

DiFFS: a Scalable Distributed File System

Christos Karamanolis, Mallik Mahalingam, Dan Muntz, Zheng Zhang
Computer System and Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-19
January 24th , 2001*

E-mail: {christos, mmallik, dmuntz, zzhang}@hpl.hp.com

distributed file
system, storage
management,
Storage Area
Network (SAN)

Industry analysts see no limits to the world's expanding
appetite for data-storage services. Emerging networking
technologies allow incremental scaling of bandwidth and
capacity of storage, which is attached to the network. A key
challenge is to devise the software that provides transparent
shared access to decentralized storage resources. Existing
network file systems will not meet the scalability requirements
of future storage services.

This paper introduces DiFFS, a distributed file system
designed for storage area networks. DiFFS achieves high
scalability by following a partitioning approach to sharing
storage resources. The architecture is robust against failures
and unfavorable access patterns. It is independent of the
physical file system(s) used for the placement of data; multiple
file systems can co-exist in a DiFFS system.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

DiFFS: a Scalable Distributed File System

Christos Karamanolis, Mallik Mahalingam, Dan Muntz, Zheng Zhang

Hewlett-Packard Labs
1501 Page Mill Rd, Palo Alto, CA 94304, USA

{christos,mmallik,dmuntz,zzhang}@hpl.hp.com

Abstract

Industry analysts see no limits to the world’s expanding
appetite for data-storage services. Emerging networking
technologies allow incremental scaling of bandwidth and
capacity of storage, which is attached to the network. A key
challenge is to devise the software that provides
transparent shared access to decentralized storage
resources. Existing network file systems will not meet the
scalability requirements of future storage services.

This paper introduces DiFFS, a distributed file system
designed for storage area networks. DiFFS achieves high
scalability by following a partitioning approach to sharing
storage resources. The architecture is robust against
failures and unfavorable access patterns. It is independent
of the physical file system(s) used for the placement of data;
multiple file systems can co-exist in a DiFFS system.

1. Introduction

Demand for data-storage services is growing rapidly and is
expected to grow even faster in the coming years [1]. A
primary reason for this growth is the appetite for storage by
Internet Data Centers (IDCs) that provide Internet and
application services to corporate and private customers.
Servicing data out of physical storage is the task of a file
system.

Physical storage is cheap and will become cheaper. At the
same time, Storage Area Networks (SANs) allow the
incremental scaling of storage bandwidth and capacity by
directly connecting pools of storage to clusters of servers. A
number of commercial storage products and experimental
file systems have been taking advantage of SANs, e.g.
Storage Tank [2], Tivoli [3] and EMC HighRoad [4].

There are numerous research and commercial systems that
provide various flavors of distributed file systems. They fall
into two main classes: cluster file systems and wide-area file
systems. Cluster file systems [5, 6] guarantee strong
consistency for shared files. The file system is accessible
via a cluster of strongly synchronized servers. Cluster file
systems have an inherent scalability problem, because all
cluster members contend for the system-wide resources.
Wide-area file systems [7] provide access to large,
geographically distributed storage, where the requirements
for file sharing may not be as strong. They use aggressive

caching to scale and consistency may be traded for
performance.

DiFFS is a SAN-based distributed file system architecture
with scalability and performance characteristics superior to
the two approaches above. It avoids the inherent scalability
problems of cluster systems by partitioning the storage;
shared access is controlled on a per-partition basis. It
facilitates the concurrent use of multiple physical file
systems to accommodate diverse application requirements.
Such flexibility is becoming increasingly important in IDC
environments. DiFFS is designed to tolerate host and
communication failures without sacrificing failure-free
performance. Robustness against unfavorable access
patterns is achieved by file-level migration.

2. Architecture Overview

DiFFS uses partitioning to address the problem of
contention for storage resources. Each partition consists of a
partition server and some storage (which may be part of a
SAN) as shown in Figure 1. Examples of clients include
web and application servers, in an IDC.

2.1. Storage Partitioning

Each partition is a self-contained physical file system, with
its own resources (inodes, blocks, block maps, etc.). It is
implemented over a “virtual” storage layer (e.g. LVM) that
provides a very large range of logical blocks (for example,
264 blocks). The virtual partition storage is sparsely and
dynamically populated with physical storage. Physical
storage may be striped across multiple devices for improved
performance and high availability.

Each storage partition is assigned to a partition server (PS),
which controls access to its local file system resources.
Therefore, contention for system resources occurs on a per
partition basis and is controlled by the partition server.
Client operations can be classified into two categories
according to whether or not they affect system resources.
They are referred to as “writes” and “reads” respectively.
For example, in the case of the Network File System
(NFSv2) [8], client requests can be classified as follows:

“reads”: getattr, lookup, readir, read, realink, statfs, mount.

“writes”: mkdir, link symlink, rename, remove, rmdir,
setattr, write.

PS1

Partition 1

PS2

Partition 2

PSN

Partition N

C1 CM clients

SAN

Figure 1. DiFFS architecture.

“Reads” are performed by the clients, possibly bypassing
the partition servers, as described in detail in section 2.2.
However, “writes” must be coordinated by the appropriate
partition server. For example, when a file that resides on
partition 1 is written, the client operation is forwarded to
PS1, which allocates (from the partition resources) any new
blocks that may be appended to the file. In this way,
contention over system resources is restricted to a single
partition and is resolved by a single point of control—the
partition server—avoiding the use of a Distributed Lock
Manager (DLM). DLMs are known for their complex
design and inherent scalability problems [5].

The partition is the building block of a DiFFS system. The
introduction of new partitions extends the capacity of the
system without increasing the cost for contention control.

Partitioning policies. Initial assignment of files and
directories to a specific partition is done at creation time,
according to some “partitioning policy”. The policy can be
implemented in a number of ways. For example, it can be
implemented in a proxy that resides on the client, or in an
application-level content switch on the network. The
location of the object is then recorded in a DiFFS directory
that references the object (see ”cross-partition references”).

The actual policy employed in the system is orthogonal to
the proposed architecture. Examples of policies include:

• Files distributed amongst partitions according to some
deterministic algorithm, which guarantees that all
partitions accommodate a similar number of files, or
that they have similar utilization of resources.

• Files distributed according to their type. Different
partitions may use different local physical file systems
that are fine tuned for different types of files, e.g. small,
files, directories, video files, etc.

The only restriction for the partitioning policy is that a
single file must be confined to only one partition. This is
required to simplify the management of system resources
and avoid consistency problems for “write” operations that
might otherwise span more than one partition.

Cross-partition references. Files and directories of the
global file system may reside on any partition. Thus, the
namespace of DiFFS has to handle cross-partition
references. Typically, in a file system, directories are
special files that are used to maintain references to objects
(e.g. files and directories). A directory file is a list of
entries, each one containing at least the inode number
(inode#) and name of the corresponding object.

PS1

Partition 1

PSN

Partition N

inode(“etc”) inode(“passwd”)
inode# 0123 inode# 1001

dentry
{ name: “passwd”
 inode#: 1001
 part.ID: 1}

…
joe:*:101:10:…
…

Figure 2. Example of cross-partition reference: an entry
in directory /etc references file /etc/passwd which
resides in a different partition.

In DiFFS, the inode# may refer to a file that does not reside
in the same partition (physical file system) as the parent
directory. To make the reference to an object unique in the
system, the inode# in directory entries is augmented with
the ID of the partition where the object resides (see Figure
2). The latter requires extensions to the directory entry
structure. One possible implementation, which is
independent of the actual physical file system, is to use
normal “data files” in the file system to implement DiFFS
directories. In the example of Figure 2, a DiFFS-space
directory “/etc” is implemented as a regular file in the
underlying file system of partition N. The contents of this
file are DiFFS-specific entries referencing files that may
reside in various partitions.

Implementing directories as regular files provides additional
flexibility. Directories can be structured arbitrarily, allowing
for example, a B-tree structure to be used to do efficient
searches on large directories. Another possibility is to have
a directory that is made up of several small files, where
each file is leased independently, thus reducing directory
file contention.

2.2. Access Protocols

In addition to traditional client-server protocols (e.g. NFS),
DiFFS clients can use other protocols to access data on the
partitions. The two examples described below take
advantage of SAN.

Extended NFS (x-NFS). This protocol is employed when
the clients are not aware of the details of the physical file
system(s) on the partitions. The partition server acts as a

metadata server. Client requests (“read” or “write”) land on
the server of the partition where the target file resides. The
server interprets the file metadata (inode and indirect block
contents) and returns, if necessary, a list of block IDs to the
client. The client then directly accesses the target blocks on
the storage (e.g. using iSCSI). The x-NFS functionality on
the client is implemented either within the kernel (e.g. NFS
client code) or as a specialized proxy.

Read-from-everywhere. When clients (kernel or proxy)
are aware of the partitions’ file system(s), they can interpret
metadata without a metadata server. In these cases, “read”
operations can be performed directly by the client,
bypassing the partition server. This is because “reads” do
not affect the file system resources and thus such operations
need not be serialized via the partition server. All “write”
operations must still be coordinated by the partition servers,
using either a traditional client-server protocol or a protocol
such as x-NFS.

The details of access protocols are outside the scope of this
paper. The point to stress here is that access protocols are
orthogonal to the DiFFS architecture and independent of the
actual namespace management implementation. Moreover,
multiple access protocols may be used concurrently in the
system.

2.3. Caching and cache consistency

Distributed file systems traditionally use caching to improve
performance. This raises the issue of cache consistency.
Cache consistency in DiFFS is supported by means of
“leases”, as in NQNFS [9] and NFSv4 [10]. A lease is a
promise from the server that the client can cache a specific
object (for a limited time) without conflict. A lease must be
renewed by the client, if it continues to cache the object.
Leases provide a simple mechanism for the recovery of the
server’s state related to client caches—a recovering server
waits for a time period that guarantees all outstanding leases
have expired.

DiFFS supports two types of leases: Read and Write. The
partition server is the lease server for files and directories
residing in its partition. It is outside the scope of this paper
to describe the details of the leasing protocol. It should be
noted however that in DiFFS, leasing is used to guarantee
cache consistency not only of cached data but also for
cached directory contents and, in the case of x-NFS, for
cached block lists.

2.4. File handles

A “lookup” operation is performed as depicted in Figure 3.
The execution is described in a way that is independent of
the access protocol used. For example, a lookup for file
“/etc/passwd” is performed in three stages: (1) retrieve the
file handle for the root inode—this information is typically
stored on every partition, in this case it is retrieved from

partition 1; (2) read the contents of directory “/” and
construct the file handle for directory “etc”; (3) read the
contents of “etc” and construct the file handle for the file
“passwd”.

PS1

Partition 1

PS2

Partition 2

PSN

Partition N

C1 CM clients

2233

{“etc”,
 0123, N}…

{“passwd”,
 1001, N}…

“etc” “/”
0123

…
joe:*:101:10:
…

“passwd”

1001

(1)
(3) (2)

Figure 3. Execution of lookup(/etc/passwd) in DiFFS.

A file handle consists of the inode# and the partition ID of
the file or directory as well as a generation number that
makes the file handle unique in the system (even if the
inode is reused in the future for another object). As
described in the example, the file handle for a target file is
obtained by first constructing the file handle for every
directory in the path to the file. This is typical of existing
systems, such as NFS v2 and v3. File handles are cached on
the client (the DNLC in the case of NFS). Such caches have
extremely high hit ratios (more than 90% [8]), improving
considerably the performance of lookups. The only
difference in the case of DiFFS is that the partition ID of the
file must be included in addition to any other information in
the file handle.

3. Advanced Issues

3.1. Fault-tolerance

The design of DiFFS is based on the assumption that
servers may crash but they do not exhibit any malicious
(Byzantine) failures. Messages can be lost due to host
crashes or network partitioning. However, the
communication protocol guarantees in-order delivery of
messages between non-faulty hosts (e.g. TCP). The design
goal for DiFFS is to provide fast recovery, while
guaranteeing the integrity of the distributed file system.

The integrity of local file systems in the partitions is a
traditional file systems issue. There exist well-known
solutions such as recovery procedures (fsck), soft updates
and journaling. The main challenge in DiFFS is the
robustness of operations that span more than one partition.
These are operations that affect the DiFFS namespace,

namely (in NFS terms): create, mkdir, link, remove, rmdir
and rename.

Existing systems that follow a partition-based approach
suggest the use of transactional semantics (for example 2-
phase-commit protocol) for the execution of such
operations. These protocols are expensive and affect the
performance of operations in the failure-free case. A more
light-weight approach is used in DiFFS. By imposing a
strict order on the execution of such operations, we can
guarantee that all possible inconsistencies are reduced to an
instance of “orphan” files. An orphan is a file that
physically exists in some partition but is not referenced
from any point in the DiFFS namespace. Consider the
removal of file “/etc/passwd” (Figure 3). The client request
lands on the partition where the parent directory resides
(PSN). The entry for “passwd” is removed from the
directory and a message is sent to PS1 to remove the actual
file. This message may be lost due to host failures or
network partitioning. The only possible inconsistency is for
the file to exist but not to be referenced from any directory.

The required execution order for cross-partition operations
can be abstracted to the following three steps:

1. Remove reference from the namespace, if necessary.

2. Perform changes of the target object, if any.

3. Insert reference in the namespace, if necessary.

So, the problem of namespace integrity is reduced to
garbage collection of orphan files. Global garbage
collection algorithms may be both complex and impractical
for the scale of DiFFS. Instead, we propose the use of
algorithms that perform garbage collection based on local
information. This is achieved by using intention logs [11]
on the partition where each operation is initiated. The log is
used, in the case of failure, to reconfirm or undo (as
appropriate) the results of operations with unknown
outcome. The algorithms take into consideration potential
conflicts due to concurrent operations that affect the same
objects or namespace entries.

There are two important points to be noted here. First,
DiFFS provides the same failure semantics to clients as
traditional client-server systems, (e.g. NFS). Second,
distributed recovery is performed off-line; it does not affect
the performance of failure-free operation and does not block
normal operation in the presence of failures.

3.2. File-level Migration

File migration is essential for the scalability of DiFFS. The
goal is to perform load balancing by moving objects from
“hot spots” to less loaded partitions. Deciding which objects
to migrate, when and where is a policy issue performed by a
management tool. The entity that performs the migration
obtains a Write-lease for the target object and copies it over
to its new location. Using protocols such as x-NFS
minimizes the copying overhead on the saturated partitions.

The integrity of the DiFFS namespace must be maintained
when migration is performed. There are two issues to
consider:

• Updating affected file handles on the clients.

• Updating references in the DiFFS namespace.

Both problems are addressed by keeping a forward pointer
in the original location of the object, which indicates the
new partition ID and inode# of the object. This information
can be kept, for instance, in the original inode of the object.

When a client request lands on the original location of the
object, two things happen. First, the parent directory of the
object that was used to obtain that file handle is updated (if
it is in another partition, a message is sent); the
corresponding entry is changed to reference the new
location of the object. Second, an updated file handle with
the new location of the object is sent back to the client.

One issue is when to garbage-collect the forward pointer
(reuse the inode). This can be done as soon as two
conditions are satisfied: 1) there are no references in the
DiFFS namespace to the old position of the object (link
count of the original inode is 0), and 2) there are no out-of-
date file handles at clients.

To satisfy (2), clients are required to periodically revalidate
any cached file handles, even if they do not use them.
However, the entry in the parent directory of a migrated
object is updated only when that directory is used to lookup
a file handle for the object. There is no guarantee that all the
references (hard links) to an object are eventually used to
access it. Thus, there is no upper bound on the time required
to keep the forward pointer. We are currently looking into
solutions for this problem.

4. Related work

The distributed storage market is currently dominated by
Network Attached Storage (NAS) systems, where access to
storage is provided via NFS front-ends. Due to the inherent
scalability limits of NAS systems, several industrial projects
are currently investigating ways of aggregating multiple
NAS systems under a single namespace [12]. These
solutions do not improve performance (data is still copied
through server memory) and they lack robustness and
flexibility (sub-trees of the global file system are assigned
statically to specific servers).

Ideally, SAN storage should be accessible directly by all
clients in the system. The requirement is to provide
coordinated access to the storage pool. For this purpose, a
number of research systems have extended the idea of
cluster file systems [13], which provide access to global
storage resources through a cluster of servers. Processing
power is added by introducing servers to the cluster. All of
these systems use some type of DLM among the cluster
servers. GFS [14] is a system designed for Linux that uses a
proprietary physical file system. It is based on non-

standardized low-level locks implemented by the SCSI
devices to achieve efficient distributed locking. Frangipani
[5] introduced one of the most scalable DLM solutions in
the literature. System resources are partitioned into logical
volumes [15] and there is one DLM server dedicated to
each volume. Both “reads” and “writes” are performed from
every server and require coordination in the cluster.
Frangipani’s DLM is a complex service, which took three
iterations to reach the final two-level design. All cluster file
systems depend on their own proprietary physical file
system.

DiFFS resembles Frangipani in its partitioning of the
storage resources for improving contention control.
However, it has certain advantages, in terms of robustness
and performance. DiFFS facilitates the use of any physical
file system in the partitions. So, files can be stored in
partitions fine-tuned for their type. “Reads” can be
performed from any node in the system, while “writes” are
always coordinated by the server of the partition. Thus,
contention control is significantly simplified, without
sacrificing performance. Recovery does not require
expensive distributed protocols (failure detectors and
distributed agreement) and can be performed in the
background during normal operation.

The system closest to DiFFS, in terms of design principles,
is Slice [16], an ongoing research project at Duke
University. Slice also suggests the distribution of a global
file system across multiple partitions. Slice’s partitioning
mechanism (small vs. large files and a deterministic
distribution within each class of files) is implemented in the
so-called µproxies—modules that forward client operations
to the right partition (at IP level). Due to the state
(distribution tables) that is kept in the µproxies, Slice’s
reconfiguration is coarse grained. Furthermore, Slice
assumes object-oriented storage to simplify resource
allocation, whereas DiFFS is built on top of block-oriented
SAN technology.

5. Conclusions

This paper introduces DiFFS, a scalable, flexible and robust
distributed file system that leverages the latest storage
technology. By taking a partitioning approach, DiFFS
avoids the inherent scalability limits and complexity of
traditional cluster file systems imposed by DLM. By
layering over different physical file systems, DiFFS affords
itself immense flexibility in serving diverse contents hosted
by an IDC. Furthermore, it leverages SAN technology by
accommodating protocols that allow clients to directly
access SAN storage devices, and thereby ensuring high
performance.

DiFFS addresses robustness on two fronts. First, cross-
partition protocols are carefully designed to guarantee that
the global namespace is never corrupted. This reduces the
problem to off-line, local garbage collection and physical

file system recovery, which is attained by existing
technologies such as journaling file systems and soft
updates. DiFFS does not require any complex global
recovery algorithms. Second, the architecture encodes
cross-partition references directly in the DiFFS directory
structure. It is therefore possible to construct proactive file
migration protocols to tackle load imbalance.

It is an open research issue to investigate how the
architecture scales in wide-area systems (for example,
cross-IDC configurations). File migration and replication
are of particular interest in that context. Security is a major
issue that has not been considered in depth yet. The current
prototyping is based on NFS protocol implementations. It is
a future work item to investigate how the architecture can
accommodate other file access protocols. The design of
DiFFS is work in progress. We are currently in the
prototyping phase and expect to have publishable
performance results within the next few months.

Acknowledgements

Extensive discussions with Jeff Chase helped formulate the
ideas presented in this paper. Lisa Liu has participated in
the architecture design. Dejan Milojicic, John Wilkes and
other colleagues in HP Labs have provided valuable input.

References
1. Alster, N. and L. Hawkins, Trouble in Store for Data-Storage

King?, in Business Week. 2000.

2. Burns, R., R. Rees, and D. Long. Safe Caching in a
Distributed File System for Network Attached Storage. In
International Parallel and Distributed Processing
Symposium, Cancun, Mexico, May, 2000.

3. Tivoli Storage Manager, .2001, IBM Tivoli.

4. EMC Celerra HighRoad File System Software, 2001.

5. Thekkath, C., T. Mann, and E. Lee. Frangipani: A Scalable
Distributed File System. In 16th ACM Symposium on
Operating Systems Principles (SOSP), Saint-Malo, France,
1997.

6. Anderson, T., et al., Serverless Network File Systems. ACM
Transactions on Computer Systems, 1996, 14(1): pp. 41-79.

7. Howard, J., et al., Scale and Performance in a Distributed
File System. ACM Transactions on Computer Systems, 1988,
6(1): pp. 51-81.

8. Callaghan, B., NFS Illustrated. Addison-Wesley Professional
Computing Series, Adison-Wesley, 2000.

9. Macklem, R. Not Quite NFS, Soft Cache Consistency for
NFS. In Winter 1994 Usenix Conference, San Francisco, CA,
USA, January 1994.

10. Shepler, S., et al., NFS version 4 Protocol, 2000.

11. Seltzer, M., et al. Journalling versus Soft Updates:
Asynchronous meta-data protection in file systems. In 2000
USENIX Annual Technical Conference, San Diego,
California, USA, June 18-23, 2000.

12. Zhang, Z. and A. Bhide, NAS Aggregation, . 2001, Hewlett-
Packard Labs, Palo Alto.

13. Kronenberg, N., H. Levy, and W. Stecker, VAXClusters: A
closely-coupled distributed system. ACM Tansactions on
Computer Systems, 1986, 4(2): pp. 130-146.

14. Preslan, K., et al. A 64-bit, Shared Disk File System for
Linux. In 16th IEEE Mass Storage Systems Symposium, San
Diego, CA, USA, 1999.

15. Lee, E. and C. Thekkath. Petal: Distributed Virtual Disks. In
ASPLOS VII, MA, USA, 1996.

16. Anderson, D., J. Chase, and A. Vadhat. Interposed Request
Routing for Scalable Network Storage. In Usenix OSDI, San
Diego, CA, USA, 2000.

