

Separating Directory Structures from
Physical File Systems

Dan Muntz
Internet Systems and Storage Laboratory
HP Laboratories Palo Alto
HPL-2001-174
July 12th , 2001*

E-mail: dmuntz@hpl.hp.com

file systems,
distributed,
naming,
directories

Traditionally, file systems contain directory structures that are
tightly bound to a particular file system implementation. These
structures may be embedded, both logically and physically, in
the file system and contain data that are specific to the file
system implementation. Changing the directory structure of a
file system can be extremely tedious: the file system code must
be changed and rebuilt, new file system initialization code
(mkfs) is needed, and new recovery code (fsck) is also likely to
be necessary. Several areas of file system research could benefit
from a generic directory structure that is implemented above
the physical file system layer, allowing experimentation with
directory contents and possibly alternative naming schemes.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

Separating Directory Structures from Physical File
Systems

Dan Muntz

Hewlett-Packard Labs
1501 Page Mill Rd, Palo Alto, CA 94304, USA

dmuntz@hpl.hp.com

Abstract

Traditionally, file systems contain directory structures
that are tightly bound to a particular file system
implementation. These structures may be embedded,
both logically and physically, in the file system and
contain data that are specific to the file system
implementation. Changing the directory structure of a
file system can be extremely tedious: the file system
code must be changed and rebuilt, new file system
initialization code (mkfs) is needed, and new recovery
code (fsck) is also likely to be necessary. Several
areas of file system research could benefit from a
generic directory structure that is implemented above
the physical file system layer, allowing experimentation
with directory contents and possibly alternative naming
schemes.

Introduction

Each underlying file system has its own definition for
the structure of a directory. Directory files provide a
directory structure that is independent of the
underlying file systems and allow great flexibility in
customizing directory structures to particular tasks. A
directory file is simply a file in the underlying file
system that contains “pieces” of the namespace for a
file system built on one or many underlying file
systems. Depending on implementation, directory files
may be interpreted by file system clients, servers, or
both. Directory files serve the same purpose as
traditional directories—they completely describe the
namespace of their file system, and they are used very
similarly to existing directory structures. Their
advantage lies in their independence from underlying
file systems, and the flexibility this allows.

An example

Directory files play an important role in the
implementation of a new file system architecture being
developed at HP Labs. A primary goal for this
architecture is to unite heterogeneous file systems into
a single namespace, where any object in the
namespace can reside in any underlying file system, on
any file server. For example, if a user has large
multimedia files, small text files, and some files that
are relatively static over time, all of these files may
appear in a single directory, but may be served
transparently from different file systems and/or file
servers particularly suited to each group.

To achieve this goal, the directory structure is
augmented so that a name in the namespace may
refer to an object on another server; potentially in a
different type of file system. Implementing this
change to the directory structure would normally
require changes to the code and tools of each
underlying file system for which support is needed.
However, by implementing a namespace above the
underlying file systems, it is possible to change the
directory structure for the experimental file system
without changes to each individual file system.

In this case, there is a directory file for the root of the
experimental file system. This directory file is just a
regular data file in some underlying physical file
system. It is initialized with entries for “.” and “..” and
namespace construction may then proceed from this
point. For example, if the root of the file system
resides on a server, S1, and a new file, /F1, is created
on another server, S2, an entry is made in the root
directory file, containing information typically found in
a directory entry, plus any additional information

needed for the experimental file system, e.g., the
information that F1 is located on S2. Currently, there
is a directory file implementation on a Linux 2.4.2
NFSv2 server that functions transparently with
existing NFS clients.

Implementation

An existing implementation of directory files was
completed on Linux 2.2.14 and subsequently on Linux
2.4.2. This implementation consists of modifications to
the Linux kernel NFS server code, but works with any
NFS client. A directory-file-based file system is
created by initializing a root directory file, called
ROOT. The directory containing this file is then
exported. The ROOT file is initialized with entries for
“.” and “..” that both refer to ROOT. An entry in a
directory file consists of:

• The user’s name for the object (e.g.,
passwd)

• The system’s name for the object in the
underlying physical file system (e.g.,
file.001; see below)

• The type of the object (e.g., directory or file)

• Any other information that may be necessary
(e.g., server where the object is located)

For this implementation, file system objects are
created in a flat namespace in the underlying physical
file system(s), and are given unique object identifiers
(a name in the namespace of the underlying file
system). Thus, the directory entry associates the
users’s name for a file with a unique object id used by
the system to retrieve object contents.

In the NFS server code, an exported file system is
flagged as a “directory-file file system” if it contains a
ROOT directory file (this will change in a future
implementation, and is just a temporary hack). All
directory operations for this file system are intercepted
and interpreted in the directory file context. For
example, if a readdir request is received, the
corresponding directory file is opened, its contents are
read, and the appropriate readdir response is
constructed and sent to the client. Reading and

writing of the directory files is handled through the
vnode operations (dirops and fileops) for the
underlying file system.

Future Work

There are at least two uses for directory files currently
being investigated, or considered for work in the near
future. First is the concept of using different data
structures in directory files to improve performance
(even for standard NFS file servers). There is
currently an implementation of directory files using
hashing that provides improved performance for very
large directories.

Another potential use for directory files is the
exploration of alternative naming schemes. As the
contents may be changed easily, it is possible to
explore associating various keys or properties with
objects in the namespace. Files may then be located
by searches on these keys.

Preliminary testing has shown some cost for using
directory files, obviously, but the flexibility of directory
files has also resulted in cases where performance
exceeds that of using the physical file system’s
directory structure. More performance work is
necessary, both for evaluation and optimization.

Related work

ReiserFS [1] uses an alternative directory structure to
increase the performance of a particular physical file
system. By using a B-tree structure, RiserFS
increases performance for operations on large
directories. Directory files could be used to implement
a B-tree or any other data structure on top of any
underlying file system. This concept is also useful for
experimenting with various data structures before
committing to the larger task of developing a physical
file system committed to a specific directory structure.

Conclusions

Directory files provide a very flexible framework for
experimenting with changes to directory structures and
alternative namespaces. There is a working

implementation that is providing the namespace for
ongoing file system experimentation. The separation
of the namespace from the underlying physical file
systems greatly simplifies the task of unifying
heterogeneous file systems. While there is an obvious
cost to using a namespace implemented above existing
file systems, there are cases where this is not only
useful for experimentation, but may also improve
performance.

References

1. Reiser, H., ReiserFS, 2001.
http://www.namesys.com/res_whol.shtml.

