

A Peer-to-Peer Architecture for Delivering E-Services

Vana Kalogeraki, Jim Pruyne, Aad van Moorsel
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-181
July 20th , 2001*

E-mail: {vana, pruyne, aad} @hpl.hp.com

peer-to-peer,
e-services,
real-time,
scalable,
decentralized
systems

Peer-to-peer architectures have been proposed to bring an
earthquake to interactions on the Internet by enabling
real-time direct sharing of computer resources and
services. In this paper we use the peer-to-peer model to
deliver e-services in a timely and reliable way. The
challenge is to use the collective ability of many devices -
wireless and wired - to work together to perform a task,
solve a problem or complete a transaction. The proposed
peer-to-peer based system is autonomous, decentralized
and scalable. Our system is based on a multiple feedback
loop structure that coordinates the applications and
system resources in an integrated manner; monitors the
behavior of the e-services transparently; and, schedules
the system resources dynamically.

* Internal Accession Date Only Approved for External Publication
To be published in the International Conference on Advances in Infrastructure for Electronic
Business, Science, and Education on the Internet, L'Aquilla, Italy, August 6-12, 2001.
 Copyright Hewlett-Packard Company 2001

A Peer-to-Peer Architecture for Delivering

E-Services

Vana Kalogeraki, Jim Pruyne, Aad van Moorsel

Hewlett-Packard Laboratories

Palo Alto, CA 94304

fvana,pruyne,aadg@hpl.hp.com

Abstract

Peer-to-peer architectures have been proposed to

bring an earthquake to interactions on the Inter-
net by enabling real-time direct sharing of com-

puter resources and services. In this paper we use

the peer-to-peer model to deliver e-services in a

timely and reliable way. The challenge is to use

the collective ability of many devices - wireless and

wired - to work together to perform a task, solve a

problem or complete a transaction. The proposed

peer-to-peer based system is autonomous, decen-

tralized and scalable. Our system is based on a

multiple feedback loop structure that coordinates

the applications and system resources in an in-
tegrated manner; monitors the behavior of the e-

services transparently; and, schedules the system

resources dynamically.

Keywords: peer-to-peer, e-services, real-time,
scalable, decentralized systems

1 Introduction

We have now entered the next Internet evolution,
the mass proliferation of e-services1. The Internet
is evolving beyond being an infrastructure for pub-
lishing information that is displayed via browsers.
Rather, the focus is about making the Internet
work for the users. People are connecting to the
Internet using di�erent kinds of devices: PCs, lap-
tops, mobile phones, PDAs. Mobility is enabled

1
E-services are often also called web-services.

not by a single Internet-based wireless device, but
rather by the collective ability of all devices - wire-
less and wired - working in concert to deliver rich
context-speci�c e-services to anyone on the go. For
example, e-services are delivered via the phone,
pager, or virtually anything with a microchip in it.
As the number and complexity of the e-services in-
creases, modern content management techniques
need to provide timely delivery, high reliability
and quality of service (QoS) guarantees.

To provide end-to-end QoS and real-time guar-
antees to the end users the biggest challenge is
how to manage the e-services and the underlying
system resources in an integrated manner and to
gracefully adapt to changes in the behavior of the
services and the availability of the resources. This
problem is di�cult because, in practice, it is dif-
�cult to compute the whole schedule in advance
as the starting times of the services are not al-
ways known a priori and the structure or behavior
of the services can dynamically change over time.
Furthermore, the global state of the distributed
system is changing much faster than it can be com-
municated to the processors, therefore; the exact
structure of the system cannot be known by a sin-
gle centralized resource manager.

In this paper we propose a Decentralized Re-
source Management infrastructure for delivering
e-services. The Resource Management System is
middleware that coordinates the services and sys-
tem resources in an integrated manner; monitors
the behavior of the services transparently and ob-
tains accurate resource projections; schedules the
system resources dynamically over multiple pro-

cessors; and recon�gures the objects in response
to changing processing and networking conditions.
The optimality of the management decisions de-
pends on the accuracy of the pro�ling information
collected, the measured data and the frequency of
the measured events. The Resource Management
System is structured as a Pro�ler and a Scheduler
for each of the processors in the system. The sys-
tem operates at two levels: (1) the intra-processor
level where the Pro�ler on the processor works in
concert with the local Scheduler to schedule the
methods invoked by the services and (2) across
multiple processors through a peer-to-peer proto-
col. The bene�ts of the Decentralized Resource
Management System are multi-dimensional. It en-
ables us:

� To increase the probability of satisfying the
end-to-end QoS and soft real-time response
time requirements for both new and existing
services and to achieve steady ow of opera-
tion of the activities.

� To balance the load (utilization) of the pro-
cessor and network resources by allocating
the objects to the processors and reallocating
them as necessary.

� To build scalable, decentralized and au-
tonomous Resource Management systems to
accommodate a high volume of user requests
from geographically distributed and poten-
tially heterogeneous platforms. Also, to in-
crease the system e�ciency as the failure of
one of the processors does not propagate or
a�ect other processors in the system.

The system is based on the Common Object Re-
quest Broker Architecture (CORBA) [10] which is
a widely accepted standard for developing large-
scale distributed applications over heterogeneous
platforms. Distributed object computing middle-
ware such as OMG's CORBA, Microsoft's Dis-
tributed Component Model (DCOM) and Sun's
Java Remote Method Invocation (RMI) are very
attractive because they shield software develop-
ers from low-level, tedious, and error-prone de-
tails and provide a consistent set of higher-level
abstractions for developing distributed systems.

Note though that CORBA is used only for the
development of the e-services, e-services commu-
nicate with each other by asynchronous messages
containing XML documents.

This paper is organized as follows. In Section
2 we present the peer-to-peer models and in Sec-
tion 3 we describe the e-services. In Section 4 we
discuss the architecture of the Decentralized Re-
source Management System. Section 5 presents
the two-level feedback loop structure. Section 6
presents related work and Section 7 concludes the
paper.

2 Peer-to-Peer Models

Peer-to-peer computing is de�ned as the sharing of
computer resources and applications through di-
rect exchange. Peer-to-peer computing supports
the creation of a fully decentralized system by
enabling direct and real-time sharing of services
and information and by eliminating the need for
a single centralized component. For example, the
Gnutella [3] peer-to-peer model focuses on search-
ing and discovering music �les. The most dis-
tinct characteristic of peer-to-peer computing is
that there is symmetric communication between
the peers; each peer is both a client and a server.

Peer-to-peer models essentially create a virtual
point-to-multipoint network of many peers built
on top of the physical infrastructure. The peers
are connected in an ad-hoc manner. A peer con-
nects to the network of peers, by establishing a
relationship with at least one peer currently on
the network. Peers exchange messages to search
for their neighbors or to discover information. For
each search request, the peer searches its local
repository for relevant matches and responds with
the results. In addition, it propagates the search
request to its own peers in the network.

The advantage of the peer-to-peer models is
that they create a scalable, decentralized and au-
tonomous infrastructure for searching and discov-
ering data and services. However, the current
solutions have the disadvantage that they prop-
agate all the queries across the network (including
nodes with high latencies), therefore the network
can easily become a bottleneck. Routing between

2

peers is important because it can a�ect the scal-
ability of the system. These protocols were orig-
inally designed to accommodate a population of
only a few thousand of users. Recent studies [1]
have shown that we can employ local search strate-
gies in power-law networks for e�cient searching
on the peer-to-peer network.

3 E-services

E-services are complex distributed applications
that can be accessed by other applications or com-
ponents over the Internet and across organiza-
tional boundaries. E-services are self-contained
and modular. A complex distributed e-service
can be modeled as several service tasks; each task
has its own resource and timing requirements and
generates a result that triggers the execution of
the subsequent task. A service task is de�ned as
a sequence of method invocations of objects dis-
tributed across multiple processors in multiple do-
mains. E-services can be composed and deployed
dynamically, therefore, their arrival time is not
known a priori. These contrast with static systems
where the schedules of the invoked objects are usu-
ally determined in advance and remain �xed while
the tasks execute. Multiple service tasks originat-
ing from di�erent client threads can be executed
concurrently. Although tasks are triggered inde-
pendently and asynchronously, they are not nec-
essarily disjoint.

The Travel Agent service is an example of an
e-service that is responsible for an entire travel
booking. It consists of an airline service task that
�nds the appropriate airline company and ight
number, a hotel service task that ensures accom-
modation even if the ight is cancelled or delayed
and a car transportation service task that provides
transportation to the user's destination. The pri-
ority with which the tasks execute is important.
For example, if a passenger's ight is cancelled,
the airline service task has to run in a high priority
to book the next available ight to the passenger's
destination.

Service tasks enable end-to-end scheduling in
that they span processor boundaries and carry
scheduling parameters from one processor to an-

other yielding system-wide scheduling strategies
that require only local computations. A task's
scheduling parameters apply to local threads and
methods invoked by the task. The scheduling pa-
rameters depend on the scheduling algorithm im-
plemented and can be updated during the execu-
tion of the task. The task's resource requirements
depend on the resource requirements of the ob-
jects invoked by the task, the current state of the
objects, and the sequence of method invocations.
With each task we associate:

� Deadline: the time interval, starting at task
initiation within which the task should be
completed, speci�ed by the end user.

� Importance: a metric that represents the rel-
ative importance of the task, speci�ed by the
end user. The importance metric is derived
from the importance of the service requested
by the user and a�ects the order with which
the tasks are executed on multiple processors.

� Projected latency: the estimated amount of
time required for the task to complete. This
projected latency is computed as the sum of
the computation times of the methods in-
voked by the task and the corresponding com-
munication times.

� Laxity: the di�erence between Deadline and
Projected latency, which represents a mea-
sure of urgency of the task. As the task ex-
ecutes, it is scheduled according to Laxity,
which is dynamically adjusted.

� Mean invocations: the mean number of in-
vocations of the task made by the di�erent
users.

E-services are registered in directory services
to advertize their operations. The Universal De-
scription, Discovery, and Integration Speci�cation
(UDDI)[14] is an example of a group of web-based
registries that exposes information about services
and their interfaces. UDDI speci�es both inter-
faces for describing the service registries and also
speci�es how the UDDI registries can be oper-
ated. This allows the services to be dynamically
discovered and composed into more complicated

3

Decentralized Resource Management

CORBA ORB

Processor

SchedulerProfiler

Service
Caching

CORBA ORB

Processor

SchedulerProfiler

Service
Caching

CORBA ORB

Processor

SchedulerProfiler

Service
Caching

Decentralized Resource Management

Decentralized Resource Management

Figure 1: The Decentralized Resource Man-
agement Infrastructure.

services.

4 Decentralized Resource Man-

agement

Figure 1 shows the structure of the Decentralized
Resource Management System implemented as a
Pro�ler and a Scheduler for each of the proces-
sors in the system. The Pro�ler on the processor
monitors the behavior of the objects on the pro-
cessor and measures the current load on the pro-
cessor resources. The Local Scheduler is respon-
sible for specifying a local ordered list (schedule)
for the method invocations on the processor that
determines how access to the resources is granted.
The Schedulers exploit information collected by
the Pro�lers to schedule services across multiple
processors to meet soft real-time deadlines.

The Pro�lers from di�erent processors work in a
peer-to-peer model; each Pro�ler collects feedback
from its peers in terms of the objects on their pro-
cessors and the load of their resources. The Pro�l-
ers are connected in an ad-hoc basis; a direct con-
nection is established between two Pro�lers only
if there is a need to exchange information between
these peers. For example, the Pro�ler computes
the projected latency for the service task as the
sum of the computation times of the methods in-
voked by the task and the corresponding commu-

nication times. In previous work [5, 6] we had de-
veloped a single (but possibly replicated and dis-
tributed) resource manager for a distributed sys-
tem that has the global view of the system and
is responsible for distributing the objects on the
processors. Our proposed decentralized architec-
ture is novel because it creates a Decentralized Re-
source Management System constructed from in-
dependent and autonomous components that co-
operate in a purely decentralized world, there is
no centralized component to manage all the ser-
vice tasks and the resources for the whole system.

4.1 Resource Monitoring

To accommodate a variety of systems with dif-
ferent capabilities (from large-scale enterprise sys-
tems to small-scale highly critical systems), a Pro-
�ler on each processor measures the maximum and
current usage on the processor's resource which
determines the further allocation of the services
in the system. A processor is characterized by its
speed, the size of its local memory, and the size
of its disk space. A communication link is charac-
terized by the bandwidth of the link. Thus, each
Pro�ler measures:

� Load: the current load on the processor.

� Memory: the memory in use on the proces-
sor.

� Disk: the disk space in use on the processor
and the number of disk accesses.

� Bandwidth: the bandwidth in use on the
communication links connecting the Pro�ler
with its peers.

One of the great challenges to providing high-
performance services to the end users is to address
the bottleneck at the user side and the service
provider side. The speed with which the users ac-
cess the services in the system is limited by the ca-
pacity of their modem connections to the ISPs or
their corporate connections to the Internet. The
bottleneck at the service providers side is a func-
tion of the volume of user requests and the dis-
tance between the service provider and the end
users.

4

4.2 E-service Pro�ling

The Pro�lers on the processors capture the be-
havior of the services by monitoring the messages
exchanged between the services. Each method in-
vocation or response, as monitored by the Pro�l-
ers, is characterized by the following tuple: (Ac-

tion, local object, invoking method, remote object,

invoked method, Invocation time)

where Action is determined by the Pro�lers [6]
and is one of the following: LOCAL START,
LOCAL COMPLETE, REMOTE START,

REMOTE COMPLETE. The Pro�lers distin-
guish between a remote method invoking a lo-
cal method on a local object (LOCAL START,
LOCAL COMPLETE) and a local method invok-
ing a remote method (REMOTE START, RE-
MOTE COMPLETE) on a remote object, and
also between the corresponding responses. The
Pro�lers attach a timestamp to each of the method
invocations and can therefore measure the execu-
tion and computation times of the local and re-
mote methods as invoked by the tasks.

The Pro�ler measures the Projected latencyt
for a service task t as the sum of the computa-
tion times of the methods invoked by the task and
the corresponding communication times. For each
method m invoked by the task, the Pro�ler mea-
sures the Mean computation timem which is the
mean time for the method to execute locally on
the processor, including queueing time but exclud-
ing time for embedded method invocations. When
a method m makes a remote method invocation
to a method n of an object j on a remote pro-
cessor, the Pro�ler records the time of invocation
and updates the number of incoming and outgo-
ing method invocations for the corresponding ob-
jects. When the invoked method n completes and
returns its response to the invoking method m,
the Pro�ler calculates the mean time for the re-
mote invocation, Mean remote timemn, from the
time at which method m invoked method n to the
time at which it received the response. The Pro-
�ler computes the Mean communication timemn
to communicate an invocation from method m

to method n and receive a response back as
the di�erence between Mean remote timemn and

Figure 2: The Service Execution Graph for a
Service.

Mean local timen, where Mean local timen is
the time for method n to complete the execution.

As the service executes, the methods invoked
by each service task are recorded dynamically to
construct the Service Execution Graph (Figure 2),
that describes the ow of operation for the service.
Each node in the graph represents a method m,
while each edge corresponds to an invocation of
method m or a response. The Service Execution
Graph also describes the relationships between the
processors as the service tasks invoke methods on
objects across multiple processors and domains.

Maintaining accurate pro�ling information is
important for two reasons. First, it is the means
by which the Pro�ler can detect an external load
and act upon it. The Pro�ler can identify an ob-
ject that is causing a large queueing delay for a
task and, therefore, can detect signi�cant devia-
tions in performance. Second, it allows the Pro-
�ler to assemble a picture of the system by collect-
ing feedback from its peers. It is important to note
though, that no Pro�ler has a global view of the
system or a complete view of a Service Execution
Graph. Every graph de�nes a subset of proces-
sors. These are the processors that execute tasks
for this execution graph. The Pro�ler obtains in-
formation only from those peers that service tasks
from the same execution graph. The Service Ex-
ecution Graph for a service is constructed by ag-
gregating the views of the corresponding Pro�l-
ers from the graph. This is the second level feed-

5

back loop structure of the Decentralized Resource
Management Domain that uses measurements of
elapsed time and measurements of processor loads
to re�ne the initial estimates of the laxity of the
tasks as they start. The second level feedback loop
operates on a second-by-second basis.

4.3 Distributed Scheduling

The challenge in a distributed system is to pro-
vide predictability of timeliness over multiple pro-
cessors when the objects are invoked concurrently
and asynchronously by multiple service tasks and
compete for limited computing resources. For
multi-processor environments, it has been shown
[2] that no scheduling algorithm is optimal without
a priori knowledge of the deadlines, computation
times and arrival times of the tasks. In practice,
however, it is impractical to compute the whole
schedule beforehand because the services are con-
structed and deployed dynamically. Also, worst-
case allocations are usually not e�ective, because
they trade resource utilization for accurate pre-
dictions and can result in underutilized proces-
sors. In such environments, dynamic scheduling
algorithms are more applicable and exible than
static scheduling algorithms to provide the time-
liness guarantees to the service tasks.
For each service task t, the local Scheduler com-

putes the initial laxity of the task as:

Laxityt = Deadlinet � Projected latencyt

where Deadlinet is the time within which the task
should be completed and Projected latencyt is
the estimated time to task completion. The laxity
value of a task represents a measure of urgency
for the task. The task's initial laxity is computed
based on information collected by the Pro�lers
during previous executions of the task. If no such
information is available, the Pro�ler estimates the
computation time for the task as a proportion of
the task's deadline. This information is stored in
the Service Execution Graph, kept by the Pro�ler,
along with other information about the task. As
the task executes, the methods of the objects in-
voked by the task are scheduled according to the
remaining laxity of the task. The laxity value is

updated based on the estimated computation time
of the methods of the objects and their actual time
measured by the Pro�lers during the executions.
The Local Scheduler on each processor subtracts
from the remaining laxity Laxityt, the di�er-
ence between the actual time Computation timem
for executing method m measured by the Pro�l-
ers and the Mean computation timem calculated
by the Pro�ler based on previous executions of
method m. In [7] we discuss the optimality of
least laxity scheduling compared to earliest dead-
line �rst scheduling, due to the fact that least lax-
ity scheduling considers the computation times of
the tasks to derive the laxity values.

When a service task invokes a method on a
remote processor, it carries with it the caller's
scheduling parameters (laxity value) included in
the message header. As the execution of the
service moves from processor to processor, its
scheduling needs are carried along and honored by
the scheduler on each processor. When the ser-
vice task returns, the scheduling parameters are
propagated back to the caller. When the Reply
is received, the actual time required is compared
with the Projected time and the di�erence is used
to adjust the task's laxity value.

The adjustment of the laxity, Laxityt, provides
the �rst level of the feedback loop structure of the
Decentralized Resource Management System. If
the invocation completes more quickly than was
projected, the task laxity increases and the task's
scheduling priority decreases. If the invocation
completes more slowly, the task laxity decreases
and the task's scheduling priority increases. All
computations are simple and local, allowing the
loop to operate on a hundreds of millisecond ba-
sis. In contrast, the feedback loops used to esti-
mate the projected task latency, from which the
initial task laxity is derived, operate more slowly
on a timescale of seconds.

4.4 Service Caching

The challenge in the decentralized system is how
to distribute the services on the processors to max-
imize the probability that the end-to-end real-
time response requirements of the end users are

6

met, given the dependencies among the services
and the resource requirement constraints. Service
distribution is important, because the execution
times of the service tasks are a�ected by the num-
ber of tasks in the system, the objects invoked
by the tasks, and the processing and communica-
tion times of the methods of the objects invoked
by the tasks. Note though that these factors are
not always compatible. For example, load balanc-
ing requires distributing the objects, while perfor-
mance requires to collocate them. Furthermore,
equally distributing the load on the processors can
cause potential resource fragmentation on the pro-
cessors.

We propose a service caching scheme that is
aimed to improve performance and availability by
replicating the services requested by the users and
storing them on user locations. The advantage is
that the services are distributed in service caches
closer to the end users instead of being delivering
from centralized services via long distance commu-
nication links. Essentially, we are building a net-
work of replicated content caches, each positioned
as close as possible to the users that are located on
the edges of the network. Content is both origi-
nated and delivered from the edges of the network,
allowing the system to balance the load across
multiple resources and to accommodate a high
volume of user requests from geographically dis-
tributed and potentially heterogeneous platforms.
Our work is di�erent from Content Delivery and
Distribution services such as Akamai which main-
tain a number of centralized servers to store the
data delivered to the users.

Even the simpler problem of �nding an optimal
deployment of the objects for a single service that
invokes methods on objects across multiple pro-
cessors is NP-hard. The problem becomes more
complicated as user requests arrive dynamically;
their arrival times is not know a priori; they con-
currently and asynchronously invoke the same ser-
vices; and, they compete for shared computing re-
sources. Consequently, the cost of �nding an ex-
act solution is unjusti�ed. Furthermore, the sim-
plest scheme, to make all the services available
locally for the users is not very e�cient, as it has
the disadvantage that all the popular services will

be highly replicated, and often distributed in the
same networks and, thus, will increase the cost
of maintaining consistency among all the service
replicas. To determine the best location to deploy
a service, we consider the number of service copies
in the network caches, the load on the resources,
the latencies of the services and the number and
frequency of invocations made by the users. Our
algorithm uses current resource measurements and
service pro�les constructed during the previous ex-
ecutions of the tasks to distribute the services in a
way that (1) minimizes the network tra�c on the
communication links and (2) balances evenly the
load on the processors' resources. Service distri-
bution uses measurements of processor loads and
measurements of service laxities to decide the allo-
cation of the service tasks on the processors. This
loop operates on a multiple second basis.

5 Multiple Feedback Loops

Our Decentralized Resource Management System
works in two levels: the intra-processor level and
the inter-processor level.

� The inter-processor level uses a peer-to-peer
distributed architecture that is (1) scalable as
it balances the load across multiple resources
and domains and (2) autonomous as it makes
dynamic decisions in response to changes in
processing and networking conditions in the
system.

� The intra-processor level uses a multiple feed-
back loop structure that employs a least lax-
ity scheduling algorithm that schedules the
methods invoked by the tasks over millisec-
onds and a pro�ling algorithm that monitors
the behavior of the objects and the usage of
the resources over seconds.

The Decentralized Resource Management Sys-
tem (Figure 3) operates on a scheme that is adap-
tive. As the services execute, a pro�le of the
method invocations for each service task is con-
structed dynamically and is added to the Pro�lers'
repository. The Pro�lers use this information for
the subsequent service invocations. When a new

7

Figure 3: The Scheduling and Pro�ling Loop
of the Decentralized Resource Management
System.

service is deployed, a tentative allocation of the
new objects on the processors is performed using
a greedy algorithm that tries to minimize the net-
work bandwidth on the communication links and
distribute evenly the load among the processors.
This increases the load on the processors and re-
quires new projections of the task latencies. As the
number of user requests increases or the latency
of a service becomes too high, our service caching
scheme improves the performance and availabil-
ity provided to the end users by creating a new
service replica closer to the edges where the re-
questing users are located.

6 Related Work

Many researchers [11] have realized the need for
systems that can adapt to dynamic, unpredictable
changes in the computing environment. Nett et

al [9] have developed an adaptive object-oriented
system using integrated monitoring, dynamic ex-
ecution time prediction and scheduling to provide
time-awareness for standard CORBA object invo-
cations. Sydir et al [13] have implemented an end-
to-end QoS-driven resource management scheme
within a CORBA-compliant ORB, called ERDoS.
They provide end-to-end QoS requirements cor-

responding to the resource demand requirements
of each individual object and use an information-
driven resource manager that enables applications
to achieve their QoS requirements.

Research into scheduling has been dominated
by hard real-time systems, but some useful results
are available for soft real-time distributed systems.
Jensen et al [4] propose soft real-time scheduling
algorithms based on application bene�t, obtained
by scheduling the applications at various times
with respect to their deadlines. Their goal is to
schedule the applications so as to maximize the
overall system bene�t. Stankovic et al [12] discuss
the Spring Kernel developed for large complex
real-time systems. They classify the tasks based
on their importance and timing requirements and
use value-based functions to drive the schedule.

Nahrstedt et al [8] have employed resource man-
agement mechanisms to provide end-to-end QoS
guarantees for multimedia computing and com-
munication. They present a soft real-time sched-
uler for the Unix environment and a resource bro-
ker that provides QoS, negotiation, admission and
reservation capabilities for sharing resources, such
as memory and CPU. Their dynamic scheduler is
based on a preliminary round of testing to cap-
ture the behavior of the tasks before the actual
execution starts.

7 Conclusions

The increasing need to share resources and in-
formation, the decreasing cost of powerful work-
stations, the widespread use of networks and the
maturity of software technologies will further in-
crease the use of distributed systems and applica-
tions and so too the demand for more e�cient re-
source management. We have proposed a scalable
and autonomous decentralized resource manage-
ment architecture structured as a Pro�ler and a
Scheduler for each of the processors in the system.
The Decentralized Resource Management System
operates at two levels: within the processor by col-
lecting feedback from the local tasks and resources
and across the processors through a peer-to-peer
protocol. The system allows activities with di�er-
ent levels of temporal granularity, scheduling at

8

the level of milliseconds, pro�ling over seconds,
and load balancing at the level of multiple sec-
onds.

References

[1] L. A. Adamic, R. M. Lukose, A. R. Puniyani
and B. A. Huberman, \Search in power-law
networks", manuscript.

[2] M. L. Dertouzos and A. K. Mok, \Multi-
processor on-line scheduling of hard-real-time
tasks," IEEE Transactions on Software En-

gineering, vol. 15, no. 12 (December 1989),
pp. 1497-1506.

[3] Gnutella, http://www.gnutella.wego.com/

[4] E. D. Jensen, C. D. Locke and H. Tokuda,
\A time-driven scheduling model for real-
time operating systems," Proceedings of the

IEEE 6th Real-Time Systems Symposium,
San Diego, CA (December 1985), pp. 112-
122.

[5] V. Kalogeraki, P.M. Melliar-Smith and L.E.
Moser, \Dynamic migration algorithms for
distributed object systems," Proceedings of

the IEEE 21st International Conference on

Distributed Computing Systems, Phoenix,
Arizona (April 2001), pp. 119-126.

[6] V. Kalogeraki, P.M. Melliar-Smith and L.E.
Moser, \Using multiple feedback loops for ob-
ject pro�ling, scheduling and migration in
soft real-time distributed object systems,"
Proceedings of the IEEE Second Interna-

tional Symposium on Object-Oriented Real-

Time Distributed Computing, Saint Malo,
France (May 1999), pp. 291-300.

[7] V. Kalogeraki, P. M. Melliar-Smith and
L. E. Moser, \Dynamic scheduling of dis-
tributed method invocations," Proceedings

of the IEEE 21st Real-Time Systems Sym-
posium, Orlando, Florida (November 2000),
pp. 57-66.

[8] K. Nahrstedt and R. Steinmetz, \Resource
management in networked multimedia sys-

tems," Computer, vol. 28, no. 5 (May 1995),
pp. 52-63.

[9] E. Nett and M. Gergeleit and M. Mock, \An
adaptive approach to object-oriented real-
time computing," Proceedings of the IEEE 1st

International Symposium on Object-Oriented

Real-Time Distributed Computing, Kyoto,
Japan, (April 1998), pp. 342-349.

[10] Object Management Group, The Com-

mon Object Request Broker Architecture,
formal/99-10-07, Version 2.3.1, October 1999.

[11] S. Saewong and R. Rajkumar, \Cooperative
scheduling of multiple resources," Proceedings
of the IEEE 20th Real-Time Systems Sympo-

sium, Phoenix, AZ (December 1999), pp. 90-
101.

[12] J. A. Stankovic and K. Ramamritham, \The
Spring kernel: A new paradigm for real-time
operating system," Operating Systems Re-

view, vol. 23, no. 3 (July 1989), pp. 54-71.

[13] J. J. Sydir, S. Chatterjee, and B. Sha-
bata, "Providing end-to-end QoS assurances
in a CORBA-based system," Proceedings of

the IEEE First International Symposium on

Object-Oriented Real-Time Distributed Com-

puting, Kyoto, Japan (April 1998), pp. 53-61.

[14] The Universal Description, Discovery, and In-
tegration Speci�cation, http://www.uddi.org

9

