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In this paper we describe an architecture, NFS^2, for uniting 
several NFS servers under a single namespace. This 
architecture has some interesting properties. First, the physical 
file systems that make up an NFS^2 instance, i.e., the file 
systems on the individual NFS servers, may be heterogeneous. 
This, combined with the way the NFS^2 namespace is 
constructed, allows files of different types (text, video, etc.) to be 
served from file servers (potentially) optimized for each type. 
Second, NFS^2 storage is strictly partitioned-each NFS server 
is solely responsible for allocating the resources under its 
control. This eliminates resource contention and distributed 
lock management, commonly found in cluster file systems. 
Third, because the system may be constructed with standard 
NFS servers, it can benefit from existing HA solutions for 
individual nodes, and improves as NFS servers improve. 
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Abstract 
In this paper we describe an architecture, NFS^2, for 
uniting several NFS servers under a single namespace.  
This architecture has some interesting properties.  
First, the physical file systems that make up an NFS^2 
instance, i.e., the file systems on the individual NFS 
servers, may be heterogeneous.  This, combined with 
the way the NFS^2 namespace is constructed, allows 
files of different types (text, video, etc.) to be served 
from file servers (potentially) optimized for each type.  
Second, NFS^2 storage is strictly partitioned—each 
NFS server is solely responsible for allocating the 
resources under its control.  This eliminates resource 
contention and distributed lock management, 
commonly found in cluster file systems.  Third, 
because the system may be constructed with standard 
NFS servers, it can benefit from existing HA solutions 
for individual nodes, and improves as NFS servers 
improve. 

1 Introduction 
NFS servers are widely used to provide file service on 
the Internet.  However, adding new servers to an 
existing namespace is management intensive, and in 
some ways inflexible.  When a new server is brought 
online, all clients requiring access to the new server 
must be updated to mount any new file systems from 
the server, and access rights for the new file systems 
must be configured on the server.  Additionally, the 
new file systems are bound to sub-trees of each 
client’s namespace. 
 
The NFS^2 architecture allows standard NFS servers 
to be combined into a single, scalable file system.  
Each NFS server is essentially treated as an object 
store.  New servers added to an NFS^2 system 

merely add more object storage—they are not bound 
to a particular location in the namespace.  Clients 
accessing the NFS^2 file system need not be aware as 
new NFS servers are added or removed from the 
system. 

2 Architecture 
Figure 1 shows one possible configuration for an 
NFS^2 file system. 
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Figure 1: An NFS^2 File System 
 
Storage partitions, Pi, are exported to the other parts 
of the system via standard NFS servers, Si, also called 
partition servers.  For scalability of the individual 
partitions/servers, intermediate servers can be 
introduced between the clients and servers.  The 
intermediate servers accept NFS requests from the 
clients, and transform these requests into one or more 
NFS requests to the partition servers.  
 



We describe the architecture under the assumption 
that the intermediate server translation functionality is 
embedded in the partition servers and that clients issue 
requests directly to the partition servers.  An 
implementation based on this assumption would retain 
most of the benefits of the complete system (possibly 
sacrificing some ability to scale with single-file “hot 
spots”), but would also have some beneficial 
simplifications (e.g., reduced leasing overhead, fewer 
network hops, etc.). 
 

3 Implementation 
 
The most important concept behind the construction of 
the NFS^2 namespace is the cross-partition 
reference.  A directory residing in one partition may 
have children (files or directories) residing on another 
partition. 
 
There are a couple of alternatives for implementing 
cross-partition references in NFS^2.  If we are 
allowed to modify the NFS servers, directories can be 
implemented as files in the underlying physical file 
system.  This has advantages that will be explored in 
future work.  With directory files, we can extend 
directory entries to support cross-partition references, 
independent of the physical file systems.  To achieve 
the goal of using unmodified NFS servers, symbolic 
links can be used to construct cross-partition 
references.  We first describe the system in terms of 
directory files (for clarity), and follow this with a 
description of how the same functionality can be 
achieved with symbolic links. 
 
Another alternative is to store directories separately 
from files.  Standard NFS servers are used to store 
files while separate servers are used for the 
namespace (either using directory files, or something 
else).  Cross-partition references enable this 
separation of the namespace from the files.  Servers 
for the namespace could be NFS servers modified to 
support directory files, a database, or some other 
construct.   
 
The NFS^2 file system consists of user files and 
directory files.  Both types of files exist as standard 
files in their respective partitions—a user file, 

/usr/dict/words might be represented as the 
file /abc/123 on partition P3, while the directory 
/usr/dict might be a file /def/xxx (containing 
directory entries) on partition P4.  An NFS^2 
directory entry associates the user’s notion of a file 
or directory name with the system’s name for the 
file/directory, the partition where the file/directory is 
located, and any other relevant information.  For 
example, some entries in /def/xxx could be 
represented as: 
 
 .:/def/xxx:P4 
 ..:/yyy:P6 
 words:/abc/123:P3 
 
File handles passed to the client contain some 
representation of the system’s name for the object 
(file or directory) and the partition where the object 
resides.  This information is opaque to the client, but 
may be interpreted by the load balancer (LB) to direct 
requests to the correct partition server.  Alternatively, 
the information could only be interpreted by partition 
servers, which may then have to forward the request 
one “hop” to the server responsible for the object. 
 
In the initial state, a well-known root partition server 
(say, P1) contains a file, e.g., “/root”, which 
corresponds to the user’s view of the root of the 
NFS^2 distributed file system.  The client mounts the 
file system by obtaining a file handle for the /root 
file as a special case of the lookup RPC. 
 
Let us consider how some operations are handled in 
this file system.  A mkdir request from a client will 
contain a file handle for the parent directory (pfh) and 
a name for the new directory (dname).  A switch 
function is used by LB to direct the request to the 
partition server (Px) where the new directory will 
reside. The switch function arbitrarily defines a policy 
for where new file system objects are created.  Px 
creates a new file  representing dname that has the 
name dname’ in the physical file system served by Px.  
Px then issues a request to the partition server 
responsible for the parent directory, Py (extracted 
from pfh), to add a directory entry: dname:dname’:P x 
to the parent directory file (contained in pfh).  If an 
entry for dname already exists, the operation is 
aborted and dname is removed from Px.  Otherwise, 



the new directory entry is added to the parent 
directory file and the operation completes. 
 
The communication between Px and Py could be 
implemented using the standard NFS and lock 
manager protocols.  Px first locks the parent directory 
file, and checks for the existence of dname.  If no 
entry for dname exists, it can issue an NFS write 
request to add the entry to the parent directory file.  
The directory file is subsequently unlocked.  
Alternatively, this communication could take place via 
a simple supplementary protocol that would allow the 
locking to be more efficient—a single RPC is sent to 
Py, which then uses local file locking for the existence 
checking and update, and returns the completion 
status. 
 
File creation is essentially identical to mkdir. 
 
The read and write operations are trivial: 
 
write(fh, data, offset, length): 
 

• Ci sends the request to LB. 
• LB looks into fh and directs the request to the 

appropriate Sj. 
• Sj issues a local write call to the file specified 

in fh. 
 
Read is similar. 
 
To construct cross-partition references with symbolic 
links, we can build an NFS^2 cluster as a proof-of-
concept as follows.  First, each partition is assigned a 
name (assume Pi, as in Figure 1).  The NFS servers 
then mount all partitions into their local namespace at 
locations /P1, /P2, etc. using the standard mount 
protocol.  Now, a cross-partition reference is created 
by making a symbolic link that references the physical 
file through one of these mount points. 
 
For the example: 
 

words:/abc/123:P3 
 
An underlying file, /abc/123, contains the data for 
the file, and resides on partition P3.  The namespace 

entry words is a symbolic link in its parent directory 
with the link contents: /P3/abc/123. 
 

4 Future Work 
There are several areas requiring further investigation.  
Performance of the architecture in its various possible 
incarnations (the symbolic link version, the directory 
file version, and others) must be studied. 

We also want to investigate the potential uses and 
performance implications of directory files.  Directory 
files were conceived for the NFS^2 architecture to 
address the problem of providing a single directory 
structure over diverse underlying file systems, and the 
need for an easily extensible directory structure.  Such 
benefits may be useful for other file system research.  
Also, because directory files allow flexibility of the 
directory structure, they could be used to investigate 
alternative data structures for directories, and 
alternative naming schemes. 

Due to the structure of cross-partition references, 
object-level migration should be relatively straight- 
forward in NFS^2.  Migration and replication are two 
more areas requiring further research. 

5 Related work 
There has been a significant amount of research and 
product development in the area of cluster file systems 
[1,2,4].  Most are based on principles established in the 
VAXclusters [2] design.  These systems use 
distributed lock management to control access to 
shared resources, which restrict their scalability.  
NFS^2 partitions resources to eliminate DLM. 

Frangipani [1] uses a partitioning approach to shared 
resources at the volume level—each volume has its 
own DLM [3].  However, the file system 
implementation on top of the partitioned volumes is still 
limited by shared resource contention at the file 
system level. 

6 Conclusions 
NFS^2 provides a mechanism for uniting NFS servers 
under a single namespace.  It simplifies management 
of multiple NFS servers by providing access to all 
servers through a single namespace (no need for 



multiple client mount points), and by providing a 
transparent mechanism for the addition of new servers 
as the system grows. 

This system avoids distributed lock management, 
which has been a limiting factor in the scalability of 
cluster file systems.  NFS^2 supports heterogeneous 
physical file systems within the single namespace, 
whereas other systems have relied on their own 
proprietary physical file systems. 
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