

Implementing Content Negotiation using CC/PP and
WAP UAProf

Mark H. Butler
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2001-190
August 7th , 2001*

E-mail: marbut@hplb.hpl.hp.com

device
independence,
content
negotiation,
composite
capabilities /
preferences
profile,
CC/PP,
resource
description
framework,
RDF, jena,
WAP, wireless
access
protocol
forum, user
agent profile,
UAProf

Content negotiation is a technique relevant to device
independence that allows servers to provide clients with
the most appropriate resource from a number of
alternates. Several standards have been proposed for
content negotiation including HTTP/1.1 server based
content negotiation, media feature sets and most recently
the Composite Capabilities / Preferences Profile (CC/PP).
CC/PP, unlike the other two methods, is only concerned
with the client profile and does not specify mechanisms for
describing alternate versions of content or matching client
profiles to content descriptions. In order to better
understand how CC/PP may be used this report describes
an implementation of HTTP/1.1-style content negotiation
that uses CC/PP client profiles and RDF content
descriptions. The Jena RDF Framework developed at HP
Labs is used to implement a negotiation algorithm similar
to that used by Apache Web Server. As CC/PP is
compatible with the forthcoming Wireless Access Protocol
(WAP) User Agent Profile (UAProf) these techniques are
applicable to the next generation of WAP devices. This is
demonstrated using an example profile taken from the
current WAP Forum documentation.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

 2

1 Introduction
Content negotiation allows servers to provide a client with the most appropriate
resource from a number of alternates and is a useful technique for device
independence. Specifically the chief difference between device independence1 and
web accessibility is that accessibility guidelines2 require that all non-textual content
has a text alternate whereas device independence may require multiple alternates. For
example we might require different sized versions of the same image in different
formats for a PC and WAP phone.

Several standards have been proposed for content negotiation including HTTP/1.1
server based content negotiation3, media feature sets4, user agent string detection5 and
Composite Capabilities / Preferences Profile (CC/PP)6. CC/PP, unlike server based
content negotiation or media feature sets, is only concerned with the client profile and
does not specify mechanisms for describing alternate versions of content or matching
client profiles to content descriptions. CC/PP is designed to be compatible with the
Wireless Access Protocol (WAP) Forum7 standard User Agent Profile (UAProf). This
defines the device profile that will be used in the second generation of WAP devices.

In order to better understand how CC/PP may be used this report describes an
implementation of HTTP/1.1-style content negotiation that uses CC/PP client profiles.
As CC/PP is based on the W3C Resource Description Framework (RDF)8 it was
decided to use RDF to describe alternate versions of content. The Jena RDF
Framework9 developed by Brian McBride at HP Labs Bristol has been used to
implement a negotiation algorithm derived from the one in the Apache Web Server10.
The implementation can be configured to use different CC/PP vocabularies via an
external XML file so that it can process UAProf profiles. This is demonstrated using
an example profile from the current WAP Forum Working Draft specification on
UAProf11. The implementation of the negotiation algorithm, written in Java, is
available from the external HP Labs website12 under an open source license13.

2 An overview of HTTP/1.1 Content Negotiation
The HTTP/1.1 specification3 describes server based content negotiation. This
particular type of content negotiation tries to match resources to a client based on
collections of attributes. For example a resource in the JPEG file format is only sent to
the client if it is capable of displaying JPEGs. This matching process requires the
attribute of the client to exactly match the corresponding attribute on the resource or a
wildcard attribute of the client to match the corresponding attribute on the resource.

In addition, it is possible to specify preferences for attributes of a specific value in the
client profile as well as preferences for specific variants of a resource i.e. that a client
prefers French documents to English documents or a GIF image resource is preferred
over an ASCII art image resource. The client profile can also specify the maximum
size of a resource with a specific attribute that the client is willing to accept. For
example this means that a client can specify it will not accept JPEG files over a
certain maximum size. Where multiple resources are acceptable to a client, the
negotiation algorithm multiplies the preference values together in order to determine
an overall preference for each resource and then picks the resource with the highest
value. Subsequent sections will describe the format of these client and resource

 3

profiles along with a more formal description of the negotiation algorithm in pseudo-
code.

3 HTTP/1.1 Accept Header Fields
When a client tries to retrieve a resource from a web server using HTTP, it sends a
request to the server. This request contains some information known as an Accept
header. Currently HTTP/1.1 uses four Accept header fields to describe the capabilities
and preferences of the client: Accept, Accept-Charset, Accept-Encoding and
Accept-Language. The Accept field describes which MIME14 types are accepted by
a browser. MIME is an acronym for Multipurpose Internet Mail Extensions, a
standard defined by the Internet Engineering Task Force (IETF)15,16 and controlled by
the Internet Assigned Numbers Authority (IANA)17. The other Accept header fields
describe preference for character set, encoding and language respectively. Here are
two examples of the Accept header fields produced by different browsers:

Internet Explorer 5.0

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
application/vnd.ms-powerpoint, application/vnd.ms-excel,
application/msword, */*
Accept-Language: en-gb
Accept-Encoding: gzip, deflate

Netscape Navigator 4.73

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

Although it does not directly affect the implementation presented here, it is important
to note that neither of these browsers correctly obeys the HTTP/1.1 content
negotiation standard. They both use wildcards to specify their Accept preferences and
there are several MIME types missing, such as text/html and text/plain.
Unfortunately this means that it is not possible for servers to perform server-based
content negotiation. One possible explanation for this is that the companies producing
the browsers are concerned about the size of the Accept headers required to fully
implement server based content negotiation. If the browser listed all the MIME types
it could interpret in the header, the Accept header would be very big. This could be an
issue because an Accept header is sent as part of every request for a resource made by
a client. Therefore browsers use wildcards in order to reduce the size of their Accept
headers.

Under HTTP/1.1, browsers can use two additional parameters for content negotiation
purposes: q and mxb. q represents the quality factor between 0 and 1. If omitted, 1 is
assumed. This indicates the desirability of various possible alternative versions of an
object. For example

Accept-Language: fr; q=1.0, en; q=0.5

 4

indicates that French resources are preferred to English resources. mxb is the
maximum size in bytes of a resource that is acceptable by the browser or the user.
This can also be associated with different types in a similar way to the previous
parameter. For example

Accept: image/jpeg; mxb=5000, text/html

indicates that browser only wants JPEG images smaller than 5000 bytes.

4 Representing Header Fields In CC/PP
It is beyond the scope of this report to provide an introduction to CC/PP so readers are
referred to the CC/PP specification6 and the RDF specification18. Instead this section
will describe the design decisions involved in creating a CC/PP vocabulary that can
express HTTP/1.1 Accept headers. In essence CC/PP profiles consist of several
sections known as components describing client attributes. The names and meaning of
these components and attributes are dependent on the particular CC/PP vocabulary in
use. For example the vocabulary for PCs currently described in the CC/PP
specification is different to the vocabulary for WAP devices described in the UAProf
specification. On a PC, typical components could be HardwareProfile,
SoftwareProfile and TerminalBrowser whereas on a WAP phone they will be
HardwarePlatform, SoftwarePlatform, BrowserUA, WAPCharacteristics,
NetworkCharacteristics and PushCharacteristics. UAProf includes the
attributes CcppAccept, CcppAccept-Language, CcppAccept-Charset and
CcppAccept-Encoding that correspond to the fields in a HTTP request header.
Attributes are located in specific components, so for example CcppAccept is located
in BrowserUA. The implementation described here provides support for different
vocabularies via an external XML configuration file. This will be discussed in more
depth in a later section.

Secondly it was necessary to come up with a more complex way of grouping attribute
data than described in the examples in the CC/PP specification. CC/PP attribute data
comes in two types: simple literal text values such as URI’s, text, integer numbers and
rational numbers or complex sets of values expressed using the RDF bag construct.
As Accept header attributes consist of a set of values they are naturally described
using RDF bags. However in order to accurately mimic HTTP/1.1 content negotiation
it is necessary to express preferences for different file types (q values) and maximum
resource sizes (mxb values). In CC/PP this can be done by making the Accept type, q
value and mxb value all attributes of a single anonymous node as shown in Figure 1.

Figure 1 - Using Anonymous nodes in CC/PP

 5

The UAProf specification does not allow anonymous nodes to be used in this way so
it is not possible to express preferences for file types or maximum file sizes in the
UAProf client profile. This is because although UAProf profiles are expressed in RDF
they do not utilize its full descriptive power; rather they are best thought of as
consisting of several tables, each table corresponding to a component, each containing
a single tier of either attribute value pairs or attribute value sets. The implementation
described here can detect whether anonymous nodes are being used to provide
complex grouping of attribute data and hence determine whether it is dealing with an
extended CC/PP or UAProf profile. In order to better understand this, consider the
HTTP Accept header:

Accept: text/html; q=1.0, text/plain; q=0.8, image/jpeg; q=0.6
Accept-Language: fr; q=1.0, en; q=0.5

This Accept header can be represented by the RDF graph shown in Figure 2 and
Figure 3. All the graphs generated in this report have been generated using the W3C’s
SiRPAC tool19. The profile shown in Figure 2 uses the UAProf component scheme.
Each component is labelled using an <rdf:type> attribute as described in the UAProf
and CC/PP specifications. The BrowserUA component is shown in more detail in
Figure 3. It contains two bags, one for the Accept field and the other for the Accept-
Language field. Specific object types are represented by anonymous nodes with
attributes as described above.

Figure 2 - CC/PP Profile : use of components

 6

Figure 3 - CC/PP Profile : representation of Accept headers

The XML serialisation of the profile shown in Figure 2 and Figure 3 is as follows:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ccpp="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010426#"
 xmlns:clt="http://marks.profile.org/2001/05-clt#">
 <rdf:Description about="http://www.profiles.org/jornada1000">
 <ccpp:component>
 <rdf:Description ID="BrowserUA">
 <rdf:type resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010426#BrowserUA"/>
 <ccpp:CcppAccept>
 <rdf:Bag>
 <rdf:li rdf:parseType="Resource">
 <clt:specifier>text/html</ clt:specifier>
 <clt:q>1.0</ clt:q>
 </ rdf:li>
 <rdf:li rdf:parseType="Resource">
 <clt:specifier>text/plain</ clt:specifier>
 <clt:q>0.8</ clt:q>
 </ rdf:li>
 <rdf:li rdf:parseType="Resource">
 <clt:specifier>image/jpeg</ clt:specifier>
 <clt:q>0.6</ clt:q>
 </ rdf:li>
 </ rdf:Bag>
 </ ccpp:CcppAccept>
 <ccpp:CcppAccept-Language>
 <rdf:Bag>
 <rdf:li rdf:parseType="Resource">
 <clt:specifier>fr</ clt:specifier>
 <clt:q>1.0</ clt:q>

 7

 </ rdf:li>
 <rdf:li rdf:parseType="Resource">
 <clt:specifier>en</ clt:specifier>
 <clt:q>0.5</ clt:q>
 </ rdf:li>
 </ rdf:Bag>
 </ ccpp:CcppAccept-Language>
 </ rdf:Description>
 </ ccpp:component>
 <ccpp:component>
 <rdf:Description ID="HardwarePlatform">
<rdf:type resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010426#HardwarePlatform" / >
 </ rdf:Description>
 </ ccpp:component>
 <ccpp:component>
 <rdf:Description ID="SoftwarePlatform">
<rdf:type resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010426#SoftwarePlatform" / >
 </ rdf:Description>
 </ ccpp:component>
 <ccpp:component>
 <rdf:Description ID="NetworkCharacteristics">
<rdf:type resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010426#NetworkCharacteristics" / >
 </ rdf:Description>
 </ ccpp:component>
 <ccpp:component>
 <rdf:Description ID="WapCharacteristics">
<rdf:type resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010426#WapCharacteristics" / >
 </ rdf:Description>
 </ ccpp:component>
 <ccpp:component>
 <rdf:Description ID="PushCharacteristics">
<rdf:type resource="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010426#PushCharacteristics" / >
 </ rdf:Description>
 </ ccpp:component>
 </ rdf:Description>
</ rdf:RDF>

5 Representing Variant Maps using RDF
The Apache Web Server currently uses files called variant maps to describe
information about alternate variants. The variant map has an entry for each variant,
describing the content type and optionally the content language, content encoding,
content character set, the source quality and the file size. In addition variant
preferences can be expressed using the source quality parameter qs. This could be
used to identify a JPEG resource as being preferable to an ASCII art resource. For
example the variant map

URI: foo

URI: foo.jpeg
Content-type: image/jpeg; qs=0.8

URI: foo.gif
Content-type: image/gif; qs=0.5

URI: foo.txt
Content-type: text/plain; qs=0.01
Content-Language: en

indicates that foo.jpeg is preferred to foo.gif. Hence source quality works in a
similar way to the quality factor in the device profile.

For the purposes of the implementation it was decided to represent the variant map in
RDF in order to simplify the negotiation process. The RDF graph for the variant map
consists of a single bag that contains all the variants. Each variant is described by an

 8

anonymous node with associated properties in a similar way to that used in the device
profile. Part of the RDF graph is shown in Figure 4.

Figure 4 - Subgraph of RDF Representation of Variant Map

This is the XML serialisation of variant map:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:vrt="http://marks.profile.org/2001/05-vrt#"
xmlns:ccpp="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010426#">
 <rdf:Description about="http://www.mywebsite.com/foo">
 <vrt:variantList>
 <rdf:Bag>
 <rdf:li rdf:parseType="Resource">
 <vrt:contentLoc>http://www.mywebsite.com/foo.jpg</ vrt:contentLoc>
 <ccpp:CcppAccept>image/jpeg</ ccpp:CcppAccept>
 <vrt:qs>0.8</ vrt:qs>
 <vrt:variantSize>3000</ vrt:variantSize>
 </ rdf:li>
 <rdf:li rdf:parseType="Resource">
 <vrt:contentLoc>http://www.mywebsite.com/foo.gif</ vrt:contentLoc>
 <ccpp:CcppAccept>image/gif</ ccpp:CcppAccept>
 <vrt:qs>0.5</ vrt:qs>
 <vrt:variantSize>4000</ vrt:variantSize>
 </ rdf:li>
 <rdf:li rdf:parseType="Resource">
 <vrt:contentLoc>http://www.mywebsite.com/foo.txt</ vrt:contentLoc>

 9

 <ccpp:CcppAccept>text/plain</ ccpp:CcppAccept>
 <ccpp:CcppAccept-Language>en</ ccpp:CcppAccept-Language>
 <vrt:qs>0.1</ vrt:qs>
 </ rdf:li>
 <rdf:li rdf:parseType="Resource">
 <vrt:contentLoc>http://www.mywebsite.com/foo.mpg</ vrt:contentLoc>
 <ccpp:CcppAccept>application/mpeg</ ccpp:CcppAccept>
 <ccpp:CcppAccept-Language>en</ ccpp:CcppAccept-Language>
 <vrt:qs>0.4</ vrt:qs>
 <vrt:variantSize>210000</ vrt:variantSize>
 </ rdf:li>
 </ rdf:Bag>
 </ vrt:variantList>
 </ rdf:Description>
</ rdf:RDF>

6 Negotiation
The negotiation algorithm consists of three phases: supplying default preference
values to the capability profile where necessary, supplying default preferences values
to the variant map where necessary and the actual negotiation proper. The negotiation
is based directly on the algorithm used by the Apache Web Server with one
refinement: it is possible to specify which Accept fields must be matched (hard
constraints) and which will be matched if possible (soft constraints). For example if
the Accept field is a hard constraint i.e. if a device only accepts WML files then if the
server has no suitable alternate it will return nothing. The other fields are soft
constraints i.e. if a device requests French alternate then a server will return a French
alternate if one exists; otherwise it will return a resource in any language. Attribute
fields can easily be configured as hard or soft constraints via the external XML
vocabulary definition file. In order to better understand the negotiation algorithm, here
is a pseudo-code description:

default client profile
foreach attribute type
 if the profile contains a bag for this attribute type
 foreach node in the bag
 if node is a literal then
 this is a UAProf profile, do nothing
 else if node is a resource then
 this is an extended CC/PP profile
 if node does not have quality factor property
 add quality factor property with default value
 end if
 end if
 next
 end if
next

default variant map
foreach variant
 if variant does not have source quality property
 add source quality property with default value
 end if
next

negotiate
add defaults to client profile
add defaults to variant map
for each variant
 variant size = 0
 get the source quality property of the variant
 if the variant has a size property
 get the size property of the variant

 10

 end if
preference = matchAxesOfNegotiation()

 if preference is greater than highest preference found so far
 this variant becomes preferred variant
 end if
next

match axes of negotiation
clear collection of maxsize constraints
for each variant property
 if the property is an attribute
 if attribute is a hard constraint then
 clientpref = 0 as must match this in profile
 else
 clientpref = 1 as match not essential
 end if
 if the profile contains a bag for this attribute
 for each node in bag
 clientpref = matchnode(node)
 else if the profile contains a single value for this attribute
 clientpref = matchnode(attributenode)
 end if
 pref = pref * clientpref
 end if
next
if variantSize > any maxsize constraint
 pref = 0
end if

matchnode
if the node is a resource

this is an extended CC/PP profile
 if the node matches the variant attribute
 client pref = quality property of node
 if the node has an mxb property
 add mxb to the maxsize collection
 end if
 end if
else

this is a uaprof profile
if the node matches the variant attribute

 clientpref = 1
 end if
end if

7 Configuring CC/PP Vocabularies
As noted previously, different CC/PP vocabularies use different component names
and different client attributes. In order to simplify the process of adapting the
negotiation algorithm to different vocabularies, it uses an XML configuration file
called vocab.xml shown below. The file contains component elements corresponding
to components and negaxis elements corresponding to attributes. The name negaxis
was chosen to avoid confusion with XML attributes. In the file both the component
name and attribute name are configured using the name attribute of the appropriate
element. The file also indicates if client attributes are sets (like CcppAccept) or single
values (like ColorCapable) using the acceptbag attribute. Finally it is possible to
configure if the attribute is a hard constraint or a soft constraint using the mustmatch
attribute. The acceptbag and mustmatch attributes both accept Boolean values. For
example here is a configuration file for basic HTTP/1.1 content negotiation:

 11

<?xml version="1.0" encoding="UTF-8"?>
<ccppVocab>
 <component name="BrowserUA">
 <negaxis name="CcppAccept" mustmatch=" true" acceptbag=" true" / >
 <negaxis name="CcppAccept-Charset" mustmatch=" false" acceptbag=" true" / >
 <negaxis name="CcppAccept-Language" mustmatch=" false" acceptbag=" true" / >
 <negaxis name="CcppAccept-Encoding" mustmatch=" false" acceptbag=" true" / >
 </ component>
 <component name="HardwarePlatform" / >
 <component name="SoftwarePlatform" / >
</ ccppVocab>

and this is a longer configuration file suitable for a UAProf device:

<?xml version="1.0" encoding="UTF-8"?>
<ccppVocab>
 <component name="BrowserUA">
 <negaxis name="CcppAccept" mustmatch=" true" acceptbag=" true" / >
 <negaxis name="CcppAccept-Charset" mustmatch="false" acceptbag=" true" / >
 <negaxis name="CcppAccept-Language" mustmatch=" false" acceptbag=" true" / >
 <negaxis name="CcppAccept-Encoding" mustmatch=" false" acceptbag=" true" / >
 <negaxis name="FramesCapable" mustmatch=" true" acceptbag=" false" / >
 <negaxis name="TablesCapable" mustmatch=" true" acceptbag=" false" / >
 </ component>
 <component name="HardwarePlatform">
 <negaxis name="ScreenSize" mustmatch=" false" acceptbag=" false" / >
 <negaxis name=" ImageCapable" mustmatch=" true" acceptbag=" false" / >
 <negaxis name="BitsPerPixel" mustmatch=" false" acceptbag=" false" / >
 <negaxis name="ColorCapable" mustmatch=" true" acceptbag=" false" / >
 </ component>
 <component name="SoftwarePlatform" / >
 <component name="NetworkCharacteristics" / >
 <component name="WapCharacteristics" / >
 <component name="PushCharacteristics" / >
</ ccppVocab>

8 Conclusions
This technical report has described an implementation of a content negotiation
algorithm based on HTTP/1.1 that works with CC/PP and UAProf. Creating this
implementation has been very instructive as there are currently no freely available
examples of algorithms that process CC/PP profiles. This investigation has
highlighted a number of issues that will be discussed in this section.

8.1 Negotiation algorithms must be able to deal with
extensible vocabularies

The implementation described here has one big advantage over HTTP/1.1 content
negotiation: it is extensible. For example HTTP/1.1 content negotiation is insufficient
for device independence as devices of different types (e.g. PDAs and PCs) might
accept the same MIME type but require different resources (e.g. a PDA requires a
smaller image). In the implementation described here it is easy to add a new attribute
using the vocab.xml file (for example DeviceClass) with several values (for
example HandHeld and PC) that can be used to select the appropriate variant of a
resource. Extensibility is a necessity for any negotiation algorithm as it is likely that
there will never be a single CC/PP vocabulary for device independence particularly as
we already have a legacy profile in the form of UAProf. Therefore negotiation
algorithms must be able to cope with multiple vocabularies. One way to achieve this
is to use external configuration files.

 12

8.2 Vocabularies must be well designed
Despite the likelihood of a proliferation of profile vocabularies, it is desirable that
device manufacturers use a small number of carefully designed and standardized
vocabularies. Furthermore these vocabularies need to be sufficiently flexible to
represent not just the device capabilities but also user preferences. Therefore it is
proposed that there is a need for more work both on vocabularies and on profile
processing in order to come up with some guidelines for vocabulary creators. For
example the negotiation algorithm implemented here is fairly simple but it was not
possible to implement the full negotiation algorithm using the UAProf vocabulary.
This was because all attributes in a UAProf profile, whether simple or complex, can
only have a single item of associated data. This makes it difficult to specify
preferences as this requires the attribute value and its associated preference value.
There are ways in UAProf of associating more than a single value with an attribute:
for example in UAProf the attribute ScreenSizeChar uses x as a separator between
two parameters e.g.

<prf:ScreenSizeChar>15x6</prf:ScreenSizeChar>

however such approaches mean that the profile is no longer truly XML readable as
non-XML separators are used.

8.3 More complex matching algorithms may be necessary
One problem with negotiation algorithms based on HTTP/1.1 is that the matching
process is too simplistic. Firstly in the current framework although devices can have
multiple values for attributes in profiles, resources cannot have multiple values for
attributes in variant maps. This could cause problems: for example a resource might
be viewable by devices where the AcceptLanguage attribute is either EN-US or EN-GB
as both devices are specifying a preference for English documents. Secondly more
flexible methods of matching then simple equality is needed. The IETF media feature
set method of content negotiation used relational operators such as less than, greater
than, less than or equals etc. so that resources can specify the constraints that are
necessary for a resource to be displayed. For example a resource might require a
device with a screen bigger than 640 pixels in width in order to display a particular
image.

8.4 More complex ways of grouping attributes may be
necessary

The IETF proposal also allows client attributes to be described in a more complex
way than the algorithm described here. For example it is possible to express that
certain attributes of a device may be associated with certain media types or certain
modes e.g. a device might be able view streamed video resources up to 640 x 480
pixels in size and JPEG images up to 1024 x 768 pixels in size. In media feature sets,
capabilities like this are expressed by linking attributes using ANDs and ORs. Early
working drafts of the CC/PP specification described how this might be done in CC/PP
although recent versions of the specification do not contain such examples. This
additional expressive power comes at a price though: client and resource profiles will
be longer and more complicated and the negotiation algorithm may need to
manipulate the structure of the profiles using rules for simplifying Boolean logic in
order to perform matching. Further investigation of processing profiles is necessary to

 13

understand how complex profiles need to be in order to support adaptation of content
to multiple devices.

8.5 Content authors will not write XML serialised RDF by
hand

Although using RDF to represent the variant maps makes sense for the negotiation
algorithm, RDF serialisations are much more verbose and cumbersome for the content
author to edit than the text variant maps used in Apache. This problem could be
resolved by creating a tool that assists the user in the creation of these maps. Another
approach could be to use a different XML serialisation which is less verbose.

8.6 Support for legacy devices and software is needed to
speed up the adoption of CC/PP

Currently there are no devices or browsers available that support CC/PP, although the
next generation of WAP devices will support UAProf. This is a barrier to the uptake
of CC/PP as there is no point in adding support for it to servers until a sufficient
number of devices support it. One way round this is to develop a CC/PP repository
that contains profiles for legacy devices and browsers, so that when a device does not
support CC/PP, the user agent string is used to retrieve the corresponding profile from
the repository. Such a scheme has limitations as it does not support user
personalisation as all devices of the same type have the same profile. However such a
repository may be essential in order to demonstrate the utility of CC/PP.

8.7 The negotiation algorithm does not implement the entire
CC/PP specification

The implementation presented here is incomplete in several ways: it does not support
the use of defaults in CC/PP profiles or the use of the CC/PP proxy vocabulary. Only
the negotiation algorithm is implemented, not the CC/PP exchange protocol. Finally
the implementation only performs the negotiation, it does not actually retrieve any
content. These issues have been ignored because the focus of the implementation is
primarily to inform on the design of negotiation algorithms based on CC/PP rather
than provide a full working prototype. Once negotiation is well understood, the
intention is to rectify these omissions.

8.8 Content negotiation is not the only way to process device
profiles

Finally it is important to note content negotiation is not the only way that CC/PP
profiles may be used to support device independence. Alternative approaches to
processing include making profile attributes available to XSLT stylesheets so the
stylesheets can adjust the transform based on information in the profile. A different
approach would use profile attributes for media transcoding for example converting
images to a specific size and format on the fly for a device.

9 Appendix A: Content Negotiation API
The implementation uses two public classes, CcppProfile and VariantMap, that are
both subclasses of ModelMem in Jena. CcppProfile is an API for creating CC/PP
profiles whereas as VariantMap is an API for creating variant maps and performing

 14

negotations using a variant map. The public methods available in the classes are
shown in the tables below. For more information, see the JavaDoc files.

CcppProfile
+ Public CcppProfile(String namespace)
+ Public CcppProfile(FileReader theFile)
+ Public boolean add(String attribute, String value, double q, int
mxb)
+ Public boolean add(String attribute, String value, double q)
+ Public boolean add(String attribute, String value, int mxb)
+ Public boolean add(String attribute, String value)
+ Public void defaultPreference()

VariantMap
+ Public VariantMap(String mapName)
+ Public void add(String resourceName, String[] neglist,

String[] type, double qs, int variantsize)
+ Public void add(String resourceName, String[] neglist,

String[] type, double qs)
+ Public void add(String resourceName, String[] neglist,

String[] type, int variantsize)
+ Public void add(String resourceName, String[] neglist,

String[] type)
+ Public void defaultPreference()
+ Public void negotiate(CcppProfile theProfile)

For example the following Java code will create a CC/PP profile:

CcppProfile myprof = new CcppProfile("http://www.profiles.org/jornada1000");
myprof.add("CcppAccept", "text/html", 1.0);
myprof.add("CcppAccept", "text/plain", 0.8);
myprof.add("CcppAccept-Language", "fr", 1.0);
myprof.add("CcppAccept-Language", "en", 0.5);

Whereas the following Java code will create a variant map:

VariantMap variants = new VariantMap("http://www.mywebsite.com/foo");
String[] firstType = {"image/jpeg"};
String[] secondType = {"image/gif"};
String[] thirdType = {"text/plain", "en"};
String[] fourthType = {"application/mpeg", "en"};
String[] firstNeg = {"CcppAccept"};
String[] thirdNeg = {"CcppAccept", "CcppAccept-Language"};
variants.add("http://www.mywebsite.com/foo.jpeg", firstNeg,
 firstType, 0.8, 3000);
variants.add("http://www.mywebsite.com/foo.gif", firstNeg,
 secondType, 0.5, 4000);
variants.add("http://www.mywebsite.com/foo.txt", thirdNeg,
 thirdType, 0.1);
variants.add("http://www.mywebsite.com/foo.mpg", thirdNeg,
 fourthType, 0.4, 210000);

In addition to the two classes CcppProfile and VariantMap, there is an additional
helper class VocParse that provides vocabulary information. It supplies a number of
constants that define some relevant namespaces and property names. It also supplies a
number of methods for accessing the data structure that is created when the XML
vocabulary file is parsed when the object is created. These methods can return the
number of components and attributes, accessor functions to get the names of the
components and attributes, as well as accessor functions to determine whether an

 15

attribute is a hard constraint, a bag as well as which component an attribute belongs
to.

10 Appendix B: Test Plan
A test harness was created in order to perform simple tests on the API. The test plan is
as follows:

1. Create a CC/PP profile equivalent to the following Accept header:

Accept: text/html; q=1.0, text/plain; q=0.8, image/gif; q=0.6
Accept-Language: fr; q=1.0, en; q=0.5

Then produce an XML serialisation of this profile, export it to SiRPAC and
validate the resulting RDF graph.

2. Create a CC/PP profile equivalent to the following Accept header:

Accept: text/html; q=1.0, text/plain; q=0.8; text/rtf; image/jpeg;
Accept-Language: fr; q=1.0, en; q=0.5, jp; kr;

Then apply the default preferences method and produce an XML serialisation
of this profile, export it to SiRPAC and validate the resulting RDF graph.

3. Create an RDF variant map equivalent to the following text file:

http://www.mywebsite.com/foo.jpeg
Content-type: image/jpeg; qs=0.8
Content-size: 3000

http://www.mywebsite.com/foo.gif
Content-type: image/gif; qs=0.5
Content-size: 4000

http://www.mywebsite.com/foo.txt
Content-type: text/plain; qs=0.1
Content-language: en

http://www.mywebsite.com/foo.mpg
Content-type: application/mpeg; qs=0.4
Content-language: en
Content-size: 210000

Then produce an XML serialisation of this variant map, export it to SiRPAC
and validate the resulting RDF graph.

4. Create a CC/PP profile equivalent to the following Accept header:

Accept: text/html; q=1.0, text/plain; q=0.8, image/gif; q=0.6,

mxb=6000
Accept-Language: fr; q=1.0, en; q=0.5

and a variant map as described in test 3. Perform a negotiation and verify that
the foo.gif variant is selected.

5. Create a CC/PP profile equivalent to the following Accept header:

Accept: text/html; q=1.0, text/plain; q=0.8, image/*; q=0.6,

mxb=6000
Accept-Language: fr; q=1.0, en; q=0.5

 16

and a variant map as described in test 3. Perform a negotiation and verify that
the foo.jpeg variant is selected.

6. Load the example CC/PP profile described in11 and create the variant map
described in test 3. Perform a negotiation and verify that the foo.gif variant
is selected.

7. Create a CC/PP profile as described in test 1, but add an additional single
value UAProf attribute called BitsPerPixel with a value of 2. Then produce an
XML serialisation of this profile, export it to SiRPAC and validate the
resulting RDF graph.

8. Create an RDF variant map equivalent to the following text file:

http://www.mywebsite.com/foo.jpeg
Content-type: image/jpeg; qs=0.8
Content-size: 3000
ColorCapable: No

http://www.mywebsite.com/foo.gif
Content-type: image/gif; qs=0.5
Content-size: 4000
ColorCapable: No

http://www.mywebsite.com/foo.wbmp
Content-type: image/vnd.wap.wbmp; qs=0.4
Content-size: 2100
ColorCapable: No

Here ColorCapable means that the resource requires a device that matched
that ColorCapable attribute i.e. the GIF resource can only be displayed on a
device for which ColorCapable is yes. Then perform a negotiation using the
CC/PP profile described in11 and verify that the foo.wbmp variant is selected.

1 Mark Butler, Current technologies for device independence, HPL-2001-83,
http://www.hpl.hp.com/techreports/2001/HPL-2001-83.html
2 W3C Web Accessibility Guidelines, http://www.w3c.org/WAI/
3 RFC 2616: HTTP 1.1 Content Negotiation, page 70-73, ftp://ftp.isi.edu/in-notes/rfc2616.txt
4 RFC 2533: A Syntax for Describing Media Feature Sets, ftp://ftp.isi.edu/in-notes/rfc2533.txt
5 Richard Blaylock, Browser Detection, http://hotwired.lycos.com/webmonkey/99/02/index2a.html
6 Composite Capabilities / Preferences Profile Structure and Vocabularies, W3C,
http://www.w3.org/TR/CCPP-struct-vocab/
7 Wireless Application Forum, http://www.wapforum.org/
8 Resource Description Framework, http://www.w3.org/RDF/
9 Jena RDF Framework, http://www-uk.hpl.hp.com/people/bwm/rdf/jena/index.htm
10 Apache HTTP Server Content Negotiation, http://httpd.apache.org/docs/content-negotiation.html
11 WAP Forum WAG UAProf Draft Version 02-May-2001, WAP-248-UAPROF-20010502,
http://www.wapforum.org/
12 HTTPCCPP source code, http://www-uk.hpl.hp.com/people/marbut/httpccpp.zip
13 HTTPCCPP licence, http://www-uk.hpl.hp.com/people/marbut/httpccpplicense.txt
14 Jeffery Dwight and Michael Erwin, Using MIME with CGI,
http://sunsite.net.edu.cn/tutorials/se_cgi/Cgi10fi.htm
15 IETF RFC 1341, ftp://ftp.isi.edu/in-notes/rfc1341.txt
16 IETF RFC 1521, ftp://ftp.isi.edu/in-notes/rfc1521.txt
17 IANA Mime Type Registry, ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/media-types
18 Resource Description Framework Model and Syntax Specification, http://www.w3.org/TR/REC-rdf-
syntax/
19 SiRPAC, http://www.w3.org/RDF/Implementations/SiRPAC/

