

PRO-COW: Protocol Compliance on the Web
A Longitudinal Study

Martin Arlitt, Balachander Krishnamurthy1
Internet and Mobile Systems Laboratory
HP Laboratories Palo Alto
HPL-2001-17
January 24th , 2001*

E-mail: arlitt@hpl.hp.com, bala@research.att.com

HTTP/1.1
protocol, World
Wide Web,
compliance

With the recent (draft) standardization of the Hypertext
Transfer Protocol − HTTP/1.1 protocol on the Web, it is natural
to ask what percentage of popular Web sites speak HTTP/1.1
and how compliant are these so-called HTTP/1.1 servers. We
attempt to answer these questions through a series of
experiments based on the protocol standard. The tests were
run on a comprehensive list of popular Web sites to which a
good fraction of the Web traffic is directed. Our experiments
were conducted on a global extensible testing infrastructure
that we built to answer the above questions. The tests were
carried out over a period of 16 months and were repeated thrice
during the period. Our results show reasons for concern on the
state of HTTP/1.1 protocol compliance: some servers do not
properly support basic features such as the HEAD method,
while many popular servers do not support some of the key
features (such as persistent connections) that were added in
HTTP/1.1. Perhaps most alarming of all, some servers crashed
during testing. As a result we believe that small (but
significant) changes to the wording of the protocol specification
are required.

* Internal Accession Date Only Approved for External Publication
1 AT&T Labs – Research, 180 Park Avenue, Florham Park, NJ, 07932
 Copyright Hewlett-Packard Company 2001

PRO-COW: Protocol Compliance on the Web|A Longitudinal

Study

Balachander Krishnamurthy Martin Arlitt

AT&T Labs{Research Hewlett-Packard Laboratories

180 Park Avenue 1501 Page Mill Road

Florham Park, NJ 07932 Palo Alto, CA 94304

bala@research.att.com arlitt@hpl.hp.com

Abstract

With the recent (draft) standardization of the Hy-

pertext Transfer Protocol { HTTP/1.1 protocol on

the Web, it is natural to ask what percentage of

popular Web sites speak HTTP/1.1 and how com-

pliant are these so-called HTTP/1.1 servers. We at-

tempt to answer these questions through a series of

experiments based on the protocol standard. The

tests were run on a comprehensive list of popular

Web sites to which a good fraction of the Web traf-

�c is directed. Our experiments were conducted on a

global extensible testing infrastructure that we built

to answer the above questions. The tests were car-

ried out over a period of 16 months and were re-

peated thrice during the period. Our results show

reasons for concern on the state of HTTP/1.1 pro-

tocol compliance: some servers do not properly sup-

port basic features such as the HEAD method, while

many popular servers do not support some of the key

features (such as persistent connections) that were

added in HTTP/1.1. Perhaps most alarming of all,

some servers crashed during testing. As a result we

believe that small (but signi�cant) changes to the

wording of the protocol speci�cation are required.

1 Introduction

With the recent IETF draft standardization of the

Hypertext Transfer Protocol|HTTP/1.1 protocol

in RFC 2616, it is natural to expect a signi�cant

number of clients (browsers), proxies, and servers

would be upgraded to adhere to the HTTP/1.1

protocol requirements. In earlier work, we exam-

ined the key di�erences between HTTP/1.0 and

HTTP/1.1 [KMK99]. In this work, we report on a

longitudinal study that monitored the level of pene-

tration in the Internet of the HTTP/1.1 protocol and

the level of protocol compliance on the Web (PRO-

COW). Many servers (and clients) are con�gurable

and some have already reverted to disabling certain

features (such as persistent connections) for a vari-

ety of reasons.

A wrong way to measure compliance is contacting

a Web server and simply checking if the version num-

ber �eld in the response header is HTTP/1.1. This

ignores the inherent complexity of the Web (e.g.,

presence of proxies and gateways), mis-interprets the

protocol version number in the response header, and

assumes that the server is actually fully compliant

based on the protocol version it reports. The ques-

tion, however, is important and �nding a proper an-

swer based on a clear understanding of the Web

infrastructure and the HTTP/1.1 protocol would

be useful for several reasons. Knowledge of the

number of servers actually running fully compliant

HTTP/1.1 servers would give us a measure of the

protocol adoption rate. If the number is low, it per-

mits us to examine the reasons for the low adop-

tion rate. Repeating the study periodically can be

handy to know if future changes are warranted and

the speed with which they should be introduced. If

compliance with certain features is low, it could have

an impact on introduction of similar new features.

Web sites are the visible front end for e-commerce

companies requiring them to avoid server failures.

As we will see later in the paper, failure to adhere

to some of the compliance requirements could lead

to serious di�culties. An estimate of the tra�c that

is end-to-end HTTP/1.1 helps us quantify bene�ts

(or disadvantages) of the changes to the protocol

that cannot be gleaned by comparing the protocol

version numbers.

There are di�erent audiences for this paper.

Server implementors may be interested in seeing

the level of compliance of their product in prac-

tice. Some servers have front ends that distort and

alter the semantics of the response leading to po-

tentially incorrect conclusion about the compliance

level of that implementation. Protocol designers can

see what ideas actually get reected in usage. Much

debated additions to the protocol may not be imple-

mented properly or may be turned o� via con�gura-

tion options in practice. Knowing the realities would

help them deal with evolving the protocol. Those in-

terested in learning about compliance issues of pro-

tocols in general could see what features are hard to

get right and why. Web site administrators deciding

on moving to the new version of the protocol can see

if a reasonable number of popular sites are running

HTTP/1.1. However, if many of the servers running

HTTP/1.1 are not compliant or if several of the new

features are not enabled, they may want to wait.

Given the enormity of the Web and the complex-

ities of the new version of the protocol (the speci�-

cation nearly tripled in size between HTTP/1.0 and

HTTP/1.1), it is not easy to test the compliance

of deployed Web servers. Fortunately however, our

task is somewhat simpli�ed for three reasons. Prior

work [KMK99] (in which one of the authors of this

paper was involved) examined the key di�erences be-

tween HTTP/1.0 and HTTP/1.1, categorizing and

identifying the important changes in the protocol.

Partitioning of the changes helped isolate the fea-

tures and enabled the rapid construction of the set

of compliance tests. Secondly, although there are

tens of millions of sites, only a small fraction of sites

attract a signi�cant percentage of tra�c. A plausi-

ble list of these sites is available from a set of survey

sites. Thirdly, access to packet traces from a large

ISP helps us verify the accuracy of the survey sites,

calibrate the set of popular servers, and determine

which (new) HTTP headers are commonly used.

Instead of designing a simple experiment that only

addresses the issue of compliance when tested from

a client to an origin server we have designed a global

experimental infrastructure infrastructure spanning

multiple countries and a mix of sites (educational,

commercial, and soon residential sites connected via

ISPs). The infrastructure is used periodically to

study the evolution of protocol compliance. We

conducted the compliance tests over a period of 16

months roughly every six months. Along the way

several popular sites moved from HTTP/1.0 servers

to HTTP/1.1 servers.

We have several signi�cant �ndings. Over a 16

month period, the percentage of servers claiming to

be HTTP/1.1 compliant increased with little im-

provement in the percentage of servers that were

actually compliant. Some popular Web sites failed

even the most basic compliance requirements. A sig-

ni�cant number of servers have turned o� a number

of the key HTTP/1.1 improvements. Several servers

crashed during our testing. Compliance does not

necessarily improve over time. Many of the prob-

lems appear to be caused by incorrect server con�g-

urations or poorly implemented plugins or �lters. A

number of implementors have already utilized the re-

sults of our study. For example, a prominent browser

changed their default behaviour on persistent con-

nections and a server vendor �xed a serious security

hole as a result of an earlier version of our study

(we noti�ed them discreetly and do not divulge the

speci�c problem here).

The rest of this paper is divided as follows:

Section 2 presents motivation for the move to

HTTP/1.1 and Section 3 discusses related work in

this area. Section 4 presents our compliance test-

ing methodology while Section 5 describes the ac-

tual experiment performed to measure the compli-

ance. Section 6 discusses the software used to test

and the environment in which the experiment was

conducted. Section 7 discusses the results of the ex-

periment. We conclude with a summary of the paper

and a discussion of future work.

2 HTTP/1.1 Protocol

Along with the astounding increase in network

tra�c of HTTP packets, several problems were dis-

covered in the HTTP/1.0 protocol. There was no

o�cial standard for the HTTP/1.0 protocol though

there were various implementations. The latest ver-

sion of the Hypertext Transfer Protocol HTTP/1.1

was standardized in June 1999 (in RFC 2616 [ea99])

after over four years of discussion in the IETF HTTP

Working Group. A primary motivation in coming up

with a new version of the protocol was to �x several

known weaknesses in HTTP/1.0. However, during

the process of developing the standard, several in-

termediate \HTTP/1.1" implementations of servers

and clients began showing up on the Web.

As part of the standardization e�ort of HTTP/1.1,

reports on several interoperable implementations of

the components (clients/browsers and servers) had

to be submitted to the W3C{World Wide Web con-

sortium. W3C forum reports describing the features

supported by various implementations are available

in [For]. The information in the forum reports are

submitted by the various individuals/organizations

who developed the components. The forum report

lets developers indicate the subset of features of the

protocol they have implemented and if they have

tested the features.

The testing that is reported in the forum is done

by the developers themselves but occasionally com-

ponents are made available for others to test. Some

of the servers on the forum are very popular on

the Web (e.g., Apache, Netscape-Enterprise, and

Microsoft-IIS) while others are experimental servers

often used in the research community. There is a rea-

sonable amount of variance in the set of features im-

plemented in this collection and compliance testing

cannot be done by just testing the subset presented

in this forum. Given that there are millions of sites

running servers with di�erent con�gurations, it be-

comes important to broaden our compliance testing

base and methodology from that used in the forum.

3 Related work

Measurement of protocol compliance is not en-

tirely novel but we know of no other independent

testing in the HTTP arena. Partially, this is due to

the relative recency of the protocol and HTTP/1.1

is the �rst upgrade since HTTP/1.0. Earlier ver-

sions, such as as HTTP/0.9 and HTTP/1.0 were

never formally standardized. Formal testing of non-

standardized versions would not have been very

helpful. However, the de�ciencies found in the im-

plementations of HTTP/1.0 and the prematurely

(mis-)labeled HTTP/1.1 helped in the clari�cation

of the actual HTTP/1.1 speci�cation. Forum re-

ports [For] from implementors and interoperability

testing conducted via the Web consortium aided in

�nding some problems. In the commercial arena

there are more claims than actual evidence of com-

pliance: many products claim compatibility or com-

pliance with HTTP/1.1 to improve their marketabil-

ity.

4 Methodology

In this section, we present the design decisions of

our experiment. We had to decide if the compliance

tests could be run locally and if not, how to come

up with a canonical set of test sites. We then had

to assemble a testing infrastructure, identify testing

software, and isolate the features to be tested based

on the protocol draft standard. We discuss the var-

ious tradeo�s and the reasons behind the choice of

the approach we took.

One approach to test compliance would have been

to choose just a handful of popular servers (e.g.,

Apache, Netscape, Microsoft-IIS) and run our tests

directly on the software in a lab environment. There

are many reasons for not doing this. First, it is ex-

tremely di�cult to test all of the software con�gura-

tions (we counted nearly 60 di�erent con�gurations

of the Netscape server and close to 700 di�erent con-

�gurations of the Apache server in a recent packet

trace from a large ISP). Secondly, di�erent answers

might result based on where the tests originate (al-

though we did not expect the results to vary based

on client location, but we wanted to con�rm this hy-

pothesis). Thirdly, it is more interesting to see what

installed servers in the �eld do than a particular bi-

nary release with a �xed con�guration. Fourth, it

is not possible to obtain the source and binaries of

all the servers. Several popular sites run proprietary

servers designed just for their organization. Finally,

we wanted to test under real world conditions { our

requests would be like any other Web request. As

will be seen later, this decision was well warranted,

since some server implementors were surprised to see

the circumstances under which their server was be-

ing used.

Additionally, even the information about the

server returned in the HTTP response (in the

Server: header) didn't always include any con�g-

uration information. This leads to anomalies such

as the same feature implemented correctly in some

sites and not so in others, although both sites ap-

parently ran the \same" server instance. Relying on

the server identi�er would thus be a mistake leading

to wrong conclusions.

It has been well known for a while that a small

number of Web sites attract a signi�cant portion

of the Web tra�c. This has led to the compila-

tion of popular Web sites which has signi�cant eco-

nomic value to those sites (revenue from advertise-

ment). Rating sites such as MediaMetrix [Med],

Netcraft [Net], and Hot100 [Hot] o�er statistics on

popularity. In addition, some compilations of well

known corporations such as Fortune 500 [For99] and

Global 500 [Glo98] provide lists of globally known

corporations some of which presumably attract a sig-

ni�cant amount of Web tra�c. Our combined list

contained more than 500 unique Web sites.

Each of the survey sites has a di�erent way of

gathering their data and none of them have made

their methodology transparent enough for indepen-

dent testing. Some even say that they deliberately

withhold this information to ensure surveyed sites do

not misuse it to alter their rankings. Hot100 claims

to survey 100,000 users (40% of whom are outside

the USA). They claim to gather data at \strate-

gic" points on the Internet (not at the browser or

server) which they then sift through. Mediametrix

claims to use a 50,000 user population. Our longi-

tudinal study showed that throughout the 16 month

period in which our study was conducted, over 40%

of the top 150 unique sites from the combined Me-

diaMetrix [Med], Netcraft [Net], and Hot100 [Hot]

ranking lists were the same.

If we are interested in testing compliance of the

HTTP/1.1 protocol, it would make sense to exam-

ine the servers running on popular Web sites. We

performed an initial test to determine which sites

were using HTTP/1.0 and which sites were claiming

to be HTTP/1.1 compliant. All of our remaining

tests were performed using only the list of sites that

claimed to be HTTP/1.1. We contacted each one of

these sites from a variety of locations in the world to

ensure that the client location didn't introduce any

bias. Our clients were either the httperf [MJ98] tool

or handwritten C code imitating basic aspects of a

browser and saving the response headers returned.

Part of the reason for testing from a variety of places

is to extend the tests in the next round to go through

proxies (rather than directly from client to server as

in this work). We also considered some of the W3C

forum reports [For] submitted to the W3C consor-

tium by various server and client implementors to

see if the features that were reported as implemented

and examined in the interoperability tests are indeed

compliant. We included a subset of tests that most

of the implementors had conducted.

Next, it is important to measure the origin server's

compliance without having to worry about the inu-

ence of proxies, gateways, and tunnels in the path.

Proxies, depending on if they are transparent or non-

transparent may modify the requests and alter some

of the headers in either direction. The response from

the server would not be seen directly by the testing

client; only the response sent by the proxy. Our

knowledge of our local networks allowed us to avoid

both non-transparent and transparent proxies at the

client sites. However, even when we send requests

directly from clients to origin servers, it is possible

for an intermediary in front of the server to inter-

cept the request (we noticed several such cases in

our test).

In terms of verifying compliance, we primarily

relied on the protocol standard [ea99]. The pro-

tocol speci�cation has three classes of compliance

by clients, proxies, and servers for features: MUST,

SHOULD, and MAY [Bra97]. The HTTP/1.1 speci-

�cation states that a server implementation that fails

to satisfy one or more MUST requirements is not

compliant. If it satis�es all MUST and SHOULD re-

quirements it is unconditionally compliant and if it

meets all MUST but not all SHOULD requirements

it is conditionally compliant.

It should be noted that our tests are not simply

a test of the MUST, SHOULD, and MAY require-

ments of the HTTP/1.1 draft standard. Instead, we

have divided the tests into categories based on im-

portance to the overall Web infrastructure. While

some servers may have consciously not complied

with some requirements or turned o� some features

(since they are not a MUST requirement), we may

still highlight that fact. The goal of our experiment

was to both classify the servers in terms of com-

pliance and also speculate on the reasons for any

non-compliance. While we have not tested every

feature of the protocol for compliance, we have pri-

oritized and tested some of the key features. The

primary reason we did not develop a complete test

suite for HTTP/1.1 compliance is that it would be

extremely di�cult to automate some of the tests

without having speci�c knowledge of the design of

each site under test (an example of this is provided

in Section 7.2.3. Our testing model is extensible|

other features simply require extensions to the script

which can be plugged into our testing and analy-

sis infrastructure. This enables continued testing

over the long haul as more server sites move to

HTTP/1.1. Our continued testing also helped us to

monitor changes to the servers over time. We also

kept our tests free of biases such as time of day and

location of clients.

5 Compliance experiment

The actual compliance experiment involved ex-

tracting important features from the HTTP/1.1 pro-

tocol speci�cation as presented in RFC 2616, the

HTTP/1.1 draft standard. Several of the features

of 1.1 are carried over from HTTP/1.0 since all

HTTP/1.1 servers have to accept HTTP/1.0 style

requests. We divided our experiment into three cat-

egories: important features in the protocol spec-

i�cation (all of which are MUST conditions; i.e.,

the implementation is not compliant otherwise), fea-

tures that we believe are signi�cant additions in

HTTP/1.1, and features that are not mandatory in

servers yet are considered useful in evolving the pro-

tocol. We expect every compliant server to meet

the tests of the �rst category, most to meet the

second category tests, and expect signi�cant vari-

ance in compliance for the third category tests. Our

testing infrastructure can be easily extended to do

other compliance tests by augmenting the scripts

and reusing the largely automated analysis process.

5.1 Category One tests

In the �rst category of the experiment we tested

GET and HEAD methods with modi�ers as warranted,

and tested for the absence of the required Host

header. We expect these tests to succeed in any com-

pliant HTTP/1.1 server. Servers that do not imple-

ment the above features correctly are presumably in-

validly labeling themselves as HTTP/1.1. It should

be noted that the version number in an HTTP mes-

sage is a hop-by-hop header (as opposed to an end-

to-end header) and since our tests are directly from

client to origin server, we get exactly the version

number the origin server claims it implements.

A vast majority of all HTTP requests made to

Web servers are GET, the basic way to request a

resource on the Web. The HEAD method requests

that only metadata about the resource be returned

and is often used to debug servers. Neither of these

methods are new in HTTP/1.1, nor has their be-

haviour changed signi�cantly. Use of modi�ers with

GET (such as If-Unmodified-Since), however, are

new and thus included in our tests. These tests are

to verify that servers respond with (the new response

code) 412 Precondition Failed, when the precon-

dition fails.

The Host header was added to slow down the

depletion of IP addresses, due to a rush to obtain

vanity URLs (such as www.foo.com) and HTTP/1.0

requests not passing the hostname of the request

URL. Rather than change the request line format

(which would cause massive con�guration di�cul-

ties), a new (Host:) header was mandated to be

present in every HTTP/1.1 request message. If a

HTTP/1.1 request message does not have the Host:

header it must be rejected.

5.2 Category Two tests

The second category of tests consists of impor-

tant features that have been added to HTTP/1.1.

A signi�cant amount of discussion ensued on some

of these features during the over four-year devel-

opment of HTTP/1.1. In the case of a server

mis-implementing or partially implementing features

tested in this category, we would be curious to know

why. Unlike Category One tests, where errors simply

imply non-compliance, this category includes tests

of features that servers are permitted to selectively

implement. There is a general expectation that a

HTTP/1.1 server would implement these features.

The tests that we include in this category are han-

dling of persistent connections, pipelining, and range

requests.

Introduction of persistent connections was a ma-

jor innovation in HTTP/1.1. In HTTP/1.0, con-

nections lasted just for for a single request/response

exchange. This had both a deleterious e�ect on user

perceived latency and the server (each request re-

quired TCP setup and teardown) as well as the net-

work (in terms of the additional packets). Most

HTTP transactions are short and the TCP hand-

shakes consumed a good chunk of the overall time.

For pages with a dozen embedded images (a �gure

that is relatively common), multiple TCP setups and

teardowns were needed. Mogul and Padmanabhan

suggested the introduction of persistent connections

based on an experimental study [PM95]. Persistent

connections are the default in HTTP/1.1, though

servers or clients could close the connection after the

�rst exchange. In fact, downloading all the embed-

ded images in a single persistent connection (labeled

as perfect persistence [KW00]) has the best perfor-

mance.

Pipelining permits clients to send a stream of

requests in a pipeline without waiting for any re-

sponse from the server. The round trip time of

waiting for the acknowledgments of the previous re-

quest is eliminated. The server however sends the re-

sponses in the order of the requests received. Further

studies [ea97] revealed that persistent connections

without pipelining could in some cases worsen the

performance. In some cases multiple parallel non-

persistent connections were found to be better but

this came at a cost (minimal to the browser, higher

to the server in order to deal with multiple simul-

taneous connections from each client). Persistent

connections with pipelining provided the best com-

bination to reduce latency and the overall number

of packets.

Recently, there has been anecdotal evidence (in

discussions and mailing lists) that some sites are

turning o� persistent connections. If it were true,

one of the key perceived advantages of HTTP/1.1

(to the network in terms of reduced packets and to

users in terms of latency) would turn out not to have

been realized. We tested if servers permitted the ba-

sic ability to hold the connection open beyond a sin-

gle connection and then a separate test of its ability

to handle pipelined requests.

Another innovation in HTTP/1.1 was the ability

to request byte ranges of resources rather than the

full contents. There are several reasons for this, in-

cluding e�ciency, such as requiring just the tail of

a growing resource, prefetching the headers of re-

sources of certain content-type (such as gif, jpeg) to

begin outlining images before actually fetching the

image, etc. Recovering from aborted connections

and transfers is eased by range requests. When parts

of the resources are cached, only the missing parts

need to be obtained.

5.3 Category Three tests

The third category of tests include minor issues

that servers should normally be compliant with.

Consequences of non-compliance here are less severe

than the �rst two categories.

5.3.1 Additional method tests

The HTTP/1.1 speci�cation clearly indicates that

all general purpose servers MUST implement GET

and HEAD methods. Support for other methods

are optional but a server implementing other meth-

ods must conform to the speci�cation (Section 5.1.1

of [ea99]). Thus, our tests of conformance is one

of proper compliance if other methods are imple-

mented. The OPTIONS method indicates the ca-

pabilities of the origin server. With a resource

speci�ed, any optional features applicable to that

resource alone is returned. The TRACE method

purely runs a loopback test of the message included

in the request and is simply a way to see if the server

received exactly what was sent from the client. The

server is supposed to return the request it received

in the response body.

5.3.2 Expect/Continue mechanism

To prevent clients from needlessly sending large bod-

ies in PUT/POST requests that might not be ac-

cepted by a server, HTTP/1.1 introduced a mech-

anism by which clients could check with the server

beforehand. A client would send just the header

(without a body but with a content length indicator)

including a request header Expect: 100-Continue.

If the server is willing to accept the request it

would reply with a 100 Continue status response

and then the client can send the body; otherwise

the server can send a 401 Unauthorized or a 417

Expectation Failed response.

5.3.3 Conditional requests

HTTP/1.1 introduced several new conditionals to

improve the caching model. Instead of the simple

Last-Modi�ed timestamp check that HTTP/1.0 pro-

vided in the GET If-Modified-Since request, the

presence of opaque strings in the form of Entity

tags, permits a more general model. If several in-

stances of a resources are maintained at the server

and cached at a proxy, the proxy could check if any

of its cached instances are current by including con-

ditional headers such as If-Match. Additionally,

an If-Unmodified-Since conditional permits a re-

source to be sent only if it has not changed since the

indicated date.

When performing timestamp checks the format of

the date string is an issue. HTTP applications have

permitted three date formats RFC 822 (updated by

RFC 1123), RFC 1036, and ANSI C's asctime().

While, HTTP/1.1 clients and servers have to accept

all three formats for compatibility with HTTP/1.0,

they can only generate the RFC 1123 format for rep-

resenting date values in header �elds.

5.3.4 Miscellaneous tests

Several new requests and responses have been added

in HTTP/1.1. We examine a variety of method and

header combinations for violations of size or incor-

rect headers. We also check for the server's ability

to handle long and incorrect URLs in the request.

6 Testing software and environment

For testing we primarily relied on httperf [MJ98] {

a performance measurement tool for HTTP. Httperf

is useful for understanding Web server performance

and for analyzing server features and enhancements.

The tool has three logical components: the core

HTTP engine, the workload generator, and the

statistics collector. The latter two components can

be con�gured at runtime via command line options.

We chose to use httperf as an analysis tool for

several reasons. Since httperf already supports the

HTTP/1.1 protocol, it saved us from having to pro-

vide our own implementation. Although httperf does

not currently support all of the features that we

needed for this study, the tool is available in source

code form. This enabled us to modify the tool to

issue the desired request headers and collect the ap-

propriate statistics. Our extensions can be rolled

back into httperf for others to use.

We tested compliance from a variety of places

around the world from diverse organizations. Al-

though this should not be necessary since a server

should give the same answer no matter where the

requests came from, we did this for two reasons.

First, studying an origin server's compliance is just

the �rst stage of our experiment. Additional experi-

ments that test other artifacts of the Web require

diversity of location to expose biases in the path

between client and server (as in [KW00]). Second,

if we noticed any dependency on the origin of re-

quests (though the web sites were contacted using

hardwired IP addresses) that would be of interest to

explore.

When performing tests of such a large scale nature

on several large sites, one has to be careful not to

let the testing interfere with the normal workings of

the site. We did this by identifying ourselves via the

From: and User-agent: headers in every request we

sent. We also sent our few test requests serially and

just once.

A C program parsed the response headers in

the output from each client site (converting them

into integer and/or bitmap descriptors) and veri�ed

presence/absence of headers, gleaned values, and

checked for appropriate headers.

Primary tests were run from the authors' respec-

tive organizations (AT&T Research located in New

Jersey, USA, and Hewlett-Packard Labs in Califor-

nia, USA). Additional tests were run from the Uni-

versity of Kentucky in Lexington, Kentucky (USA),

the University of Paris-Sud, Orsay, (France), the

University of Western Australia (Nedlands, West-

ern Australia), and a commercial site in Santiago

(Chile). Even though we chose di�erent organiza-

tions and locations, the same software was installed

and used for all the tests. Each test was run once

from each testing site. The same set of servers were

contacted from each of the sites. The machines all

ran di�erent versions of the UNIX operating sys-

tem.

Table 1: Breakdown of server software and protocol

version
Vendor/Version Jun 99 Nov 99 Sep 00

Netscape 34.8% 38.8% 38.1%

Microsoft 32.8% 30.9% 33.3%

Apache 28.2% 26.8% 25.3%

Lotus 2.7% 2.6% 1.9%

Zeus 0.4% 0.6% 0.3%

Others 1.1% 0.3% 1.1%

HTTP/1.0 27.0 16.2 7.5

HTTP/1.1 73.0 83.8 92.5

7 Results

7.1 Experiment details

Although the Apache server has a large lead in

the server market (over 60% of the market ac-

cording to Netcraft [Net]), a majority of the pop-

ular sites are running Netscape and Microsoft-IIS

servers. Table 1 shows vendor-based distribution

of servers. The most popular version of the top

3 servers are Netscape-Enterprise/3.x, Microsoft-

IIS/4.0, and Apache/1.3.x. Since servers from just

three organizations are used by over 95% of the most

popular sites running HTTP/1.1, compliance can be

improved signi�cantly by ensuring that all con�gu-

rations of these servers are fully compliant.

Table 1 also shows the increase in the number

of popular servers that are claiming to be running

HTTP/1.1 over the course of our study. While the

table shows a signi�cant increase in servers claiming

to be running HTTP/1.1, our results indicate that

improvement in compliance has not kept pace.

There are three important caveats to be kept in

mind while interpreting our results. First, there are

several popular sites that still (as of September 2000)

use HTTP/1.0 servers. Among these are AOL, Ex-

cite, Yahoo, Amazon, and Altavista. In fact over

7% of the HTTP/1.0 servers we contacted are not

Y2K compliant in their Date header format. Second,

the popularity as measured by MediaMetrix [Med],

Netcraft [Net], and Hot100 [Hot] is purely based on

number of requests sent to these sites and not on

the bytes of response. One could just as easily make

a case that a top n listing based on bytes shipped

from servers is a more important metric. If we are

seeking bandwidth reduction through the use of new

features in HTTP/1.1, byte-wise high volume servers

are likely be to better targets. However, the lack of

server logs from these top n sites does not give us

a way of measuring this. Finally, there is evidence

that pornographic sites are downplayed in surveys

of sites. Thus it is possible that such sites didn't

end up in our top n sites list. Additionally, such

sites, given their propensity to include more images,

often have a higher volume (bytewise) of response

tra�c than other sites. We have been able to verify

this based on two separate sets of data: a packet

trace from a large ISP where half a dozen porn sites

running HTTP/1.1 had many more response bytes

compared to the rest of the frequently visited sites,

and a proxy log from a large content hosting ISP. We

chose not to change our methodology to add such

sites to our list.

7.2 Experimental results

In Section 5, we divided our tests into three cat-

egories. In this section, we examine the results for

each of the categories, as well as for most of the set

of tests that we perform. Our compliance tests fo-

cus on the extreme cases: determining which servers

satisfy all MUST and SHOULD requirements (the

unconditionally compliant servers); and determin-

ing which servers cannot satisfy one or more MUST

requirements (the non-compliant servers).

The initial round of testing in June 1999 con�rmed

our hypothesis that the location of the request origin

does not (in general) have an impact on the compli-

ance. However, there were a few minor variations.

We identi�ed two potential causes for the variation

in the results by client site. Although we attempted

to contact the same server from each client (by utiliz-

ing the IP address rather than the host name of the

server), some sites appear to use load balancers or

other devices to distribute incoming requests among

a cluster of (heterogeneous) servers. Furthermore,

a number of sites were unavailable during several of

our tests; since our results are calculated based on

the number of sites that responded to a test (unless

otherwise noted), this creates a small amount of vari-

ability in the computed percentages. In June 1999

approximately 2% of sites were unavailable; in the

last two studies the number of unavailable sites was

around 1%. Since the results varied only slightly de-

pending on which client site is utilized, we use only

Table 2: Unconditional Compliance Results for Cat-

egory One Tests (HPL Data). All �gures are in per-

centage.

Date GET HEAD Host Pass All Fail All

Jun 99 83.5 72.9 64.5 60.6 7.1

Nov 99 82.4 69.6 60.0 56.8 7.3

Sep 00 81.9 72.4 64.7 59.1 6.5

one (the HPL site) for discussion purposes through-

out the remainder of this section. Details on the

other sites are available in [KA99].

7.2.1 Category One test results

In this �rst round of tests we examine three re-

quired features for HTTP/1.1: the GET and HEAD

methods, and the Host header. We consider a

server to be unconditionally compliant for these

tests if it returns an appropriate status code (200

for GET and HEAD tests, and 400 for the Host

test), and if the response includes the appropri-

ate headers (e.g., Date and Content-Length or

Transfer-Encoding: chunked).

The results of this analysis are shown in Table 2.

The results reveal that across the three measure-

ment periods the results were quite consistent, with

around 82% of the sites under study unconditionally

compliant with respect to the GET method; about

70% of the sites were unconditionally compliant for

the HEAD method, while over 60% passed the Host

test. About 60% of the sites under study were un-

conditionally compliant across all three tests, while

around 7% of the sites failed all three tests for un-

conditional compliance. Table 2 reveals that the re-

sults were quite consistent across the studies con-

ducted over a 16 month period. Note that even with

the migration of several servers from HTTP/1.0 to

HTTP/1.1 during the testing period and the intro-

duction of new server versions, there has been little

improvement in compliance. In order to understand

why so many servers failed to pass one or more of

these three basic tests we examine each test sepa-

rately.

Table 3 provides a more detailed breakdown of

the Category One results. The ranges represent the

Table 3: Breakdown of Category One Test Result

Ranges (HPL Data) All �gures are in percentage.

GET HEAD Host

Unconditional 81.9{83.5 69.4{72.9 60.0{64.7

Missing Headers 16.1{17.9 8.9{10.8 28.6{30.4

Not Compliant 0.2{0.4 17.7{19.6 6.6{9.6

minimum and maximum observed results over the

entire duration of the study. As we have already

shown, most servers are unconditionally compliant

with respect to GET requests. Between 16 to 18% of

the servers did not include either a Content-Length

header or a Transfer-Encoding:chunked header to

indicate to the client the length of the message body.

Due to this omission these servers are characterized

as conditionally compliant. Several servers failed the

GET compliance test either by returning an incorrect

status code or an incorrectly formatted Date header.

Around 70% of the tested servers were uncondi-

tionally compliant with respect to HEAD requests.

Approximately 9% of the tested servers did not in-

clude the same entity headers that were seen in re-

sponse to the GET request. Thus, these servers are

deemed to be conditionally compliant. The more

intriguing result is that almost 18% of the tested

servers failed the compliance test because they re-

turned a status 500 response rather than the ex-

pected 200 response.

Table 3 indicates that close to two-thirds of the

servers ful�lled all requirements when responding

to a request that did not include a Host header.

Nearly 30% of the tested servers did not include ei-

ther a Date header or one of Content-Length or

Transfer-Encoding: chunked. These servers are

considered to be conditionally compliant. Between

6 and 9% of the servers were not compliant, as they

did not require the Host header to be present.

To determine whether a speci�c type of Web

server was responsible for the unusual behaviour we

observed, we analyzed the data by the type of server.

The results for the �ve most common servers seen in

our tests are shown in Table 4. These �ve server

versions accounted for an average of 88.7% of all

the servers seen in our tests over the testing period.

Each server has three rows associated with it rep-

resenting data from Jun '99, Nov '99, and Sep '00

respectively.

Table 4 indicates that two of the top �ve servers

(Apache/1.3 and Apache/1.2) were unconditionally

compliant on almost every site under study; in the

few cases where these servers were not uncondi-

tionally compliant, the cause was usually a missing

header, perhaps the result of the (mis)con�guration

of that particular server. Microsoft-IIS/4.0 ranked

third in the percentage of servers that passed all

three tests for unconditional compliance, trailing the

Apache servers by about 10%. Most of the remain-

ing Microsoft-IIS/4.0 servers did not issue the ex-

pected response headers. None of the Apache/1.3,

Apache/1.2 or Microsoft-IIS/4.0 servers failed all

three tests for unconditional compliance.

The results are less positive for the Netscape-

Enterprise 3.5 and 3.6 servers. None of these servers

passed all three of our tests for unconditional com-

pliance. In fact, over 15% of the Netscape/3.5

servers and over 24% of the Netscape/3.6 servers

failed all three unconditional compliance tests. This

observation suggests that perhaps there is a prob-

lem with the con�guration of these servers at some

sites. These results also suggest that certain types

of Web servers are responsible for much of the ab-

sence of compliance we noted earlier in this sec-

tion. A somewhat discomforting observation is that

the Netscape/3.6 server appears to be less com-

pliant than its ancestor, the Netscape/3.5 server;

i.e., things do not necessarily improve over time.

Reviewing the results in Table 4 suggests that

the biggest change between these versions occurs

with the GET requests. While nearly 70% of the

Netscape/3.5 servers were unconditionally compli-

ant on this test (the remaining 30% were missing a

Content-Length or Transfer-Encoding: chunked

header), only 56% of the Netscape/3.6 servers

passed unconditionally (the remainder were missing

a length header). At this time we do not know why

this change has occurred. Both the Netscape/3.5

and 3.6 servers did quite poorly on the HEAD test,

with only around 21% and 27% passing the uncon-

ditional compliance tests respectively. The remain-

ing Netscape 3.5 and 3.6 servers were either missing

the expected headers or returned an incorrect status

code. All of the Netscape 3.5 and 3.6 servers failed

the Host test for unconditional compliance. About

80% of the 3.5 servers and 85% of the 3.6 servers

were missing both a Date and a length header, while

approximately 20% of the 3.5 servers and 14% of the

3.6 servers were not compliant, as they did not re-

quire a Host header to be present.

At this time, there are only a few popular server

sites that run IIS/5.0 and Netscape 4.x and so there

is insu�cient data to draw any conclusions. We plan

to continue to monitor changes in the distribution

of servers used by popular sites, and analyze the

compliance of the most common versions.

Even though we found that certain types of Web

servers are responsible for a lot of the non-compliant

behaviour we observed, the results in Table 4 also in-

dicate that there is a lot of variability in the degree of

compliance even among more homogeneous group-

ings. This suggests that the con�guration (includ-

ing the use of plugins) may have a signi�cant role in

determining how compliant a server is and validates

the methodology of our testing actual server sites

rather than the server software.

The results in Table 2 revealed that 40% of the

servers failed one or more of the Category One tests

for unconditional compliance to the HTTP/1.1 spec-

i�cation. The most common reason for failure was

the lack of appropriate response headers.

Perhaps a more signi�cant observation is more

than 20% of the servers tested were not compliant

(i.e., they failed a MUST condition) on at least one

of the three basic functionality tests. 3% of the

servers were not compliant on two of the tests. These

servers should de�nitely not claim to be HTTP/1.1

applications.

7.2.2 Category Two test results

The next set of tests examined some widely dis-

cussed enhancements to HTTP/1.1|server support

of persistent connections, pipelining, and range re-

quests. Although maintaining a persistent connec-

tion is supposed to be the default behaviour of an

HTTP/1.1 application, it is a SHOULD requirement

and thus a server can be conditionally compliant

without maintaining persistent connections. How-

ever, servers have to send a Connection: close

header to indicate non-persistence. The Range fea-

ture is a MAY level requirement; servers can always

send the complete response.

Table 4: Breakdown of Category One Results by Server Type (HPL Data)

Server Date %of Svrs GET(%) HEAD(%) Host(%) Pass All(%) Fail All(%)

6/99 9.1 100.0 100.0 97.8 97.8 0.0

Apache/1.2 11/99 6.3 96.9 100.0 96.9 93.8 0.0

9/00 2.4 100.0 100.0 100.0 100.0 0.0

6/99 18.1 100.0 96.7 100.0 96.7 0.0

Apache/1.3 11/99 19.7 99.0 99.0 99.0 98.0 0.0

9/00 21.8 98.4 98.4 98.4 98.4 0.0

6/99 32.5 89.7 98.0 98.2 87.3 0.0

IIS/4.0 11/99 30.7 89.7 98.1 98.1 88.4 0.0

9/00 30.2 90.2 98.9 96.0 89.0 0.0

6/99 14.0 70.8 22.2 0.0 0.0 16.9

Netscape/3.5 11/99 13.8 71.4 20.3 0.0 0.0 14.5

9/00 6.2 66.7 22.2 0.0 0.0 13.9

6/99 12.8 50.8 29.2 0.0 0.0 27.7

Netscape/3.6 11/99 21.7 58.2 23.8 0.0 0.0 23.9

9/00 27.0 60.2 27.9 0.0 0.0 20.8

Table 5: Breakdown of Category Two Results (HPL

Data)

Date Persis- Pipe- Range Pass Fail All

tence lining All All

Jun 99 71.9 70.6 52.3 43.9 20.6

Nov 99 71.5 64.8 54.9 41.0 21.2

Sep 00 74.3 66.8 54.7 42.8 20.8

Table 5 reveals that many of the servers supported

at least one of the Category Two features. Over

70% of the servers supported persistent connections.

We suspect that many remaining sites had persistent

connections disabled by the administrators. Slightly

fewer sites allowed the client to pipeline requests.

Only about half of the servers supported Range re-

quests properly. Only 40% of the sites supported all

three Category Two features, while 20% of the sites

supported none of these features.

The results in Table 6 reveal that the server type

has less e�ect on the results than was the case for the

Category One tests. Almost all of the Apache/1.2,

Apache/1.3 and Microsoft-IIS/4.0 servers supported

persistent connections and pipelining. Only about

half of these servers supported the Range requests

which is the primary reason why so few of these

server passed all three Category Two tests. Fewer

Netscape-Enterprise/3.5 and 3.6 servers supported

persistent connections and pipelining than ranges.

We have evidence that suggests there is a prob-

lem with the persistent connection implementation

in instances of some servers (e.g., the server sends

a Connection: keep-alive header with the re-

sponse, then closes the connection without allowing

the client to issue any subsequent requests).

We next examine the number of servers that (un-

conditionally) supported all six features. Table 7

shows that around 30% of the servers under study

passed all six tests, while 7% of the servers were ei-

ther conditionally compliant or not compliant on all

six tests. Not shown in the table are the following

�gures: 15% of the Netscape-Enterprise/3.5 servers

(N-E/3.5) failed all six tests (i.e., they supported

zero features) and none supported all six features.

Over 20% of the Netscape-Enterprise/3.6 servers (N-

E/3.6) failed all six tests and none supported all

six features. Approximately 50% of the Apache/1.2,

Apache/1.3 and Microsoft-IIS/4.0 servers supported

all six features.

7.2.3 Category Three test results

In this section we tested the servers to deter-

mine whether they supported nine other sug-

gested/recommended but lesser known features of

Table 6: Breakdown of Category Two Results by Server Type (HPL Data)

Server Date Persistence(%) Pipelining(%) Range(%) Pass All(%) Fail All(%)

6/99 89.1 89.1 52.7 43.5 10.9

Apache/1.2 11/99 90.6 90.6 46.9 40.6 3.1

9/00 100.0 92.9 50.0 50.0 0.0

6/99 87.0 87.0 51.1 47.8 9.8

Apache/1.3 11/99 89.0 89.0 54.0 51.0 8.0

9/00 89.0 88.2 52.8 48.8 7.9

6/99 87.9 87.3 52.4 52.4 12.7

IIS/4.0 11/99 85.9 85.8 55.8 54.5 12.8

9/00 86.8 86.7 52.6 49.7 11.4

6/99 41.1 38.4 67.2 37.5 30.6

Netscape/3.5 11/99 40.0 28.1 68.6 24.6 30.4

9/00 44.4 31.3 63.9 27.8 36.1

6/99 41.5 35.4 47.7 35.4 52.3

Netscape/3.6 11/99 50.0 33.6 54.6 32.7 44.6

9/00 54.2 32.3 57.4 31.6 40.7

HTTP/1.1. Unfortunately many of these features

are not straightforward to test. For example, POST

requests may not be allowed for certain objects. In

such a situation we can test that the server properly

rejects the request, but we cannot test whether the

server would properly handle a POST request.

Table 8 shows the results of our Category Three

tests. The ranges shown in Table 8 indicate the

minimum and maximum values seen over the three

measurement periods. We observed that a signi�-

cant number of servers returned non-compliant re-

sponses in some of our Category Three tests. For

example, some servers return a status 200 response

(along with a Web page that indicates an error

has occurred) to a request for an incorrect/non-

existent URL. This is due to the server con�gura-

tion rather than the server implementation. The

most signi�cant occurrences of non-compliant re-

sponses happened with our \POST with Expect:

100-Continue" test and our If-Unmodified-Since

Table 7: Breakdown of Category One and Two Re-

sults (HPL Data)

Date Pass All Tests(%) Fail All Tests(%)

Jun 99 31.1 7.1

Nov 99 29.8 7.3

Sep 00 31.4 6.5

Table 8: Category Three Test Results (HPL data)

Feature % Servers % Servers

Unconditionally Not Compliant

Compliant

OPTIONS 26.8{32.3 0.8{2.7

TRACE 94.3{97.3 0.2{1.8

FOO 54.5{60.3 5.3{7.1

POST, Expect 54.6{63.2 31.0{32.0

Incorrect URL 75.9{80.5 5.3{8.2

Long URL 62.7 2.0

I-U-S (1123) 40.0{41.7 57.1{59.3

I-U-S (1036) 40.0{41.7 57.1{59.3

I-U-S (ANSI C) 40.0{41.7 57.1{59.3

I-U-S == If-Unmodified-Since with Date in RFC

1123/1036/ANSI-C formats.

Long URL test done only in June '99.

tests. In the Expect: 100-Continue test we ob-

served that many sites did not issue a response to

the request. Since the number of sites that did not

respond was much higher than normal (27{30% of

sites versus an average of 1-2% for the other tests),

we speculate that most of these sites are simply wait-

ing for further information from the client. Most of

the servers we tested do not appear to understand

the If-Unmodified-Since header, and as a result of

ignoring it return a non-compliant response. All of

the servers that do implement this feature correctly

understood all of the three required date formats.

7.3 Intersection of three studies

We examined the sites that were in the top 150 in

all three study periods. Of the sites claiming to be

running HTTP/1.1, 44% of these sites ran Apache,

37% Netscape and 17% IIS. The results were quite

consistent with the overall results presented in Sec-

tion 7. For example, all Apache servers were uncon-

ditionally compliant across all Category One tests,

as were 71% of IIS (4.0 and 5.0) servers. None of

the Netscape servers passed all three Category One

tests for unconditional compliance..

7.4 Reasons for non-compliance

There appear to be several reasons for non-

compliance on the part of servers. Some of the

reasons are subtle and may not be known even to

the server implementors. While most instances of

a Microsoft-IIS/4.0 site tested yielded the proper

400 Bad Request to a HTTP/1.1 request without

the Host: header, 7 of the 174 sites claiming to run

IIS/4.0 returned a 200 OK response. Closer exam-

ination and consultation showed that at least one

site probably uses an ISAPI �lter [Isa] { a dynam-

ically linked library that intercepts requests|with

the intention of modifying it before the core server

can parse it. In this situation it is the responsi-

bility of the �lter to return the appropriate HTTP

headers. The failure of many �lters to do this cor-

rectly suggests that current server implementations

may not be meeting the needs of the people who

use those servers. Server architectures may need to

be redesigned so that the server retains responsi-

bility for handling the HTTP headers while provid-

ing users with the functionality they desire. Some

sites have purposely con�gured their servers to re-

turn a success response with HTML text indicating

that an error has occurred. Even though the server

implementation may be compliant, its con�guration

causes compliance failure, suggesting that the server

does not provide its users with desired functionality.

Our results showed that a signi�cant number of

sites disabled HTTP/1.1 features such as persis-

tent connections. There are at least three reasons

for this behaviour. First, some sites may be con-

cerned about the performance impact of using such

features. One server vendor states that \If your

site has hits from many users at any time, then

persistent connections may not be good for your

server." [IBM]. However, no performance evalua-

tion results were provided to substantiate this state-

ment. Second, problems with TCP implementations

on some clients has been reported to cause unex-

pected behaviour in some browsers when persistent

connections are used [IBM]. Some sites may there-

fore choose to disable persistent connections in or-

der to avoid receiving complaints from visitors to

their Web site. Third, some HTTP/1.1 servers actu-

ally shipped with persistent connections disabled. If

the default con�guration was used (or if this feature

was not speci�cally enabled) then the site would not

support persistent connections. Early versions of a

vendor's server [IBM] had persistent connections en-

abled by default, but some later versions of the had

persistent connections disabled by default. Server

implementations can thus become less compliant in

newer versions.

8 Conclusions and future work

We examined compliance to the HTTP/1.1 pro-

tocol of the most popular Web sites in the world.

Although many of the popular sites claim to run

HTTP/1.1, some even fail the most basic compli-

ance requirements. Many others run with a number

of the signi�cant HTTP/1.1 improvements turned

o�. A presentation by one author of early results of

this work [Kri99] led to a prominent browser mak-

ing persistent connections the default, a prominent

server vendor �xing a denial of service attack prob-

lem, and another prominent server handling some

of the compliance errors. It is clear to us based on

our tests and conversations with server developers

that MUST level conditions are more likely to be

taken seriously. The more damaging scenarios out-

lined (such as the one that led to server crashes)

should be changed from SHOULD to MUST and we

have recommended so to the IETF. Including an ap-

pendix in the HTTP speci�cation that highlights all

of the MUST and SHOULD level conditions may as-

sist implementors in developing compliant products.

We described the �rst phase of our experiment ex-

amining a list of popular servers with a suite of static

tests. Ongoing extensions include dynamic tests ex-

amining response headers as they arrive and gener-

ating subsequent requests based on the response. It

may also be useful to examine entire user sessions

rather than just single requests for the home page

(or text portion thereof). Currently, we use o�ine

analysis to check for protocol compliance. Incor-

porating this process into the probing mechanism

would simplify the conformance checks. A natural

extension is testing compliance of proxies. However,

testing proxy compliance is signi�cantly harder than

testing servers or clients. An HTTP message can go

through several proxies, only some of which may be

HTTP/1.1 proxies. Compliant HTTP/1.1 proxies

can be detected by the presence of Via headers but

we would not be able to identify the HTTP/1.0 or

non-compliant HTTP/1.1 proxies.

Acknowledgment

We thank Anja Feldmann, Roy Fielding, Jim Get-

tys, Richard Gray, David Kristol, Scott Lawrence,

Je� Mogul, and David Mosberger for answers to var-

ious questions. We thank Michel Beaudouin-Lafon,

James Gri�oen, Eduardo Krell, and Graeme Yates

for giving us access to machines. We thank Medi-

ametrix, Netcraft, Hot100 and other sites that peri-

odically run surveys on popular sites and present

server penetration statistics. We thank Jennifer

Rexford for comments on an earlier draft.

References

[Bra97] S. Bradner. Key words for use

in RFCs to indicate requirement lev-

els. RFC 2119, IETF, March 1997.

ftp://ftp.ietf.org/rfc2119.txt.

[ea97] H.F.Nielsen et al. Network performance

e�ects of HTTP/1.1, CSS1, and PNG. In

Proc. ACM SIGCOMM, pages 155{166,

August 1997.

http://www.inria.fr/rodeo/sigcomm97

/program.html.

[ea99] R. Fielding et al. Hypertext Trans-

fer Protocol { HTTP/1.1. RFC 2616,

HTTP Working Group, June 1999.

ftp://ftp.ietf.org/rfc2616.txt.

[For] HTTP/1.1 feature list report summary.

http://www.w3.org/Protocols/HTTP/Forum/Reports/.

[For99] 1999 Fortune 500 companies, Fortune vol-

ume 139 number 8, April 26 1999.

[Glo98] 1998 Global 500 companies, Fortune Mag-

azine 1998.

[Hot] 100 hot.com. http://100hot.com/.

[IBM] HTTP Server for AS/400: Persistent

Connections.

http://www.as400.ibm.com/products/

http/services/persist.htm.

[Isa] ISAPI callback functions.

http://support.microsoft.com/support/

kb/articles/Q150/3/12.asp.

[KA99] Balachander Krishnamurthy and Martin

Arlitt. PRO-COW: Protocol Compliance

on the Web, August 1999.

http://www.research.att.com/~bala/

papers/procow-1.ps.gz.

[KMK99] Balachander Krishnamurthy, Je�rey C.

Mogul, and David M. Kristol. Key di�er-

ences between HTTP/1.0 and HTTP/1.1.

In Proc. Eighth International World Wide

Web Conference, Toronto, May 1999.

[Kri99] Balachander Krishnamurthy. PRO-COW:

Protocol comliance on the Web, Novem-

ber 1999. Invited plenary session talk at

IETF meeting.

[KW00] Balachander Krishnamurthy and Craig E.

Wills. Analyzing factors that inuence

end-to-end web performance. In Proc.

World Wide Web Conference, May 2000.

http://www.research.att.com/~bala/

papers/e2e.ps.gz.

[Med] Media Metrix.http://mediametrix.com/.

[MJ98] D. Mosberger and T. Jin. httperf|

a tool for measuring web server perfor-

mance. In Proceedings of WISP '98,

Madison, WI, pages 59{67, June 1998.

http://www.hpl.hp.com/personal/

David_Mosberger/httperf.

[Net] The Netcraft Web Server Survey.

http://netcraft.co.uk/survey.

[PM95] Venkata N. Padmanabhan and Je�rey C.

Mogul. Improving HTTP latency.

Computer Networks and ISDN Systems,

28(1/2):25{35, December 1995.

