
capabilities like this are expressed by linking attributes usng ANDs and ORs. Early
working drafts of the CC/PP specification described how this might be done in CC/PP
dthough recent versons of the specification do not contan such examples. This
additiond expressve power comes a a price though: client and resource profiles will
be longer and more complicated and the negotiation dgorithm may need to
manipulate the dructure of the profiles usng rules for smplifying Boolean logic in
order to perform matching. Further investigation of processng profiles is necessary to

13

understand how complex profiles need to be in order to support adaptation of content
to multiple devices.

8.5 Content authors will not write XML serialised RDF by
hand

Although usng RDF to represent the variant maps makes sense for the negotiation
dgorithm, RDF seridisations are much more verbose and cumbersome br the content
author to edit than the text variant maps used in Apache. This problem could be
resolved by cregting a tool that assists the user in the creation of these maps. Another
approach could be to use a different XML seridisation which isless verbose.

8.6 Support for legacy devices and software is needed to
speed up the adoption of CC/PP

Currently there are no devices or browsers available that support CC/PP, adthough the
next generation of WAP devices will support UAProf. This is a barrier to the ytake
of CC/PP as there is no point in adding support for it to servers until a sufficient
number of devices support it. One way round this is to develop a CC/PP repository
that contains profiles for legacy devices and browsers, so that when a device does not
support CC/PP, the user agent diring is used to retrieve the corresponding profile from
the repostory. Such a scheme has limitations as it does not support user
persondisation as dl devices of the same type have the same profile. However such a
repository may be essentid in order to demongtrate the utility of CC/PP.

8.7 The negotiation algorithm does notimplement the entire
CC/PP specification

The implementation presented here is incomplete in severa ways. it does not support
the use of defaults in GC/PP profiles or the use of the CC/PP proxy vocabulary. Only
the negotiation dgorithm is implemented, not the CC/PP exchange protocol. Findly
the implementation only peforms the negotiation, it does not actudly retrieve any
content. These issues have been ignored because the focus of the implementation is
primarily to inform on the design of negotiation agorithms based on CC/PP rather
than provide a full working prototype. Once negotiation is wdl understood, the
intention isto rectify these omissons.

8.8 Content negotiationis notthe only way to process device
profiles

Findly it is important to note content negotiation is not the only way that CC/PP
profiles may be used to support device independence. Alternative approaches to
processing include meking profile attributes avaldble to XSLT dylesheets so the
dylesheets can adjust the trandform based on information in the profile A different
goproach would use profile attributes for media transcoding for example converting
images to a specific Sze and format on the fly for adevice.

9 Appendix A: Content Negotiation API

The implementation uses two public classes, CcppProfile and VariantMep, that are
both subclasses of ModedMem in Jena. CcppProfile is an APl for creating CC/PP
profiles whereas as VaiantMap is an APl for cregting variant maps and performing

14

negotations using a variant map. The public methods avalable in the classes ae
shown in the tables below. For more information, see the JavaDoc files.

CcppProfile

+ Public CcppProfile(String nanespace)

+ Public CcppProfil e(FileReader theFile)

+ Public boolean add(String attribute, String value, double q, int
nxb)

+ Public boolean add(String attribute, String value, double q)

+ Public boolean add(String attribute, String value, int nxb)

+ Public boolean add(String attribute, String val ue)

+ Public void defaul tPreference()

VariantMap

+ Public Variant Map(String mapNane)

+ Public void add(String resourceName, String[] neglist,
String[] type, double qgs, int variantsize)

Public void add(String resourceName, String[] neglist,
String[] type, double gs)

Public void add(String resourceName, String[] neglist,
String[] type, int variantsize)

Public void add(String resourceName, String[] neglist,
String[] type)

+ Public void defaultPreference()

+ Public void negotiate(CcppProfile theProfile)

—+

+

+

For example the following Java code will creste a CC/PP profile:

CcppProfile nyprof = new CcppProfile("http://ww:. profiles.org/jornadalO00");
nyprof . add(" CcppAccept”, "text/htm", 1.0);

nyprof . add(" CcppAccept”, "text/plain", 0.8);

nmypr of . add(" CcppAccept - Language", "fr", 1.0);

nypr of . add(" CcppAccept - Language”, "en", 0.5);

Wheress the following Java code will cregte avariant map:

VariantMap variants = new Vari ant Map("http://ww. nywebsite. conifoo");

String[] firstType = {"inage/jpeg"};

String[] secondType = {"inage/gif"};

String[] thirdType = {"text/plain", "en"};

String[] fourthType = {"application/npeg", "en"};

String[] firstNeg = {"CcppAccept"};

String[] thirdNeg = {"CcppAccept"”, "CcppAccept-Language"};

variants. add("http://ww. mywebsite. con foo.jpeg", firstNeg,
firstType, 0.8, 3000);

vari ants. add("http://ww. nywebsite.com foo.gif", firstNeg
secondType, 0.5, 4000);

variants. add("http://ww. nywebsite.com foo.txt", thirdNeg
t hirdType, 0.1);

variants. add("http://ww. nywebsite. com foo. npg", thirdNeg
fourthType, 0.4, 210000);

In addition to the two classes CcppProfile and Vari ant Map, there is an additiond
helper class VocParse that provides vocabulary information. It supplies a number of
congtants that define some relevant namespaces and property names. It aso supplies a
number of methods for accessng the data Structure that is created when the XML
vocabulary file is parsed when the object is creasted. These methods can return the
number of components and atributes, accessor functions to get the names of the
components and attributes, as well as accessor functions to determine whether an

15

atribute is a hard condraint, a bag as wel as which component an attribute belongs

to.

10 Appendix B: Test Plan

A test harness was created in order to perform smple tests on the API. The test plan is
asfollows

1.

Create a CC/PP profile equivaent to the following Accept header:

Accept: text/htm; q=1.0, text/plain; g=0.8, inmage/gif; q=0.6
Accept - Language: fr; g=1.0, en; g=0.5

Then produce an XML seridisation of this profile, export it to SRPAC and
vaidate the resulting RDF graph.
Create a CC/PP profile equivaent to the following Accept header:

Accept: text/htm; q=1.0, text/plain; gq=0.8; text/rtf; imageljpeg;
Accept - Language: fr; g=1.0, en; g=0.5, jp; kr;

Then gpply the default preferences method and produce an XML seridisation
of this profile, export it to SRPAC and validate the resulting RDF graph.
Create an RDF variant mgp equivaent to the following text file:

ht t p: / / ww. mywebsi t e. coni f 0o. j peg
Content-type: inage/jpeg; gs=0.8
Cont ent - si ze: 3000

http://ww. nywebsi te. coni foo. gif
Content-type: inage/gif; gqs=0.5
Cont ent -si ze: 4000

htt p: // ww. mywebsi t e. coni f 0o. t xt
Content-type: text/plain; gs=0.1
Cont ent - | anguage: en

htt p: // www. mywebsi t e. con f 0o. npg
Content -type: application/ npeg; qgs=0.4
Cont ent - | anguage: en

Cont ent - si ze: 210000

Then produce an XML seridisation of this variant map, export it to SRPAC
and vdidate the resulting RDF graph.
Create a CC/PP profile equivaent to the following Accept header:

Accept: text/htm; g=1.0, text/plain; g=0.8, image/gif; g=0.86,
nxb=6000
Accept - Language: fr; g=1.0, en; g=0.5

and a variant map as described in test 3. Perform a negotiation and verify that
thef oo. gi f variant is selected.
Creste a CC/PP profile equivaent to the following Accept header:

Accept: text/htm; q=1.0, text/plain; gq=0.8, image/*; g=0.6,
mxb=6000
Accept - Language: fr; g=1.0, en; g=0.5

16

and a \ariant map as described in test 3. Perform a negotiation and verify that
thef oo. j peg variant is sdected.

6. Load the example CC/PP profile described in'! and create the variant map
described in test 3. Perform a negotiaion and verify that the foo. gi f variant
is selected.

7. Cregte a CC/PP profile as described in test 1, but add an additionad single
vaue UAProf atribute caled BitsPerPixe with a vaue of 2. Then produce an
XML sidisttion of this profile, export it to SRPAC and vdidate the
resulting RDF graph.

8. Create an RDF variant map equivaent to the following text file:

http: //vww. nywebsi te. coni f 0o. j peg
Content-type: inage/jpeg; gs=0.8
Cont ent -si ze: 3000

Col or Capabl e: No

http: // ww. mywebsi t e. coni f oo. gi f
Content-type: inage/gif; qs=0.5
Cont ent - si ze: 4000

Col or Capabl e: No

http://vww. nywebsi t e. cont f 0o. wonp
Content -type: inage/vnd. wap. wbnp; qs=0. 4
Cont ent -si ze: 2100

Col or Capabl e: No

Here Col or Capabl e means that the resource requires a device that matched
that Col or Capabl e attribute i.e. the GIF resource can only be displayed on a
device for which Col or Capabl e is yes. Then peform a negotiation using the
CCIPP profile described in'! and verify that the f oo. wbnp Variant is selected.

! Mark Butler, Current technologies for device independence, HPL-2001-83,
http://www.hpl.hp.com/techreports/2001/HPL -2001-83.htm

2 \W3C Web Accessibil ity Guidelines, http://www.w3c.org/WAI/

3 RFC 2616: HTTP 1.1 Content Negotiation, page 70-73, ftp://ftp.isi.edu/in-notes/rfc2616.txt

* RFC 2533: A Syntax for Describing Media Feature Sets, ftp://ftp.isi.edu/in-notes/rfc2533.txt

® Richard Blaylock, Browser Detection, http://hotwired.lycos.com/webmonkey/99/02/index2a.html

% Composite Capabilities/ Preferences Profile Structure and Vocabularies, W3C,
http://www.w3.0rg/TR/CCPP-struct-vocab/

" Wireless Application Forum, http:/www.wapforum.org/

8 Resource Description Framework, http://www.w3.org/RDF/

® Jena RDF Framework, http:/ /www-uk.hpl .hp.com/people/bwmy/rdf/jenalindex.htm

10 Apache HTTP Server Content Negotiation, http://httpd.apache.org/docs/content-negotiation.html
1 WAP Forum WAG UAProf Draft Version 02-May-2001, WA P-248-UAPROF-20010502,
http://www.wapforum.org/

12 HTTPCCPP source code, http://www-uk.hpl.hp.com/people/marbut/httpccpp.zip

13 HTTPCCPP licence, http:/www-uk.hpl.hp.com/people/marbut/httpccpplicense.txt

14 Jeffery Dwight and Michael Erwin, Using MIME with CGl,
http://sunsite.net.edu.cn/tutorials/se_cgi/Cgi10fi.htm

15 |ETF RFC 1341, ftp:/ftp.isi.edu/in-notes/rfc1341.txt

18 |ETF RFC 1521, ftp://ftp.isi.edu/in-notes/rfc1521.txt

I7ANA Mime Type Registry, ftp:/ftp.isi.edu/in-notes/iana/assignments/media-types/media-types
18 Resource Description Framework Model and Syntax Specification, http://www.w3.0rg/TR/REC-rdif-
syntax/

19 SRPAC, http://www.w3.0rg/RDF/Implementations/ SIRPAC/

