[

Web e-Transactions

Svend Frolund, Fernando Pedone, Jim Pruyne
Software Technology Laboratory
HP Laboratories Palo Alto

HPL-2001-177
July 12th | 2001*

E-mail: {frolund, pedone, pruyne} @ hpl.hp.com

reliability, high
availability,
e-commerce,
exactly-once

An e-transaction is a powerful abstraction that ensures exactly-
once semantics in three-tier applications. It is very common for
applications on the Internet to follow a three-tier architecture,
and we discuss protocol and implementation issues for e-
transactions in the Internet setting (so-called web e-
transactions). In contrast to current related protocols, which
require some sort of retry logic in the client-side software, our
protocol assumes a standard web browser and only uses the
semantics of HTML and HTTP to implement the required
client-side retry logic. We discuss how to implement the server
side of our protocol in the context of JAVA servlets.

* Internal Accession Date Only Approved for External Publication

O Copyright CSREA

Published in Internet Computing Conference, Las Vegas, NV, June 25-28, 2001.

Web e-Transactions®

Svend Frelund

Fernando Pedone

Jim Pruyne

Hewlett-Packard Laboratories

Palo Alto, CA 94304, USA
{frolund, pedone, pruyne}@hpl.hp.com

Abstract

An e-transaction is a powerful abstraction that
ensures exactly-once semantics in three-tier ap-
plications. It is very common for applications
on the Internet to follow a three-tier architecture,
and we discuss protocol and implementation is-
sues for e-transactions in the Internet setting (so-
called web e-transactions). In contrast to current
related protocols, which require some sort of retry
logic in the client-side software, our protocol as-
sumes a standard web browser and only uses the
semantics of HTML and HTTP to implement the
required client-side retry logic. We discuss how to
implement the server side of our protocol in the
context of JAVA servlets.

1 Introduction

With electronic commerce over the Internet,
the business is closed if the web-site is down.
Thus, it is very important for Internet applica-
tions to be highly available. The common ar-
chitecture for Internet applications is a three-tier
system: thin frontend clients (browsers), state-
less middletier servers (web-servers), and back-
end databases. High availability in such systems
is typically addressed through two different kinds
of clustering. Web servers run in a web-server
farm. Because of the stateless nature of HT'TP,
and of the web servers themselves, any web server

*© CSREA. This is a revised version of a paper, with
the same title, that appears in the proceedings of the Inter-
net Computing Conference, Las Vegas, June 25-28, 2001.

in the farm can serve any request. Databases run
in high-availability clusters, which is clustering
at the hardware level. A set of nodes in a clus-
ter have access to a shared disk, and the cluster-
ing software monitors the database processes and
restarts them as necessary (possibly after failing
over to another node in the cluster).

Although the use of clustering reduces down
time, it does not address the issue of failure
transparency. For example, consider the situa-
tion where a web server is executing a transaction
against the backend database in response to an
HTTP request from a browser. If this web server
crashes, the browser (and thereby the end user)
will receive an error message, even if other web
servers are still running. If the transaction was
supposed to update state in the database (pur-
chase tickets, transfer money, and so on), the user
is now left wondering what actually happened—
whether the update took place before the crash.

Current web-based transaction-processing sys-
tems typically cover the following spectrum in
terms of failure handling:

e Users are exposed to failures and given no
assistance in handling them.

e Users are exposed to failures and given
warnings about what not to do.

In the latter case, for example, when the user
submits a form to start a transaction, the web
server may return a page with a warning, inform-
ing the user of the dangers of re-submitting the
form. The user is not empowered with safe retry
mechanisms, but instead told to contact customer

service in case of failures. The user is essentially
”empowered” with a transaction id, to give to cus-
tomer service, instead of retry logic.

Our aim in this paper is to isolate users from
the handling of errors. Abstractly speaking,
isolation from errors is equivalent to exactly-
once semantics for the user-initiated transaction.
Thus, we can re-phrase our aim as providing e-
transactions (exactly-once transactions) for the
web environment. We provide a large degree of
automatic retry where the user is not involved
in the error handling at all. Furthermore, in the
situations where retry is not automated, we em-
power the user with safe retry. With safe retry,
errors are visible to users, but users can determine
the outcome (commit or abort) of the transaction
through interaction with the web site. For exam-
ple, the user may follow a link to an “outcome
determination” page where the outcome can be
retrieved.

There is a direct correlation between how much
one can isolate users from error handling and
the expressiveness of the error-handling logic in
the browser. For example, if we assume that
browsers download and run applets, which then
access middle-tier application servers via proto-
cols such as IIOP or RMI, we can inject arbi-
trary retry logic in the stub that the applet uses
to communicate with middle-tier servers. This is
the approach taken in [FGO1, FG00]. With arbi-
trary client-side logic, we can completely isolate
users from errors. In this paper, we consider the
very common case where browsers download web
pages only. That is, we assume that the proto-
col between browsers and servers is HT'TP, and
that the content being downloaded is standard
HTML. Moreover, we do not want to rely on
browser plug-ins since many users are reluctant
to install them. By considering pure HI'TP and
HTML only, we can apply our mechanisms very
broadly, but we cannot completely isolate users
from error handling. The intuitive reason that
we cannot obtain complete transparency is that
the error-handling logic is essentially embedded
in downloaded pages. This means that there is
a “vulnerability” window from the time a form
is submitted until the page with error-handling

logic is received by the browser.
Considering pure HTTP and HTML imposes
certain constraints:

e The client-server protocol is a pure request-
reply protocol. That is, the server cannot
notify the client; the server only responds
to client requests.

e Execution of logic by the client is visible to
the user. For example, if we want the client
to send a request to the server to check if a
transaction is still in progress, the browser
would have to request a web page from the
server, and this web page would be rendered
by the browser. Thus, we have to be judi-
cious about how often we issue requests.

We present a protocol that ensures e-
transaction semantics, except in a small num-
ber of failure cases. In those cases, the proto-
col ensures at-most-once instead of exactly-once.
The protocol uses pure web technologies, such
as HTTP and HTML, and takes the above con-
straints into account. Thus, the protocol can be
used with standard browsers, and with the stan-
dard content-delivery methods.

We first present the idea behind our protocol
as abstract pseudo-code in Section 2. We then
show how to implement the protocol in the con-
text of the very common JAVA servlet program-
ming model. We present this implementation in
Section 3. Finally, in Section 5, we discuss our
approach and draw our conclusions.

2 Protocol

2.1 Assumptions

We assume a system with standard web servers
and web browsers. The browsers request pages,
in HTML, from the web servers using the HTTP
protocol. Web servers can fail by crashing, that
is, they execute their prescribed behavior until
they crash—we do not consider Byzantine fail-
ures. Any available web server can treat a re-
quest from a web browser. To execute browser

requests, web servers run transactions against a
shared database. We do not explicitly consider
availability of the database in this work. We sim-
ply assume that a database will eventually recover
from any failure either using standard availability
clustering techniques or with a more sophisticated
mechanism such as the one described in [PF00].

In order to ensure exactly-once semantics, we
rely on the browser to stay up until the trans-
action finishes its execution—this is because the
transaction retry logic is driven by the browser.
This does not imply that a browser crash can
lead to arbitrary behavior by the system. If a
browser crashes, our protocol ensures at-most-
once semantics. In Section 5, we discuss how to
extend our scheme to cope with browser recov-
ery, that is, how to enforce exactly-once semantics
even in the event of browser crashes.

We assume that at any time there is at least one
web server up and available to process requests.
Moreover, we assume that the web servers run
as part of a “web-server farm” that is accessed
through a single DNS entry, and we assume that
the DNS name resolution will eventually resolve
the name of the web-server farm to an operational
web server. This means that if the web server be-
ing used by a web browser crashes, the browser
will eventually resubmit the request, which will
be delivered to an operational web server. This
DNS-based approach is a standard method for
handling web-server farms.

In response to certain page requests, a web
server may start a transaction against a back-
end database. We assume that the database al-
lows XA-style [x/O91] transaction control. We
can use a start method to initiate transactions,
and commit or abort methods to terminate the
transaction. We augment the XA-based termina-
tion with the notion of a testable transaction as
defined in [FGO00]. Essentially, a testable transac-
tion is one whose outcome (commit or abort) and
result (the value which is produced by the trans-
action’s SQL statements) can be determined in a
fault-tolerant and highly-available manner. For
the very common case of a single backend data-
base, the testable interface can be layered on top
of the XA transaction handling mechanism. In

interface testable {
Outcome commit(Result,UUID);
void rollback(UUID);
Result get-outcome (UUID);

}

Figure 1: The signature of testable transactions

Section 5, we discuss how to implement the notion
of testable transaction on top of a single, standard
database.

The functionality of testable transactions is
available through the interface in Figure 1. The
commit method tries to commit a given trans-
action with a given result. The get-outcome
method takes a transaction identifier and re-
turns the result for that transaction, if any. If
get-outcome returns nil, no result has been com-
mitted yet for that transaction. The rollback
method simply terminates a given transaction
without committing it. Transaction identifiers
are global: one web server can call commit and
another web-server can call get-outcome for the
same transaction. Moreover, we require the out-
come and result information to be highly avail-
able in the sense that one web server can commit
a transaction, and another web server can deter-
mine the outcome and result of the transaction
independently of the first web server, that is, even
if the first web server crashes.

To provide exactly-once semantics for transac-
tions, we assume that any transaction will even-
tually be able to run to completion and generate
a result. The database is allowed to fail an arbi-
trary number of times, but must eventually stay
up long enough to execute transactions to com-
pletion.

2.2 Failure-Free Execution

In Figure 2, we illustrate the protocol’s basic
interaction by considering a run without failures.
Since the protocol is based on HTTP, it consists of
a number of request-reply interactions. In the fig-
ure, these interactions are demarcated by dashed

browser web server

:_ GET(form-URL) }
| |
stepl | generate-form() |
|| form-page(UUID) |
e e —— .}
fill in form

POST(submit-URL,UUID,data)

I—

step2 .
status—page(UUID,data,time)
—_,—_————————— e —————— 1
reload(status—URL,UUID,data,time) |
\ |
step3

Q
=
[0}
Q
A
c
=
o
o
=3
i
=
3
&

|

Figure 2: A run of the protocol without failures

boxes, and denoted as stepl, step2, and step3
respectively.

The first step of the protocol is for the client
to request the web page, which contains the
form to be submitted with exactly-once seman-
tics. The URL of this form is form-URL. We
show the server-side logic in Figure 3 as pseudo
code. To serve up the page with form-URL, the
server first generates a globally unique identifier
(UUID), and then embeds the generated UUID in
the HTML returned to the browser. (Notice that
the HTML “form-page(UUID)” returned to the
browser in Figure 3 is generated by the “form-
html(uuid)” method.) The UUID will be used as
an identifier for the server-side transaction which
processes the form data. The idea is for the
browser to pass this UUID back to the server
when the browser submits the form. To make
this work, we can either store the UUID in an in-
memory cookie in the browser, or we can store the
UUID in the URL that the client uses to submit
the form (this URL is part of the server-generated
form). In general this UUID can be handled sim-
ilarly to the session identifiers that web servers
often use today.

When the browser receives the form page with

the embedded UUID, it renders the page, and
the user can now fill in the form data as usual.
When the user has entered the form data, he
pushes a submit button in the form to send the
form data to the web server for processing. The
server-side processing is transactional, and this
is the transaction that we want to give exactly-
once semantics. When the user pushes the sub-
mit button, the browser sends the filled-in form
to the web server with an HTTP POST request.
In response to this request, the server executes
the start-transaction method. This method
asynchronously launches a transaction to execute
the business logic (the business logic is described
in the method called biz-logic). After launch-
ing the transaction, the server returns a so-called
status page to the browser.

The status page informs the user that the
transaction is in progress. The status page is set
to automatically reload after a few seconds using
the appropriate HTML tag. Reloading the sta-
tus page, whether automatically or by the user
issuing a page refresh, executes the server-side
method called check. This method checks the
status of the server-side transaction.

To properly identify the transaction, the sta-
tus page contains the UUID for the transaction.
When the status page is reloaded, this UUID is
passed back to the server. In addition, the status
page contains the form data so that the trans-
action can be retried if the previous incarnation
is determined to have failed. Finally, the sta-
tus page contains a timestamp that the server
can use to determine if a certain timeout period
has elapsed since the transaction was launched.
By causing the (automatic) reload, the browser
checks the status of the server-side transaction
without the user being involved.

The logic of the check method is the following.
If the transaction has been active for less than a
given timeout value, the check method simply in-
vokes the get-outcome method to see if the trans-
action has produced a result. If get-outcome re-
turns nil, the transaction may still be active or
it may have crashed before committing. With-
out calling rollback, we cannot distinguish be-
tween the two situations. If we call rollback,

we can eliminate the first case (transaction still
active) because rollback will cancel the transac-
tion. However, we do not want to call rollback
too aggressively: we want to give the transaction
time to execute before cancelling it. Thus, we use
the timestamp to determine if we simply check
(by calling get-outcome) or check after cancelling
(by first calling rollback). If we know that the
transaction did not commit, and will not commit
because we have cancelled it, we retry the trans-
action.

In Figure 2, we assume that the transaction has
committed and stored its result in the testable
transaction abstraction. Thus, the first call to
get-outcome returns a non-nil result, which is
then returned to the browser as part of a result

page.

2.3 Failure Handling

Getting the form from the server (step1 in Fig-
ure 2) is idempotent, and does not require any
failure handling beyond reload by the user.

If the browser uses a web server that fails dur-
ing the second step, we have to distinguish be-
tween the following two cases: (1) the browser
receives the status page and (2) the browser does
not receive the status page. In (1), the reload
logic for the status page will perform the check
against another web server. Here, the fail-over
from one web server to another is taken care of
by the DNS resolution against the cluster of web
servers. In (2), the browser will eventually time
out and display an error message to the user. In
this situation, we need to involve the user in the
failure recovery somehow. One way is to embed
the URL of the status page in the form as a link,
and instruct the user to follow that link in case of
errors. These instructions also have to be part of
the form.

If the third step fails, the user can simply re-
load the status page manually. Reloading the sta-
tus page n times has at-most-once semantics be-
cause the server-side logic in the check method
will only launch a new transaction if all previous
attempts have failed.

html generate-form() {
uuid := new UUID();
return form-html (uuid);

}

void biz-logic(uuid,data) {
start(uuid) ;
// Execute SQL with data as argument.
// Store result in the variable res
testable: :commit (res,uuid);

}

html start-transaction(uuid,data) {
// Spawn new thread to execute biz-logic
// with uuid and data as arguments
time := current-time();
return stat-page-html (uuid,data,time);

}

html check(uuid,data,time) {
if current-time() - time > timeout then
testable: :rollback(uuid) ;
res := testable::get-outcome(uuid);
if res == nil then
return start-transaction(uuid,data);
else
return result-page-html(res);
else
res := testable::get-outcome(uuid);
if res !'= nil then
return result-page-html(res);
else
return stat-page-html(uuid,data,time);

Figure 3: The server-side logic

3 Applying Web e-Transactions to
Java Servlets

The Web e-Transaction protocol was de-
signed with the web based three-tier environ-
ment in mind. We have built a prototype
of the protocol using Java Servlets [SunOla].
Servlets are a server-side programming model
for executing logic in response to web-based
HTTP requests, similar to the Common Gate-
way Interface (CGI). Servlets are provided with
the parameters to the HTTP request via a
HttpServletRequest and produce output includ-
ing an HTML stream to be rendered by the
browser via a HttpServletResponse object. We
chose this platform because it closely matches our
assumed, three-tier environment, is widely avail-
able, and is extremely popular. The prototype is
intended to validate our assumptions about the
three-tier environment.

In implementing the Web e-Transaction sys-
tem, we have had two design principles:

e Minimize changes to existing code. We
hope to introduce the new protocol with-
out making significant changes to code al-
ready developed for the servlet program-
ming model.

e Minimize the vulnerability window. As dis-
cussed in the protocol description, there are
intervals in which a failure on the server will
require the user to re-initiate an operation.
We strive to keep these intervals as small as
possible to reduce the likelihood that a user
must become involved in recovery.

Figure 4 is a high-level outline of the servlet
based prototype. While obviously not complete,
this example is intended to show how the pro-
tocol can be adapted to the servlet model with-
out significant changes to the abstract implemen-
tation in figure 3. We also use this example to
demonstrate our design principles. For purposes
of discussion, we do not use the full Java syntax,
and remove many details such as synchronization
points which are important, but confuse the dis-
cussion.

void FormServlet (HttpServletRequest req,
HttpServletResponse resp) {
request.getSession(true);
// Normal Form Creation processing
// with Form handling servlet name stored
// in a hidden field,
// and action set to the Start servlet
}
void BizLogic(HttpServletRequest req,
HttpServletResponse resp) {
WeTDriver.getConnection(¢ ‘JDBC-URL’’) ;
// Execute JDBC commands and other logic
// Output result normally
// Do NOT commit any JDBC updates
}
void Start(HttpServletRequest req,
HttpServletResponse resp) {
WorkQueue.queue(req.clone(),
resp.clone());
SendStatPage(req, resp);
}
void Check(HttpServletRequest req,
HttpServletResponse resp) {
result = getOutcome(req.getSession());
if (result != null) {
result.send(resp);
return;
}
job = getJobFromQueue(req.getSession());
if (currentTime() - job.time > timeout) {
job.abort();
WorkQueue.queue(job.req, job.resp);
} else {
SendStatPage(job.req, job.resp);
}
}
void WorkerThread() {
while(true) {
job = getJobFromQueue() ;
servlet = job.targetServlet;
try {
// Begin Transaction
servlet.service(job.req, job.resp);
storeQutcome(job.req, job.resp);
removeJobFromQueue (job) ;
// Commit Transaction
} catch (Exception e) {
// Abort transaction

Figure 4: Servlets implementing the protocol

The first two methods, FormServlet and
BizLogic are intended to represent the servlets
for generating and processing the form respec-
tively. These servlets are created as part of the
web application, and are independent of the web
e-transaction protocol. In general, we assume
they have been developed prior to the introduc-
tion of the protocol, so we are concerned with
minimizing changes to them.

We place two requirements on the
FormServlet. First, it must create a ses-
sion for the user. This session is used to identify
the user’s operations in the same way the uuid is
used in the protocol description. This is a com-
mon practice, most Java servlet based systems
will already do this. Second, the generated form
must be changed so that the protocol handling
logic is invoked rather than directly invoking the
form handling BizLogic servlet. Our approach
to this is to change the form servlet to invoke
our Start servlet. Further, we embed the name
of the BizLogic servlet as a hidden field in the
form so that our Start servlet knows the proper
logic to execute to handle the form.

The BizLogic servlet must be changed only in
how it interacts with the database tier. In this
example, we assume that JDBC [SunO1b] is be-
ing used to send SQL statements to the database.
The protocol requires that we commit the result
of the servlet call (which we assume to be the
HttpServletResponse object at the end of the
method) atomically with the updates performed
by the business logic. There are a variety of ap-
proaches to solving this problem. The approach
used here is to obtain a database connection from
a pool managed by the protocol implementation
via a call to WetDriver.getConnection. Upon
completion, we are able to determine which con-
nection was used by the call (e.g., by storing some
information in thread local storage), and commit
or abort the transaction as needed. The servlet
will not perform the commit operation. Instead,
it will be done on behalf of the servlet as we show
below.

The remainder of the example is new logic in-
troduced which drives the protocol. This needs
to be implemented only once, and can be ap-

plied to an arbitrary number of form generating
and business logic servlets. The Start servlet
is called when a form is received from the client
browser. Its job is to quickly queue the incom-
ing form data and return the status page. This
must be done quickly because the interval dur-
ing which the servlet is running constitutes one
of our vulnerability windows. We also must in-
sure that the form data cannot be lost. There
are two approaches to solving this problem. One
is to embed the form data in the status page re-
turned. This creates a larger HTML stream to be
returned, and incurs some processing overhead.
The other is to store the form data in a persis-
tent location, such as the database, as part of the
queuing operation. KEither approach is possible,
but avoiding interactions with the database seems
to minimize the vulnerability window. The status
page generated forces the browser to automati-
cally invoke the Check servlet after a short delay
via the HTML meta-operation “refresh.” The al-
gorithm of the Check servlet is identical to the
check method of figure 3. We use the session to
search for outcomes in place of the UUID used in
the previous code.

We assume that one or more instances of the
WorkerThread are always running in the back-
ground.! These threads simply remove service
requests (jobs) from the work queue, and invoke
the servlet associated with the request. The most
important role of the worker threads is to in-
sure that transactions are properly committed or
aborted. As discussed previously, this can be
done by tracking the use of JDBC connections.
Before invoking the servlet, a transactional con-
text is initiated. If the servlet executes normally
(i.e., no exceptions are thrown), the thread stores
the result to the database, and commits both the
result and the servlet’s operations. In the event
of an exception, the transaction is aborted. In
the event of a servlet failure we could either re-
queue the job to be tried again, perhaps with a
maximum number of re-tries, or generate a re-

In the abstract implementation, we describe creating
a thread for each request as it arrives. The prototype uses
a pool of threads for efficiency, but the methods are oth-
erwise equivalent.

sult signaling a permanent failure to the user. If
we do generate such a failure, the user has the
added benefit of knowing that no operations of
the transaction were committed.

4 Related Work

Traditional web-based applications use back-
end transaction monitors [BN97] to provide relia-
bility. Transaction monitors ensure that applica-
tion servers update backend databases atomically
(i.e., with all-or-nothing semantics). Although
transaction monitors keep the backend state con-
sistent, they do not provide end-to-end reliability:
the atomicity guarantee does not include the fron-
tend browser. The goal of [L.S98] is to extend the
backend atomicity semantics to also cover client-
side state, such as cookies or other goods that the
client has purchased from the service. The main
idea is to use a notion of resource proxy to make
the client transactional without registering it with
the backend transaction monitor. In contrast to
our approach, [LS98] relies on the downloading
of applet code to the browser. Moreover, the
atomicity guanrantee requires a two-phase com-
mit protcol, even if there is only a single backend
database (in [FG00], we show how to implement
the testable transaction abstraction with a one-
phase commit protocol for a single database).

Rather than end-to-end atomicity (all-or-
nothing), we focus on masking backend failures
to frontend clients. Where atomicity gives at-
most-once semantics, we are interested in exactly-
once semantics. We defined the notion of e-
transaction, and developed protocols to imple-
ment e-transactions in various settings [FGOO,
FGO1]. Unlike those protcols that assume ar-
bitrary retry logic at browsers, the protocol in
this paper relies on standard HTML handling
only. Another way to provide exactly-once se-
mantics in three-tier systems is through message
queues [BHMO90]. For web-based applications,
this would require client requests to go through
message queues. Besides requiring significant re-
architecting of existing web-based applications,
this also would incur a performance penalty: stor-
ing requests in message queues gives rise to ad-

ditional disk writes in the critical path. Fur-
thermore, using message queues would require a
server-side two-phase commit protocol, even with
a single backend database because the queues are
now transactional resources.

5 Discussion

This paper discusses implementation issues
about web e-transactions, a powerful abstraction
to build e-transactions on the Internet. In con-
trast to current related protocols, which require
some sort of retry logic in the client-side software,
our protocol assumes a standard web browser and
only uses the semantics of HTML and HTTP to
implement the required client-side retry logic.

As part of our protocol, after the browser sub-
mits a form, it quickly receives a “transaction
in progress” page in return from the web server.
This operation needs to be as fast and simple as
possible because if the server should fail during
this operation, the user will be required to re-
post the form manually. The process of quickly
returning a transaction in progress page is already
used by many e-commerce sites, and should not
be terribly jarring to users.

Our protocol also relies on the notion of
testable transactions. With a single backend
database, we can implement a testable transac-
tion by storing the transaction result in the data-
base itself. This approach is outlined in [FGO0O].
The basic idea is for the commit method in the
testable abstraction to execute SQL statements
within the pending transaction, which inserts the
result and transaction identifier into a special
“log” table in the database. We can then im-
plement get-outcome in terms of queries against
this table. Because the table insertion is per-
formed within the pending transaction, the stor-
age of the result and the transaction commit are
atomic.

If the transaction committed, the result is sent
to the browser. Returning the result to the user
could fail, however, so it is not safe to immedi-
ately remove the result from the database. The
result information store in the testable transac-

tion abstraction will have to be garbage collected
as described in [FGO0O].

Finally, we rely on browser liveness during the
execution of a transaction to extend at-most-once
to exactly-once. If a browser crashes, it ob-
tains at-most-once semantics. We can extend our
scheme to facilitate browser recovery in the fol-
lowing way. When the browser receives the form
in the first step of our protocol, the server could
ask the browser to store the UUID in a cookie.
The UUID is then persistent, and can be used if
the browser recovers after a crash. That is, the
web site can provide a recovery page that users
can go to after a crash. When loading the re-
covery page, the browser sends the cookie with
the UUID to the server, and the server can then
use the outcome determination of testable trans-
actions to figure out what happened and instruct
the user accordingly.

Our future work will be to continue to vali-
date the protocol via prototyping. Our initial
prototype has demonstrated the validity of the
protocol in simple cases, but we need to mea-
sure the vulnerability windows, and continue to
look for ways to minimize it to ensure that users
are not required to be involved in failure recov-
ery. We also would like to find more seamless
ways to integrate web e-transactions into existing
web application environments. This may include
incorporating other technologies, such as Enter-
prise Java Beans, into the implementation. Be-
cause the logic for the protocol is independent of
the logic of the applications, it should be possi-
ble to move it into the web servers directly. This
should reduce the visible changes to existing web
applications. For example, they would no longer
be required to change the name of servlets they
invoke.

References

[BHM90] P. Bernstein, M. Hsu, and B. Mann. Imple-
menting recoverable requests using queues.
In Proceedings of the 1990 ACM SIGMOD
International Conference on Management
of Data, May 1990.

[BN97] P. A. Bernstein and E. Newcomer. Prin-

[FGOO0)]

[FGO1]

[LS98]

[PFO0]

[SunOla]
[Sun01b)]

[x/091]

ciples of Transaction Processing. Morgan-
Kaufmann, 1997.

S. Frglund and R. Guerraoui. A pragmatic
implementation of e-transactions. In Pro-
ceedings of the IEEE Symposium on Reli-
able Distributed Systems, October 2000.

S. Frglund and R. Guerraoui. Implement-
ing e-transactions with asynchronous repli-
cation. IEEE Transactions on Parallel and
Distributed Systems, 12(2), February 2001.

M. C. Little and S. K. Shrivastava. Integrat-
ing the object transaction service with the
web. In Proceedings of the Second Interna-
tional Workshop on Enterprise Distributed
Object Computing (EDOC). IEEE, 1998.

F. Pedone and S. Frglund. Pronto: A fast
failover protocol for off-the-shelf commercial
databases. In Proceedings of the 19th IEEE

Symposium on Reliable Distributed Systems
(SRDS), October 2000.

Java servlet technology. http://java.sun.
com/products/servlet /index.html, 2001.

Jdbc technology. http://java.sun.com/
products/jdbc/index.html, 2001.

x/Open Company Ltd. Distributed Trans-
action Processing: The XA Specification,
1991. XO/SNAP/91/050.

