

Building a Single Distributed File System from
Many NFS Servers

Dan Muntz
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2001-176
July 12th , 2001*

E-mail: dmuntz@hpl.hp.com

file system,
distributed,
NFS,
virtualization

In this paper we describe an architecture, NFS^2, for uniting
several NFS servers under a single namespace. This
architecture has some interesting properties. First, the physical
file systems that make up an NFS^2 instance, i.e., the file
systems on the individual NFS servers, may be heterogeneous.
This, combined with the way the NFS^2 namespace is
constructed, allows files of different types (text, video, etc.) to be
served from file servers (potentially) optimized for each type.
Second, NFS^2 storage is strictly partitioned-each NFS server
is solely responsible for allocating the resources under its
control. This eliminates resource contention and distributed
lock management, commonly found in cluster file systems.
Third, because the system may be constructed with standard
NFS servers, it can benefit from existing HA solutions for
individual nodes, and improves as NFS servers improve.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

Building a Single Distributed File System from Many
NFS Servers

Dan Muntz

Hewlett-Packard Labs
1501 Page Mill Rd, Palo Alto, CA 94304, USA

dmuntz@hpl.hp.com

Abstract
In this paper we describe an architecture, NFS^2, for
uniting several NFS servers under a single namespace.
This architecture has some interesting properties.
First, the physical file systems that make up an NFS^2
instance, i.e., the file systems on the individual NFS
servers, may be heterogeneous. This, combined with
the way the NFS^2 namespace is constructed, allows
files of different types (text, video, etc.) to be served
from file servers (potentially) optimized for each type.
Second, NFS^2 storage is strictly partitioned—each
NFS server is solely responsible for allocating the
resources under its control. This eliminates resource
contention and distributed lock management,
commonly found in cluster file systems. Third,
because the system may be constructed with standard
NFS servers, it can benefit from existing HA solutions
for individual nodes, and improves as NFS servers
improve.

1 Introduction
NFS servers are widely used to provide file service on
the Internet. However, adding new servers to an
existing namespace is management intensive, and in
some ways inflexible. When a new server is brought
online, all clients requiring access to the new server
must be updated to mount any new file systems from
the server, and access rights for the new file systems
must be configured on the server. Additionally, the
new file systems are bound to sub-trees of each
client’s namespace.

The NFS^2 architecture allows standard NFS servers
to be combined into a single, scalable file system.
Each NFS server is essentially treated as an object
store. New servers added to an NFS^2 system

merely add more object storage—they are not bound
to a particular location in the namespace. Clients
accessing the NFS^2 file system need not be aware as
new NFS servers are added or removed from the
system.

2 Architecture
Figure 1 shows one possible configuration for an
NFS^2 file system.

Cm

I1 In

P1

S1

P2 P3 P4

S2 S3 S4

Pq

Sq

File and Namespace Data Partitions

Potential
“Intermediate Servers”

Partition Servers (NFS servers fronting extendable logical volumes)

Clients

LB

C2 C1

Figure 1: An NFS^2 File System

Storage partitions, Pi, are exported to the other parts
of the system via standard NFS servers, Si, also called
partition servers. For scalability of the individual
partitions/servers, intermediate servers can be
introduced between the clients and servers. The
intermediate servers accept NFS requests from the
clients, and transform these requests into one or more
NFS requests to the partition servers.

We describe the architecture under the assumption
that the intermediate server translation functionality is
embedded in the partition servers and that clients issue
requests directly to the partition servers. An
implementation based on this assumption would retain
most of the benefits of the complete system (possibly
sacrificing some ability to scale with single-file “hot
spots”), but would also have some beneficial
simplifications (e.g., reduced leasing overhead, fewer
network hops, etc.).

3 Implementation

The most important concept behind the construction of
the NFS^2 namespace is the cross-partition
reference. A directory residing in one partition may
have children (files or directories) residing on another
partition.

There are a couple of alternatives for implementing
cross-partition references in NFS^2. If we are
allowed to modify the NFS servers, directories can be
implemented as files in the underlying physical file
system. This has advantages that will be explored in
future work. With directory files, we can extend
directory entries to support cross-partition references,
independent of the physical file systems. To achieve
the goal of using unmodified NFS servers, symbolic
links can be used to construct cross-partition
references. We first describe the system in terms of
directory files (for clarity), and follow this with a
description of how the same functionality can be
achieved with symbolic links.

Another alternative is to store directories separately
from files. Standard NFS servers are used to store
files while separate servers are used for the
namespace (either using directory files, or something
else). Cross-partition references enable this
separation of the namespace from the files. Servers
for the namespace could be NFS servers modified to
support directory files, a database, or some other
construct.

The NFS^2 file system consists of user files and
directory files. Both types of files exist as standard
files in their respective partitions—a user file,

/usr/dict/words might be represented as the
file /abc/123 on partition P3, while the directory
/usr/dict might be a file /def/xxx (containing
directory entries) on partition P4. An NFS^2
directory entry associates the user’s notion of a file
or directory name with the system’s name for the
file/directory, the partition where the file/directory is
located, and any other relevant information. For
example, some entries in /def/xxx could be
represented as:

 .:/def/xxx:P4
 ..:/yyy:P6
 words:/abc/123:P3

File handles passed to the client contain some
representation of the system’s name for the object
(file or directory) and the partition where the object
resides. This information is opaque to the client, but
may be interpreted by the load balancer (LB) to direct
requests to the correct partition server. Alternatively,
the information could only be interpreted by partition
servers, which may then have to forward the request
one “hop” to the server responsible for the object.

In the initial state, a well-known root partition server
(say, P1) contains a file, e.g., “/root”, which
corresponds to the user’s view of the root of the
NFS^2 distributed file system. The client mounts the
file system by obtaining a file handle for the /root
file as a special case of the lookup RPC.

Let us consider how some operations are handled in
this file system. A mkdir request from a client will
contain a file handle for the parent directory (pfh) and
a name for the new directory (dname). A switch
function is used by LB to direct the request to the
partition server (Px) where the new directory will
reside. The switch function arbitrarily defines a policy
for where new file system objects are created. Px
creates a new file representing dname that has the
name dname’ in the physical file system served by Px.
Px then issues a request to the partition server
responsible for the parent directory, Py (extracted
from pfh), to add a directory entry: dname:dname’:P x
to the parent directory file (contained in pfh). If an
entry for dname already exists, the operation is
aborted and dname is removed from Px. Otherwise,

the new directory entry is added to the parent
directory file and the operation completes.

The communication between Px and Py could be
implemented using the standard NFS and lock
manager protocols. Px first locks the parent directory
file, and checks for the existence of dname. If no
entry for dname exists, it can issue an NFS write
request to add the entry to the parent directory file.
The directory file is subsequently unlocked.
Alternatively, this communication could take place via
a simple supplementary protocol that would allow the
locking to be more efficient—a single RPC is sent to
Py, which then uses local file locking for the existence
checking and update, and returns the completion
status.

File creation is essentially identical to mkdir.

The read and write operations are trivial:

write(fh, data, offset, length):

• Ci sends the request to LB.
• LB looks into fh and directs the request to the

appropriate Sj.
• Sj issues a local write call to the file specified

in fh.

Read is similar.

To construct cross-partition references with symbolic
links, we can build an NFS^2 cluster as a proof-of-
concept as follows. First, each partition is assigned a
name (assume Pi, as in Figure 1). The NFS servers
then mount all partitions into their local namespace at
locations /P1, /P2, etc. using the standard mount
protocol. Now, a cross-partition reference is created
by making a symbolic link that references the physical
file through one of these mount points.

For the example:

words:/abc/123:P3

An underlying file, /abc/123, contains the data for
the file, and resides on partition P3. The namespace

entry words is a symbolic link in its parent directory
with the link contents: /P3/abc/123.

4 Future Work
There are several areas requiring further investigation.
Performance of the architecture in its various possible
incarnations (the symbolic link version, the directory
file version, and others) must be studied.

We also want to investigate the potential uses and
performance implications of directory files. Directory
files were conceived for the NFS^2 architecture to
address the problem of providing a single directory
structure over diverse underlying file systems, and the
need for an easily extensible directory structure. Such
benefits may be useful for other file system research.
Also, because directory files allow flexibility of the
directory structure, they could be used to investigate
alternative data structures for directories, and
alternative naming schemes.

Due to the structure of cross-partition references,
object-level migration should be relatively straight-
forward in NFS^2. Migration and replication are two
more areas requiring further research.

5 Related work
There has been a significant amount of research and
product development in the area of cluster file systems
[1,2,4]. Most are based on principles established in the
VAXclusters [2] design. These systems use
distributed lock management to control access to
shared resources, which restrict their scalability.
NFS^2 partitions resources to eliminate DLM.

Frangipani [1] uses a partitioning approach to shared
resources at the volume level—each volume has its
own DLM [3]. However, the file system
implementation on top of the partitioned volumes is still
limited by shared resource contention at the file
system level.

6 Conclusions
NFS^2 provides a mechanism for uniting NFS servers
under a single namespace. It simplifies management
of multiple NFS servers by providing access to all
servers through a single namespace (no need for

multiple client mount points), and by providing a
transparent mechanism for the addition of new servers
as the system grows.

This system avoids distributed lock management,
which has been a limiting factor in the scalability of
cluster file systems. NFS^2 supports heterogeneous
physical file systems within the single namespace,
whereas other systems have relied on their own
proprietary physical file systems.

References
1. Thekkath, C., T. Mann, and E. Lee.

Frangipani: A Scalable Distributed File
System. In 16th ACM Symposium on
Operating Systems Principles (SOSP),
Saint-Malo, France, 1997.

2. Kronenberg, N., H. Levy, and W. Stecker,
VAXClusters: A closely-coupled distributed
system. ACM Tansactions on Computer
Systems, 1986, 4(2): pp. 130-146.

3. Lee, E. and C. Thekkath. Petal: Distributed
Virtual Disks. In ASPLOS VII, MA, USA,
1996.

4. Veritas Cluster File System (CFS), 2000,
Veritas Corp., Mountain View, California.
http://www.veritas.com.

