

Split Capabilities for Access Control

Alan H. Karp, Rajiv Gupta1, Guillermo Rozas2, Arindam Banerji3

Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-164 (R.1)
May 22nd , 2002*

access
control,
computer
security,
capability
systems

Split capabilities represent a new way to control access to resources
that has advantages over traditional approaches in both scalability
and revocation of privileges. We present the basic idea of split
capabilities and describe how they were used in a commercial
system. We also explain why a variety of common attacks against a
system using split capabilities fail.

* Internal Accession Date Only Approved for External Publication
1 Present address: CorporateOxygen, Cupertino, California
2 Present address: Transmeta Corporation, Santa Clara, California
3 Present address: Chimewell, Alviso, California
 Copyright IEEE. To be published in IEEE Software

 1

Split Capabilities for Access Control
Alan H. Karp, Rajiv Gupta*, Guillermo Rozas†, Arindam Banerji‡

Hewlett-Packard Labs
Palo Alto, California

Keywords: Access control, computer security, capability systems

Abstract
Split capabilities represent a new way to control access to resources that has advantages
over traditional approaches in both scalability and revocation of privileges. We present
the basic idea of split capabilities and describe how they were used in a commercial
system. We also explain why a variety of common attacks against a system using split
capabilities fail.

1. Introduction
The fundamental problem of access control is to limit what a process can do to an object
and when that process can do it.1 For example, whether or not to honor a request to read
or write a particular file is a question that any access control mechanism2 must be able to
answer. Unfortunately, the access control mechanisms we use when sharing resources
over the Internet were designed in the days when networking computers was a rarity.
Many of the security breakdowns occurring today come from the resulting mismatch
between today’s realities and the assumptions made in designing those mechanisms

Specifying the access policy is conventionally described as one of populating an access
control matrix, which has a row for each resource and a column for each user. An
element of this matrix is the set of access rights on that resource being granted to that
user. Consider the simple example with four users and four files shown below. Bob can
read and write his own file, while Carol can read Bob’s file. Note in particular the broad
set of privileges granted to the user denoted root. Of course, real systems have many
users and many thousands of resources.

* Present address: CorporateOxygen, Cupertino, California
† Present address: Transmeta Corporation, Santa Clara, California
‡ Present address: Chimewell, Alviso, California
1 We often say incorrectly “who can do what to whom when”. Not properly understanding this distinction
leads to a variety of security lapses.
2 We use the term access control mechanism to denote the way control of access to resources is enforced.
Security policy is a term we use to describe who gets what access rights. We address only the former issue.

 2

 alice bob carol root
/u/alice/file R,W R,W
/u/bob/file R,W R R,W
/u/carol/file W R,W R,W
/sys/log R,W

The access control matrix is sparsely populated, so people developed two representations,
compressing horizontally to get access control lists (ACLs) and compressing vertically to
get capability lists (CLs). An ACL has an entry for each resource containing a list of the
access rights for each user. In our example, the ACLs would be

/u/alice/file alice(R,W), root(R,W)
/u/bob/file bob(R,W), carol(R), root(R,W)
/u/carol/file alice(W), carol(R,W), root(R,W)
/sys/log root(R,W)

When a user starts a process, that process is assigned the identity of the user, granting the
process all of the user’s privileges.

Each capability in a CL specifies access rights to a resource being granted to the process
holding the capability. Traditionally, each capability is an unforgeable, indivisible pair
containing a unique identifier for the resource and a list of access rights that are
authorized by that capability [1, page3]. In our example, Alice’s capability list would be

(/u/alice/file,R), (/u/alice/file,W), (/u/carol/file,W),

with similar lists for the other three users. When Alice starts a process, she can decide
which of these capabilities to make available to that process.

ACLs are held by the computing infrastructure, called the Trusted Computing Base
(TCB), often the operating system kernel but sometimes the entity controlling the
resources. Some systems keep the capability in the TCB, in which case the CL is a list of
handles to the capabilities. In other systems, the capability is held by the user’s process,
in which case it is cryptographically protected against tampering and forgery. CLs are
held by the user’s process in both cases.

There are several problems when using ACLs, especially in a networked environment
[10,11]. First of all, access control is based on the identity of the user who started the
process. The unfortunate effect is that every request carries the user’s full privileges.
That’s why opening an email attachment can unleash a virus; the virus, running in the
user’s process, has all the privileges of that user. Imagine the damage that could be done
by a virus running as root in our example. A second problem is one of scalability. If
there is no entry for a user in an ACL, access must be denied. That means that the ACL
must be modified every time a potential user becomes an actual user. However, the ACL
is a resource critical to the security of the system, so only a limited number of people

 3

should be able to modify it. These people can become overwhelmed in a dynamic
environment like the Internet.

CLs don’t have these problems. A user can specify the exact set of capabilities available
to a process. Thus, the “execute” capability can be withheld from the email process, and
the virus program won’t run. Scalability is enhanced because capabilities are easily
copied (but not forged, of course), so one user can pass the capability to others who are
trusted.3

Traditional capabilities, such as those shown in Alice’s capability list above, have two
problems. It is hard to revoke a capability [1, page 149] because the system has no
control over the passing of capabilities from one user to another. The number of
capabilities in a system is also a problem because a capability is needed for each
separately controlled access right on each resource. This means that each time a user
joins the system, many thousands of capabilities need to be issued; each time a user
leaves, they must be revoked. Combined, these two problems present a challenge for
system designers. Split capabilities have the advantages of traditional capabilities
without their limitations.

Four different types of capability structures have been used. Representatives of these
types, described in Section 6, are

1. Traditional capabilities [1]
2. Simple Public Key Infrastructure (SPKI) capability certificates [7]
3. E-language capabilities [2]
4. Split capabilities

This paper compares traditional capabilities with split capabilities, but many of the points
made apply to SPKI capabilities, too.

Capabilities have been used to control access to hardware resources, such as memory
segments; ephemeral resources, such as processor time; and software resources, such as
files. This paper concentrates on the last of these.

The basic idea of split capabilities is presented in Section 2. Split capabilities were used
in the commercial, open source product described in Section 3. That implementation
allows us to enforce visibility rules to control naming as described in Section 4. Various
attacks against the system are considered in Section 5. Other capability systems are
described in Section 6, and Section 7 summarizes the key points.

3 At first glance, this feature appears to defeat security policy. Carol trusts Alice and passes her the
capability to read Bob’s file. What if we don’t want Alice to read Bob’s file? We gain no real security by
trying to prevent such sharing. Carol can always act as Alice’s agent, forwarding her requests to Bob and
sending Alice the results. As far as Bob is concerned, Bob is making the request. It’s best not to try to
enforce the unenforceable.

 4

2. Split Capabilities
The basic idea is to divide the capability into two parts, a handle to the resource being
accessed and a handle to a separate resource representing the access rights being
requested. While such separation of name from authority is potentially problematic [8],
in our system these two elements are brought together in the TCB of the resource.

Our example illustrates these points. Alice would hold the resource handles

 /u/alice/file, /u/carol/file.

The TCB associates these handles with a resource handler, which in turn maps them to
data structures relevant to the specific resources. In this example, the file system would
map the resource handles to specific file identifiers, inode numbers in Unix, for example.

In addition, Alice would have handles to resources that we call keys (as in keys that open
locks, not cryptographic keys). Operating on a resource requires handles for both the
resource and a key that unlocks the requested permission. These two pieces of the split
capability come together in the TCB, which, for our example, maintains a table
containing the entries

Name Type Value Permissions
/u/alice/file file 939438 (821,4493:R) (821,4493:W)
/u/carol/file file 2831AB (821,138B:R)(821,138B,8923:W)
/u/bob/file file 329BF5 (821,3324,5AF3:R)(821,3324:W)
/sys/log file A93ED (821:R)(821:W)
alicefiles key 4493 (821,4493:Destroy)
bobfiles key 3324 (821,3324:Destroy)
carolfiles key 138B (821,138B:Destory)
rootfiles key 821 (821:Destroy)
bobread key 5AF3 (821,3324:Destroy)
carolwrite key 8923 (821,138B:Destroy)

The value is type specific. The value of a file might be an inode number, while for a key
the value is the identity of the lock it opens. Each key opens exactly one lock, but
different keys can open the same lock.

The permissions associate locks with access rights. Any lock that gets opened by a key
results in the corresponding permission being authorized. When Alice asks to write
”/u/carol/file”, the file system verifies that the write permission, “W”, was unlocked
before honoring the request.

In order to enforce the access rules in our example, we need to distribute the handles
properly. If we give Alice handles to the files denoted “/u/alice/file” and “/u/carol/file”
and to the keys labeled “alicefiles” and “carolwrite”, she will be able to unlock read and

 5

write permissions on “/u/alice/file” and write permission on “/u/carol/file”. The other
users also get the appropriate resource handles.

The keys in our example have only one operation, removal from the table, which is
denoted “Destroy”.4 In our example, Carol is given the handle to key “carolfiles” that
grants permission to destroy itself and the key denoted “carolwrite”. The user we call
root can remove any key from the table.

The TCB doesn’t need to understand the semantics of the request; it is only responsible
for unlocking permissions. The resource handler, the file system in our example, does
not need to know what process made the request, what key was used, or how that process
got the key; it only needs to verify that the proper permission was unlocked. This
separation of responsibility makes the system quite flexible. For example, you can
introduce a new type of resource or a new access method on an existing type without
modifying the TCB.

Splitting the capability lets one access rights resource represent different permissions on
different resources at the discretion of the resource owner, which makes it surprisingly
easy to enforce some complex security policies. For example, we can emulate Unix file
permissions by giving Alice three keys for her user permissions (read, write, execute),
three for each group she belongs to, and three for world permissions. Note that the
number of keys Alice needs is independent of the number of files she has access to.

We can describe more complex security policies quite easily. Military style (multi-level)
security [4] assigns security levels to people and resources and specifies the access rules.
The *-property says that you can read documents at the same or lower security level and
write documents at the same or higher level. We enforce this property by giving someone
with a Secret clearance a handle to a "Secret" key. This key can unlock read permission
for unclassified documents, read and write permissions for secret documents, and write
permission for Top Secret documents. One key per user is all that’s needed.

Another advantage of split capabilities over conventional capabilities is revocation. All
that’s needed to stop Alice from writing Carol’s file is to remove the lock 8923 from the
table entry for Carol’s file. If Alice leaves the system, all that need be done is to remove
Alice’s keys from the resource table. It doesn’t matter with whom Alice shared the keys.
Once a key’s entry is removed from the table, all uses of that key are immediately
invalidated.

As described here, the system has a fatal flaw. There is nothing to prevent an attacker
from guessing the handle for a resource or, more importantly, a key. The Client Utility
system described in the next section shows one way of addressing this problem.

4 A real system should also have a “Clone” permission that allows creation of a new key that opens the
same lock as its parent.

 6

3. Commercial Implementation
The basic work on split capabilities was done at HP Labs in 1996 as part of the Client
Utility project, and split capabilities appeared as the access control mechanism in the first
open source releases of e-speak [6]. Subsequent versions of e-speak used SPKI
capability certificates [7], as they were deemed more appropriate for business-to-business
platforms. In order to avoid confusion with this latter system, we’ll use the term Client
Utility or CU when describing the platform using split capabilities. Here we’ll describe
only those parts of CU relevant to the discussion of split capabilities.

Figure 1: Single machine view.

In order to explain how CU uses split capabilities, it is necessary to first describe the
architecture. Figure 1 shows the basic operations within a single Logical Machine (the
TCB), which consists of a core and a repository, the latter holding information on
resources managed by the core. The core is typically a process running on top of a
conventional operating system, such as Unix or Windows. Processes running in their
own address spaces that interact using the CU protocol are called clients of the core.

The basic unit of control is a resource. Before the core can manage a resource, the
resource must be registered in the repository. Each repository entry contains a
designation of which client will act as handler for the resource, e.g., the file system, a
field of data delivered only to the resource handler, e.g., the inode number, and fields
containing locks and permissions.

Alice File
Sys

 7

The fact that you can’t hurt what you can’t name is central to CU’s use of split
capabilities. Name visibility is controlled by a protection domain the core maintains in
its address space on behalf of each client. Clients interact by sending messages to the
core consisting of an envelope, which contains information used by the core, and a
payload, which contains application specific information. The core never looks at the
payload, which means that end-to-end security can be implemented by encrypting and/or
digitally signing the payload.

Each protection domain includes a name space for the use of the client. When Carol
wants read Bob’s file, she constructs a message using her names for the file and the key
to be used to unlock read permission, e.g., “bobFile” and “readBobFile”. The core looks
up these names in Carol’s name space to find the repository handles bound to the names.
The core uses the information in the corresponding repository entries to construct a
message to be delivered to the file system for processing. In this example, the core
forwards a message to the file system containing the resource value 329BF5, representing
the file’s inode number, and the unlocked permission, “R”. The file system then
interprets the payload to determine whether the request should be honored and what
operations to perform.

Should Carol use a name that doesn’t appear in her name space, say “aliceFile”, she is
told that the resource does not exist. Note that the names in each client’s name space are
specific to the client. Hence, there is no way to guess the name of a resource or for
names to be communicated out of band, say by email. A name has meaning only within
the CU system and is specific to the binding in a particular client’s name space.

Thus far we've talked about access control within a machine. CU would be quite limited
unless it permitted access to resources on other machines. Extending the model across
logical machines involves three steps - connection, export/import, and invocation.

When two machines first connect, they each start a client to act as a proxy for users on
the other machine. These proxies are clients of their respective cores. The connection
protocol used by the proxies includes protocol negotiation, mutual authentication, and the
exchange of encryption information to be used on the link between machines.

Exporting a resource involves creating an export form for the resource’s registry entry.
The export form of the resources representing permission to read Bob’s file might look
like

(Resource:resource1),(Permissions:key1).
 (Resource:key1),(Permissions:)

Here, the repository handle for the resource we called “/u/bob/file” earlier is bound to the
name “resource1” in the exporting proxy’s name space. Similarly, the repository entry
for the resource we earlier called “bobread” is bound to the name “key1”. Since CU does
not rely on the importing machine to enforce permissions, only the name of the key that
unlocks read permission on Bob’s file is communicated.

 8

This export form is passed to the importing proxy, which registers the resources with its
core, listing itself as the handler and setting the permissions to the names of the imported
keys. Thus, Bob’s file and the key representing read permission, registered with Carol’s
logical machine, would have repository entries

Repository Handle Type Value Permissions
A33BE5 proxy resource1 (733D:key1)
A33BE4 key 733D (3822:Destroy)

The type of proxy indicates that the request is to be forwarded to the proxy. The value
assigned to Bob’s file is the name appearing in the exporting proxy’s name space, and the
permission is the name of the key in the exporting proxy’s name space that unlocks the
read permission.

Figure 2: Accessing a remote reso

A request from a client on one logical machine for a resou
shown in Figure 2. Carol’s core does exactly what it doe
forwards the request to the handler, which is the proxy in
unlocks read permission on Bob’s file, the proxy will see
resource with a value “resource1”. The proxy sends this
Bob’s machine. That proxy repeats the request with the n
The file system sees a request for inode number 329BF5 w
request it would have seen had Carol’s request been local
application nor the file system nor either core needs modi
requests.

e e
 Bob’s Machin
Carol’s Machin
urce.

rce on another follows the path
s in the single machine case; it
 this case. If Carol’s request
 a permission of “key1” on a
request to its counterpart on
ames “resource1” and “key1”.
ith permission “R”, the same

. Thus, neither Carol’s
fication to deal with remote

 9

4. Visibility
Control of what a client can name is an important part of CU access control. In this
section we’ll see how CU can make it difficult for someone to obtain certain name
bindings or use them should they be made available. Actually, the CU architecture
requires something better than described so far for a reason that has not been explained
yet. So far, the only method described for getting name bindings was to have them
available as part of the client’s initial environment. There are two other methods.

1. When a message is received, name bindings for all the resources named in the
original message, except for keys submitted to unlock permissions, are put into
the name space of the recipient.

2. A field in the repository entry describes the resource so it can be discovered with
a look-up request to the core.

Security rules could be violated if one client inadvertently sent a name binding to a client
who should not be allowed access to the resource or if a client discovered such a
resource. This situation is a particular problem with bindings to keys.

Our solution is to add to the repository entry of each resource two lists of locks that we
call allow and deny. Each look-up and each attempt to use a name in a message is
checked by comparing these lists to the keys accompanying the request. If any of the
deny locks is opened, or if none of the allow locks is opened, the system acts as if the
resource does not exist. These keys can be the same ones used to grant access rights.

Of course, it’s natural to ask why any client would submit keys that might deny access to
some resources. There are several reasons. The request might be part of a test run of a
program, and the user doesn’t want to risk damage to the resource. Also, the key that
denies access to one resource may be needed because it grants a desired access right or
appears in the allow field of another resource that the client wants to access. Finally, CU
includes mandatory keys in each protection domain that are implicitly included in each
request. This last feature allows a system administrator to enforce a variety of policies by
putting certain keys in each client’s protection domain. We saw one such example in
Section 1, where we wanted to enforce multi-level security [4]. Putting the “Secret” key
in the client’s protection domain guarantees that this key is included with every request.
Clients do not have names bound to their own mandatory keys, so they can’t remove
them from their protection domains nor can they share them with other users.

The visibility tests allow us to enforce some common security policies in a rather
straightforward manner. One is compartmentalization, in which a client in one
compartment may not access resources in another compartment. An example might be a
consulting company that wants to assure a customer from company ABC that people
working on its contract can’t accidentally mix resources with those working on the
contract for a competitor, say company XYZ. The administrator can put a lock
corresponding to one key in the allow field of resources associated with company ABC
and the same lock in the deny field of those resources associated with company XYZ. If

 10

the corresponding key is put in the protection domain of one of the consultant’s
employees working on a project for ABC, that person will not even be able to find out
that resources associated with company XYZ exist.

Compartmentalization is an example of the problem of rights amplification, the ability to
do something only if two, separate access rights are available. For example, if I give
Alice access to the can opener and Bob access to the can, my tuna is safe as long as the
capabilities cannot be presented together. Normally, we don’t care if a client gives a
capability to another client. After all, Alice could read a file and send Bob the results, so
it doesn’t matter if Alice gives Bob the capability to read the file. However, if Alice can
give Bob access to the can opener, they can share the tuna. Split capabilities with
visibility control can prevent such rights amplification. The key that grants access to the
can opener also denies access to the can, and vice versa.

Visibility controls can also be used to implement the restricted *-property of multi-level
security, a policy that allows a user to read and/or write resources only at the client’s
security level. Putting a lock in the allow field of every confidential resource, a different
one in the allow field of every secret resource, and a third in the allow field of every top
secret resource allows this level of control. Putting the key corresponding to the user’s
security level in the protection domain of a client guarantees that the client can only
access resources at its level. Although less flexible than the full *-property, the restricted
form is enforced by the TCB, while the full form is enforced by the resource handler.

5. Attacks
We don't know how well the system will stand up to real attacks, but we can look at a
number of possibilities to see if we can identify weaknesses. Here, we'll look only at
attempts to perform unauthorized actions. Many denial of service attacks are also dealt
with by the CU architecture, but they are not relevant to the present discussion. We won't
worry about some social problems, such as poorly chosen passwords or people who write
their PINs on their ATM cards. There is also nothing we can do about attacks against the
underlying operating system or its components.

Social engineering is always a concern. An attacker might get a user to reveal the names
of certain resources, particularly keys. This information does the attacker no good, since
the user’s names have meaning only through the bindings in the user’s name space.
Tricking a user into transferring name bindings is possible, but visibility rules can
mitigate the damage. Also, since keys are rarely transferred this way, such a request
should make the user suspicious.5

The attacker might also go directly after the core and attempt to learn the repository
handles of certain resources. Again, the information does the attacker no good, since the
core does not accept repository handles from clients. What if the attacker learned the

5 The CU design provides an additional level of protection; the right to transfer a name binding can be
controlled.

 11

value associated with one of the locks? No problem, since the core only accepts names
bound to the repository entries of keys, not references to locks.

The attacker could also try to get the name of a resource exported to someone else. This
information is useless, because the proxy acting on behalf of the attacker has name
bindings only for resources exported to the attacker. The attacker could induce the user
to start a process running malicious code, but the default behavior should be to start
processes with minimal privileges. Hence, the user will be warned of suspicious activity
when the process asks for unexpected access rights.

Next, consider a malicious user on a single machine who would like to do some
unauthorized operation. Since any user has access to a process with enough resources to
complete a valid login attempt, the attack could start there. This task will have a
protection domain with some named resources. The attacker has no names for anything
else, so the initial attack will be against those resources. We can make sure that the attack
does no harm by giving this process access to keys that would allow it to modify only
resources needed by the login procedure.

Our attacker now attempts to get additional resources into the protection domain of this
login process. However, without access to keys granting permission to add these
resources, this attack fails. For example, the initial set of keys made available to
anonymous clients need not include permission to add bindings to the client’s name
space. Additionally, the mandatory keys in this protection domain can include a key
corresponding to a lock in the deny field of every resource not needed to complete the
login process.

Say that the attacker has logged in, either by guessing a password or because the attacker
is an authorized user. The attacker can now modify any resources the active account can.
The attacker can also add to its task's name space bindings to any resources made
available to it by others. However, there is no way for the attacker to even name a
resource that doesn’t have a binding in its name space. Since the system administrator
controls critical system resources, such as the system log files, visibility tests can prevent
general users from getting access to them.

If we're dealing with more than one machine, the attacker can try to get the other machine
to do something unauthorized on its behalf. However, it doesn’t matter if the attacker is
running on a machine with a corrupted core, modified operating system, or customized
hardware. Even if the attacker refuses to honor the permissions in the exported resources,
the attack fails because these permissions are checked when the proxy on the machine
that owns the resources attempts the access. Even if that proxy is corrupted, it can only
do what is authorized through its protection domain.

6. Related Work
A complete review of access control mechanisms, or even only capabilities, is beyond the
scope of this paper. The early history [1] and modern developments [3] of capabilities

 12

are well documented elsewhere. Here, we’ll briefly describe the archetypes of the
different capability systems mentioned in Section 1.

SPKI capability certificates [7] contain a name for the resource and one or more access
rights. Wildcards can be used to grant access to a group of similarly named resources,
such as files in a directory. SPKI certificates are open documents that are digitally signed
to prevent forgery or tampering. These signatures are checked against the resource
handler’s trust assumptions before granting access. The submitter of the capability must
prove knowledge of the private key associated with the public key assigned to the
capability. Anyone with a SPKI certificate can create a new capability containing a
subset of the access rights. Hence, SPKI capabilities don’t have all the scalability
problems of traditional capabilities, but revocation is a problem.

E-language capabilities [2] are quite different. Each is a handle to a facet of a particular
bit of state. Several facets may have access to this state, each with a subset of the
methods used to manipulate it. For example, one facet of a file may have read, write, and
execute methods, but another facet of that file may have only a read method. The access
rights are implicit in the facet being accessed, in contrast to a traditional capability in
which they are listed explicitly.

There is a close analogy to split capabilities, namely virtual memory. Each “name” is a
virtual address useful only to the process using it. In some systems [9], access to the
pages of the virtual memory is controlled by storage protection keys. Split capabilities as
we have used them are more general, applying to any kind of resource, and need not
involve the operating system.

7. Summary
Capabilities have a number of advantages over access control lists [10], and our
implementation of split capabilities has advantages over traditional capabilities, namely

1. Revocation is easy.
2. The number of elements to be managed scales only with the sum of the

number of resources and the number of access rights instead of with their
product.

3. Using split capabilities with visibility controls allows the simple specification
of complex security policies.

We have only implemented split capabilities within the CU architecture. It may be
possible to use them in other environments, for example, those with a global name space.
Split capabilities could also be used as the basis for building a capability secure operating
system such as Eros [11,12].

 13

Acknowledgements

We’d like to thank Harumi Kuno, Nigel Edwards, Jonathan Shapiro, Chris Hibbert, and
all three referees for helping us improve the presentation.

References
1. Henry M. Levy, Capability-Based Computer Systems, Digital Press, Bedford, MA

(1984)
2. http://www.skyhunter.com/marcs/ewalnut.html
3. http://www.skyhunter.com/marcs/capabilityIntro/index.html
4. David E. Bell and Leonard La Padula, Secure Computer System: Unified

Exposition and Multics Interpretation, ESD-TR-75-306, ESD/AFSC, Hanscom
AFB, Bedford, MA 01731 (1975) [DTIC AD-A023588]
http://csrc.nist.gov/publications/history/bell76.pdf (1975)

5. Alan H. Karp, Rajiv Gupta, Guillermo Rozas, Arindam Banerji, “The Client
Utility Architecture: The Precursor to E-speak”, HP Labs Technical Report, HPL-
2001-136, (2001) available at http://www.hpl.hp.com/techreports/2001/HPL-
2001-136.html

6. “E-speak Architectural Specification: Beta 2.2”,
ftp://ftp.hp.com/linux/espeak/Architecture_2.2.pdf (1999)

7. ftp://ftp.hp.com/linux/espeak/Architecture_3.14.pdf (2001)
8. Norman Hardy, “The Confused Deputy”, Operating Systems Reviews, 22, #4,

(1988)
9. System/370 Principles of Operation, GA22-7000-9, IBM (1983)
10. http://www.erights.org/elib/capability/consensus-9feb01.html (2001)
11. http://www.eros-os.org/essays/ACLSvCaps.html
12. J. S. Shapiro, J. M. Smith, and D. J. Farber, “EROS: A Fast Capability System”,

in Proc. 17th ACM Symposium on Operating System Principles, pp. 170-185,
Kiawah Island, near Charleston, SC, December (1999), see also
http://www.eros-os.org/

http://www.skyhunter.com/marcs/ewalnut.html
http://www.skyhunter.com/marcs/capabilityIntro/index.html
http://csrc.nist.gov/publications/history/bell76.pdf
http://www.hpl.hp.com/techreports/2001/HPL-2001-136.html
http://www.hpl.hp.com/techreports/2001/HPL-2001-136.html
ftp://ftp.hp.com/linux/espeak/Architecture_2.2.pdf
ftp://ftp.hp.com/linux/espeak/Architecture_3.14.pdf
http://www.erights.org/elib/capability/consensus-9feb01.html
http://www.eros-os.org/essays/ACLSvCaps.html
http://www.eros-os.org/

	Split Capabilities for Access Control
	Abstract
	Introduction
	Split Capabilities
	Commercial Implementation
	Visibility
	Attacks
	Related Work
	Summary
	Acknowledgements

	References

