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Abstract

Prediction of individual sequences is investigated for cases in which the decision maker

observes a delayed version of the sequence� or is forced to issue his�her predictions a number

of steps in advance� with incomplete information� For �nite action and observation spaces�

it is shown that the prediction strategy that minimizes the worst�case regret with respect to

the Bayes envelope is obtained through sub�sampling of the sequence of observations� The

result extends to the case of logarithmic loss� For �nite�state reference prediction strategies�

the delayed �nite�state predictability is de�ned and related to its non�delayed counterpart�

As in the non�delayed case� an e�cient on�line decision algorithm� based on the incremental

parsing rule� is shown to perform in the long run essentially as well as the best �nite�state

strategy determined in hindsight� with full knowledge of the given sequence of observations�

An application to adaptive prefetching in computer memory architectures is discussed�

Index Terms� Delayed prediction� sequential decision� on�line algorithms� general loss func�

tions� Lempel�Ziv algorithm�
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� Introduction

The problem of predicting a binary sequence xn � x�x� � � � xn� with the goal of achieving an
expected number of prediction errors �or �loss�� that approaches the loss of the best constant

predictor� has received considerable attention over the last 	ve decades� Here� the expectation

is with respect to a possible randomization in the prediction strategy� and the loss of the best

constant predictor is given by the Bayes envelope� min�n��x
n�� n��x

n��� where na�x
n� denotes

the number of occurrences in xn of a � f
� �g� The problem was 	rst studied in the framework
of the sequential decision problem ��
 and the approachability�excludability theory ��
� The

minimax strategy� which minimizes the worst�case regret �i�e�� the excess loss over the Bayes

envelope� over all n�tuples� was devised by Cover ��
� Other predictors were proposed in ��
� in

a context where the �competing� reference strategy was 	nite�state �FS�� rather than constant�

and in ��
 and ��
� in the context of prediction with expert advice� The worst�case normalized

regret of all these strategies vanishes at an O���
p
n� rate� In particular� Cover�s minimax

scheme yields the same regret over all sequences� its main asymptotic term being
p
n������

The usual setting in prediction problems is that the on�line decision maker observes a

pre	x x�x� � � � xt of xn for each time instant t� t � 
� �� � � � � n� � �we assume the horizon n is
known�� and makes a prediction pt����jxt� � �
� �
� This prediction can be interpreted as the
probability of choosing � in a randomized selection of the next bit xt��� Thus� the expected

loss takes the form � � pt���xt��jxt�� However� in many applications of practical interest� the
on�line decision maker has access to a delayed version of the sequence� or is forced to make

inferences on the observations a number of instants in advance� Such situations may arise

when the application of the prediction is delayed relative to the observed sequence due to� e�g��

computational constraints� The delay d� which is assumed known� a�ects the prediction strategy

in that the prediction for xt�� is now based on x�x� � � � xt�d only� Since every such predictor
is a particular case of a non�delayed one� the achievable performance �under any performance

metric� cannot improve� On the other hand� the delay does not a�ect the performance of a

constant predictor� so that the Bayes envelope is still our targeted loss� The question arises�

How badly can the worst�case regret be a�ected by this delay�

At 	rst glance it would appear that the e�ect of the delay is asymptotically negligible�

mainly because the setting of competing against a constant strategy �for a given individual

�



sequence� is often associated to a probabilistic setting in which the data are drawn from a

memoryless source� For a memoryless source� the expected loss incurred at time t for delayed

prediction is the same as the expected loss that the predictor would incur� without delay� at

time t� d� In addition� for an individual sequence� as t grows� the window of d �hidden� bits

cannot signi	cantly a�ect the statistics� Therefore� one would be inclined to ignore the delay

and apply any of the above prediction schemes �namely� use at time t the same probability that

the non�delayed predictor would have used at time t�d�� As shown in Appendix A� application

of the minimax strategy of ��
 in such a manner indeed yields vanishing regret for all sequences�

but it results in an asymptotic worst�case regret �d � � times higher than in the non�delayed

case� It is also shown in Appendix A that for a similar strategy based on the exponential

weighting algorithm of ��
 and ��
� the worst�case normalized regret behaves asymptotically asp
��d � ���ln �����n� �thus� the multiplicative factor over the d � 
 case is

p
�d� ����

The above additional regret due to the delay is immediately seen to be too high� once we

realize that a simple �sub�sampling� strategy� used in conjunction with any of the above schemes

for non�delayed prediction� yields a multiplicative factor of only
p
d� � in the worst�case regret�

Speci	cally� if we sub�sample the original sequence xn at a rate ���d � ��� and process the

resulting d� � sub�sequences separately� each sample xt�� is predicted based only on previous

symbols xj such that j � t�� mod �d���� Therefore� any non�delayed scheme applied to each

sub�sequence will satisfy the delay constraint for the original sequence� since the last symbol

in the relevant sub�sequence is xt�d� Now� the sum of the Bayes envelopes corresponding to

each sub�sequence is not larger than the Bayes envelope of the entire sequence� and therefore

an upper bound on the total regret is at most d � � times the upper bound corresponding to

each sub�sequence� Since the length of each sub�sequence is about n��d � �� and the regret

grows as the square root of the sequence length� the upper bound is multiplied by
p
d� ��

It may be somewhat surprising that a scheme that ignores most of the samples at each

individual step due to sub�sampling� has a better worst�case performance than the same pre�

diction strategy based on the entire past sequence �without the d �hidden� symbols�� Even

�One reason for obtaining a smaller factor than with the minimax strategy is that the exponential weighting

algorithm has a weighting parameter� denoted � in ���� which can be optimized taking into account the value of

d� But even with the parameter value that would be selected without delay� the factor remains smaller than for

the minimax strategy� namely d	 
�
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more surprising is the fact that� as shown in this paper� this simple strategy� when used in

conjunction with the �non�delayed� minimax scheme� is indeed minimax for all n� Moreover�

when n is a multiple of d� �� this result is shown for more general prediction games� in which

the sequence of observations belongs to some 	nite alphabet A� and corresponding actions

b�b� � � � bn �taken from an action space B� result in instantaneous losses ��bt� xt�� where ���� ��
denotes a non�negative function� In such games� the instantaneous loss contributions from each

action�observation pair yield a cumulative loss

�Lb�x
n� �

nX
t��

Eb���bt� xt�


where the expectation accounts for a possible randomization of the strategy� In this setting�

a delayed on�line strategy is a sequence of conditional probability distributions pt����jxt�d��
t � 
� �� � � � � n � �� on the actions� and the regret is given by the excess loss incurred by an
on�line strategy over the best constant strategy determined in hindsight� with full knowledge of

xn� In general� however� the �non�delayed� on�line minimax strategy to be used in conjunction

with sub�sampling cannot be characterized as easily as Cover�s scheme for the binary case with

Hamming loss ��
�

The delayed prediction scenario is also relevant in the logarithmic loss case� with appli�

cations to adaptive arithmetic coding� Consider a situation in which an encoder assigns a

probability pt���xt��jxt� to xt�� � A� based on the observed sequence xt� in order to achieve

an �ideal� code length � log pt���xt��jxt�� Clearly� a decoder cannot start the decoding of xt��
until the entire sequence x�x� � � � xt has been decoded� which in a hardware implementation
means that the process cannot be pipelined so as to reduce the number of clock cycles required

by each decoding operation�� If� instead� the probability assigned to xt�� is based only on x
t�d�

ignoring the window of d samples xt�d�� � � � xt��xt for a suitable value of d� a pipeline can be
designed� We show that the optimality of the sub�sampling strategy in a minimax sense can be

extended to the logarithmic loss� provided again that d�� divides n� Here� the regret �termed

pointwise redundancy in the data compression case� is computed relative to the zero�order em�

pirical entropy� Notice that� as in the binary case with Hamming loss� the minimax strategy

without delay is well�characterized� and is given by Shtarkov�s Maximum�Likelihood code ��
�

�It is possible to alleviate this situation through speculative processing� but for a large alphabet A this may

require an excessive amount of resources�
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Since the asymptotic redundancy of this code is �jAj � ���log n���� the deterioration caused by
the delay takes the form of a multiplicative factor of d� ��

The class of competing reference strategies can be extended to cover all FS predictors�

as in ��
 and ��
� leading to the notion of delayed FS predictability �DFSP� of an individual

sequence� which is introduced and studied in this paper� Here� rather than being constant� the

competing strategy is allowed to vary according to bt � g�st�d�� where st is a state in an FS

machine �FSM� with state set S� driven by a deterministic next�state function st�� � f�st� xt��

For convenience� we assume that st � s� for t � �� where s� is some initial state� The functions
g and f � and the initial state s�� are optimized o��line� with full knowledge of x

n� and the

optimal g turns out to be deterministic� as in the non�delayed case� The delay in the state

sequence re�ects the constraints imposed to the on�line strategy� allowing a �fair� competition�

For an in	nite sequence �n���� the �normalized� loss incurred as jSj � � de	nes the DFSP

of the sequence� For d � 
 and binary Hamming loss� this quantity coincides with the FS

predictability of ��
� which was generalized in ��
 to other loss functions� The results in ��


also generalize the classical sequential decision problem ��
� where the competing strategies

are assumed constant� The use of FS strategies as reference models was pioneered by Ziv

and Lempel in ��

� in the more speci	c context of data compression� More general classes of

reference strategies arise when these strategies are viewed as a set of generic �experts� that o�er

advice to the on�line decision maker ��� ��� ��� �
� We show that� in general� the DFSP of an

individual sequence is strictly larger than its FS predictability� Thus� comparing convergence

rates of on�line predictors to the DFSP for di�erent values of d is less interesting than in the

single�state case� since the convergence is to a di�erent value�

In practice� the delay applied to the prediction may not be known to the decision maker�

To alleviate this problem� we will de	ne the DFSP in a more general setting� in which each

action bt is based on full knowledge of x
t��� but is �scored� relative to a number � of future

observations xt� xt��� � � � � xt����� � � �� The individual loss contributions� which correspond to
delays d � 
� �� � � � � � � �� respectively� are averaged� Speci	cally� we assume a loss of the form

��bt� xt� xt��� � � � � xt����� �
���X
d��

wd��bt� xt�d� ���

where wd� d � 
� �� � � � � � � �� are interpreted as weights according to which the loss of action
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bt relative to each individual observation xt� xt��� � � � � xt����� respectively� is weighted� The
expected cumulative loss takes the form

�Lb�x
n� �

n����X
t��

���X
d��

wdEb���bt� xt�d�
 � ���

The setting discussed so far �excluding the 	rst � � � actions� corresponds to the set of weights
wd � 
� d � � � �� w��� � �� whereas non�delayed decision making corresponds to � � ��

In principle� it would appear that the loss in ��� leads to nothing more than a vec�

tor extension of the problem studied in ��
� where the observations are vectors Xt
�
�

�xt� xt��� � � � � xt����� � A� � whose entries are constrained by a sliding window� and the in�

stantaneous losses take the form

L�bt�Xt�
�
�

���X
d��

wd��bt� xt�d� � ���

However� notice that the observation Xt to which action bt is targeted does not drive the FSM

to its next state� which in turn determines bt��� Rather� the observation that determines the

next state of the FSM isXt����� Again� this delay re�ects the fact that� in a sequential scheme�

action bt must be taken without full knowledge of the observationsXt�����Xt����� � � � �Xt���

Nevertheless� there still exists a relation between DFSP and �non�delayed� decision making

over extended alphabets� as shown in this paper� Speci	cally� we show that the DFSP can be

achieved by non�delayed FS prediction performed on � separate sequences of non�overlapping

� �vectors� for the same action space and a loss function of the form given in ���� Each such

sequence results from alphabet extension on a di�erent phase of the original sequence� It can

therefore be regarded as a sub�sampling of the sequence of � �vectors obtained by applying a

sliding window of length � to the original sequence� Thus� the key to this result is� again�

sub�sampling�

On the other hand� the loss in ��� can be viewed as generated by a particular case of a loss

function with memory� i�e�� one that depends on past action�observation pairs� Such functions�

which take the general form ��bt����� bt����� � � � � bt� xt� and are not covered by the classical
setting of the sequential decision problem� are studied in ���
� They may capture the cost of

switching from one action to another �e�g�� transaction costs incurred in portfolio selection� or

energy spent in control systems�� or the long term e�ect ��memory�� of an action at a given
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time� The cumulative loss in ��� can be written as

�Lb�x
n� �

nX
t��

���X
d��

wdEb���bt�d� xt�
 ���

where ��bt�d� xt�
�
� 
 for t� d � � and t� d � n� � � �� Thus� the relevant loss function with

memory is given by

��bt����� bt����� � � � � bt� xt� ��
���X
d��

wd��bt�d� xt� �

While asymptotically optimal decision schemes for loss functions with memory are devised

in ���
 in various settings� the proposed on�line strategies are not practical� The main di�culty

resides in the fact that the loss cannot be decomposed into separate contributions from the

sub�sequences occurring at each state�

In contrast� in this paper we also devise an e�cient on�line algorithm for delayed decision�

in the setting of competitive optimality relative to FS strategies� As in ��
 and ��
� the algorithm

uses the Lempel�Ziv �LZ� incremental parsing rule ��

� As a universal source coding scheme�

the LZ algorithm builds an implicit probabilistic model of the data ���
� which can be used

in on�line decision tasks other than data compression� The algorithm dynamically builds a

tree� and makes decisions based on the sub�sequence of previous symbol occurrences at the

current node in the traversal path� Each node corresponds to a Markovian state� given by the

sequence of observations that leads from the root to the node� The decisions at each node

follow on�line algorithms designed for the single�state case�� For example� as shown in ��
�

asymptotically optimal prediction follows from traversing the tree and predicting� at each step�

the symbol associated with the branch most often taken at the corresponding node� up to

the randomization dictated by ��
 �a slightly di�erent randomization is proposed in ��
�� For

more general games� it is shown in ��
 that using an on�line strategy based on the LZ model�

the �normalized� excess loss over the FS predictability vanishes for an arbitrary individual

sequence� For delayed prediction� the asymptotic performance of the on�line scheme proposed

in this paper converges to the DFSP for every individual sequence� While the connection with

the non�delayed case� given by the vector extension ��� and sub�sampling� will immediately

imply an LZ�based delayed prediction scheme� the proposed approach is more e�cient�

�Since the notion of predictability applies to in�nite sequences� in this context we restrict the discussion to

prediction schemes that� unlike Cover�s �
�� are horizon�free�
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The delayed prediction scenario is encountered in adaptive prefetching strategies for com�

puter memory architectures� In this application� the goal is to prefetch an address from main

memory into a small� faster memory ��cache�� ahead of time� in order to prevent stall time by

the central processing unit when accessing this address� While a 	rst approximation to this

problem is to predict the next memory reference xt given the previous references x�x� � � � xt��
�see ���
�� such formulation does not address the ultimate goal� which is to have xt already

in cache at the time it is requested� Here� we brie�y discuss the prefetching application and

formalize it in terms of a Hamming loss function� for which the implementation of the above

LZ�based scheme is particularly easy� It should be noted� however� that in this case the weights

wd can vary arbitrarily and are revealed to the decision maker only after the corresponding

action was taken� It turns out that even under these variable conditions� the on�line scheme

can still compete against Markov strategies �de	ned by an FSM for which the state at time t

is given by st � �xt��� � � � � xt�k�� where k is the Markov order�� but fails against more general
FSM strategies� Notice that a key contribution in ��
 and ��
 is to establish that� under mild

regularity conditions� the FS predictability equals the Markov predictability� namely� that the

set of competing FS machines can be reduced to the set of Markov machines� This result cannot

be extended to the case of varying weights�

The remainder of this paper is organized as follows� In Section �� we discuss minimax

strategies in the single�state case� with emphasis on binary prediction� In Section �� we introduce

the notion of DFSP and investigate its properties� In Section �� we demonstrate an LZ�based on�

line algorithm for delayed decision making� Finally� in Section �� we elaborate on the prefetching

application�

� Minimax delayed prediction

Let d denote a non�negative integer� and let xn � x�x� � � � xn denote a sequence over a 	nite
alphabet A� Given a 	nite action space B� at each time instant t� � � t � n� a �delayed�

decision maker assigns a probability distribution pt��jxt�d��� to an action bt � B� which ignores

the last d samples and depends only on x�x� � � � xt�d��� where for non�positive t� xt denotes the
null string� Each possible action bt results in an instantaneous loss ��bt� xt�� where ���� �� denotes
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a non�negative function� The delayed on�line strategy fptg yields an expected cumulative loss

�Lp�x
n� �

nX
t��

X
b�B

pt�bjxt�d�����b� xt� ���

which is compared to the Bayes envelope

B�xn� � min
b�B

�
nX
t��

��b� xt�

�
� ���

The corresponding regret Rp�x
n� is de	ned as

Rp�x
n�

�
� �Lp�x

n��B�xn� �

The minimax regret Rd�n� for delay d and sequences of length n is de	ned as

Rd�n�
�
� min

p
max
xn�An

Rp�x
n�

where the minimum is taken over all prediction strategies with delay d�

Part of our discussions in this section will focus on �randomized� prediction of binary

sequences under Hamming loss� In this case� we can either interpret the prediction as a

randomized strategy with binary actions and Hamming loss or� since the expected instanta�

neous loss takes the form jxt � ptj where pt �
� pt��jxt�d���� we can view pt as an action in

the interval �
� �
 under absolute �rather than Hamming� loss� The Bayes envelope takes the

form B�xn� � min�n��x
n�� n��x

n��� where na�x
n� denotes the number of occurrences in xn of

a � f
� �g� For the non�delayed case �d � 
�� the following result is due to Cover ��
�

Lemma � For A � f
� �g and Hamming loss� the non�delayed minimax regret satis�es

R��n� �
n

�
� ��n

X
xn�An

B�xn� � ���

Moreover� for any prediction strategy the sum of the redundancies over all sequences in An equals

�nR��n�� and there exists a �horizon�dependent� prediction strategy fptg for which Rp�x
n� �

R��n� for all x
n � An�

It is easy to see that the right�hand side of ��� is a lower bound on R��n�� by observing that

for any prediction strategy the cumulative losses must average to n�� over all sequences in

An� A prediction strategy for which the bound is achieved with equality for every sequence is

�



demonstrated in ��
 �see Appendix A�� Notice that the strategy depends on the horizon n� It

can readily be veri	ed that

R��n� � �
�nn

�
n� 


n
�
� 


�
���

if n is even� and R��n� � R��n � �� if n is odd� Hence� using Stirling�s approximation� the

non�delayed minimax normalized regret vanishes� with its main asymptotic term taking the

form ��
p
��n�

When a possible delay d is involved in the decision� we show that the minimax regret

Rd�n� is achieved by a scheme that sub�samples the original sequence x
n at a rate ���d � ���

and applies the non�delayed minimax strategy to each of the resulting d � � sub�sequences

separately� For this result to hold in cases other than binary prediction under Hamming loss� we

will require n to be a multiple of d��� Speci	cally� let x�i
mi denote the sub�sequence of length

mi � b�n� i���d���c� i � 
� �� � � � � d� such that x�i
t� �
� xt��d��	�i� t

� � �� �� � � � �mi� We predict

xt by applying a non�delayed minimax strategy to x�it
�x�it
� � � � x�it
dt��d��	e�� with horizon
mit � where it � �t mod �d���� Notice that this scheme conforms to the delay constraint� since
at the time xt is predicted� the last symbol in the relevant sub�sequence� xt�d��� is already

available� Let RSS�x
n� denote the regret of this scheme on xn�

Theorem � Let nd � n mod �d���� For nd � 
 and any loss function ���� ��� or for A � f
� �g�
Hamming loss� and all n� the minimax regret Rd�n� for delay d and sequences of length n satis�es

Rd�n� � ndR�

��
n

d� �

��
� �d� �� nd�R�

�	
n

d� �


�
� ���

In addition� for every xn � An we have in both cases

RSS�x
n� � Rd�n� �

Proof� We begin by showing that for any loss function ���� ��� the worst�case regret of any given
delayed on�line strategy fptg� applied to n�tuples with a delay d such that d � � divides n�

is lower�bounded by �d � ��R��nSS�� where nSS � n��d � ��� To this end� we will show that

this lower bound applies to the expected loss under fptg for a sequence xn which is piecewise
constant over blocks of length d � �� The key idea in the proof is to link this loss to the

expected loss under an auxiliary non�delayed strategy for the nSS�tuple obtained by taking one

�



sample from each constant block in xn� While this idea can be extended to the case nd 	� 
�
the manipulation of the tail of length nd obscures the procedure� and is therefore considered

separately� For any time instant t� let �td
�
� d�t�����d���e�d��� denote the smallest multiple

of d� � not smaller than t� �� Since �td � d� � � t� we can de	ne an auxiliary �non�delayed�

probability assignment on the actions by

p�t���bjxt� ��
�

d� �

dX
i��

p
td�i�bjx

td�d���i� ��
�

where� as suggested by the notation� p�t���bjxt� depends only on xt and is therefore an on�line
strategy� Clearly� the strategy is piecewise constant over blocks of length d� �� Now� for each

nSS�tuple y
nSS� let xn denote the piecewise constant n�tuple obtained by replicating d�� times

each symbol in ynSS� so that xt � ydt��d��	e� � � t � n� We de	ne a third on�line strategy�

p��t���bjyt�� for nSS�tuples� by

p��t���bjyt� � p��d��	t���bjx�d��	t� � ����

Given an arbitrary sequence ynSS� the expected loss under fptg for the corresponding �piecewise
constant� n�tuple xn satis	es� by ����

�Lp�x
n� �

nSSX
j��

dX
i��

X
b�B

p�d��	j�i�bjx�d��	�j��	�i���b� yj�

� �d� ��
nSSX
j��

X
b�B

p��d��	�j��	���bjx�d��	�j��	���b� yj�

� �d� ��
nSSX
j��

X
b�B

p��j �bjyj�����b� yj� � �d� �� �Lp���y
nSS� ����

where the second equality follows from ��
�� and the third equality follows from ����� In

addition� by ��� and the construction of xn from ynSS� we have in this case

B�xn� � �d� ��min
b�B

�
nSSX
t��

��b� yt�

�
� �d� ��B�ynSS� �

Therefore�

Rp�x
n� � �d� ��Rp���y

nSS� � ����

Now� since fp��t g is a non�delayed on�line strategy� there exists a sequence ynSS such that

Rp���y
nSS� � R��nSS� �

�




Thus� by ����� the corresponding piecewise constant n�tuple xn satis	es

Rp�x
n� � �d� ��R��nSS� � ����

Since fptg is an arbitrary delayed on�line strategy� ���� implies

Rd�n� � �d� ��R��nSS� ����

as claimed�

While the same proof technique is used when n is not a multiple of d � � to show that

the right�hand side of ��� is a lower bound on Rd�n� for A � f
� �g and Hamming loss� the
de	nition of p�t���bjxt� needs to be adjusted for the incomplete last block of length nd � 
�

Speci	cally� while ��
� holds in the range 
 � t � n� nd� for t � n� nd� � � � � n� �� we de	ne

p�t���bjxt� ��
�

nd

nd��X
i��

pn�i�bjxn�d���i� � ����

Since n�d� �� i � n�d� � � n�nd� the probability assignment on the actions still depends

only on xt� In this case� nSS
�
� dn��d � ��e� and a piecewise constant sequence xn is obtained

from an nSS�tuple y
nSS by replicating d� � times each symbol in ynSS��� followed by nd copies

of ynSS� Using ��
� and ����� the expected loss on xn under fptg derived from ��� takes the
form

�Lp�x
n� �

nSS��X
j��

dX
i��

X
b�B

p�d��	j�i�bjx�d��	�j��	�i���b� yj� �
nd��X
i��

X
b�B

pn�i�bjxn�d���i���b� ynSS�

� �d� ��
nSS��X
j��

X
b�B

p��d��	�j��	���bjx�d��	�j��	���b� yj�

� nd
X
b�B

p�n�nd���bjxn�nd���b� ynSS� � ����

Hence� by �����

�Lp�x
n� � �d� ��

nSS��X
j��

X
b�B

p��j �bjyj�����b� yj� � nd
X
b�B

p��nSS�bjynSS�����b� ynSS�

� �d� �� �Lp���y
nSS��� � nd��p���ynSS� ����

where ��p���ynSS� denotes the expected instantaneous loss on ynSS for the strategy fp��t g� Thus�

�Lp�x
n� � �d� �� nd� �Lp���y

nSS��� � nd �Lp���y
nSS� � ����

��



In the special case of Hamming loss for binary sequences� which is the only one addressed

when nd 	� 
� notice that for any sequence xm� there exists a symbol a � f
� �g which is most
frequent in both xm and xm�� �possibly tied with �a for one of the sequences�� Therefore� it is

easy to see that

B�xn� � �d� �� nd�B�y
nSS��� � ndB�y

nSS�

implying� by �����

Rp�x
n� � �d� �� nd�Rp���y

nSS��� � ndRp���y
nSS� � ��
�

Now� de	ne the subset of n�tuples An�d by

An�d � fx � An � x � zy� z � f
d��� �d��gnSS��� y � f
nd � �ndgg

where zy denotes the concatenation of z and y� and for a � A and a non�negative integer i� ai

denotes the all�a i�tuple� Notice that An�d is simply the set of all n�tuples obtained by replication

of an nSS�tuple as shown above� and the sequences in this set are formed by juxtaposition of

constant blocks of length d� �� followed by a tail y of length nd� Next� we sum over x
n � An�d

the regret Rp�x
n�� By ��
�� we have

X
x�An�d

Rp�x� � ��d� �� nd�
X

y�AnSS��

Rp���y� � nd
X

y�AnSS

Rp���y� � ����

By Lemma �� the summations in the right�hand side of ���� are independent of the strategy

fp��t g� and we obtain
X

x�An�d

Rp�x� � �
nSS�d� �� nd�R��nSS � �� � �nSSndR��nSS� � ����

Since the cardinality of An�d is �
nSS � ���� implies that there exist a sequence xn � An�d such

that

Rp�x
n� � �d� �� nd�R��nSS � �� � ndR��nSS� � ����

Together with ����� ���� implies that the right�hand side of ��� is a lower bound on the worst�

case regret of any delayed on�line strategy on n�tuples with delay d for any value of n�

To show that the sub�sampling strategy attains the bound ��� for a general loss function�

consider any sequence xn and the corresponding sub�sequences x�i
mi de	ned prior to Theo�

rem �� 
 � i � d� Let �L�i	MM�x�i

mi� and B�x�i
mi� denote� respectively� the cumulative loss of a

��



�non�delayed� minimax strategy �for horizon mi� on the sub�sequence indexed with i� and the

corresponding Bayes envelope� We have

RSS�x
n� �

dX
i��

�L�i	MM�x�i

mi��B�xn� �

dX
i��

� �L�i	MM�x�i

mi��B�x�i
mi�
 �

dX
i��

R��mi� ����

where the 	rst inequality follows from the fact that the sum of the Bayes envelopes correspond�

ing to each sub�sequence is not larger than the Bayes envelope of the entire sequence� and the

second inequality follows from the minimax property� Since mi � bn��d � ��c for d � � � nd

sub�sampled sub�sequences� andmi � dn��d���e for the remaining nd sub�sequences� the proof
is complete� �

Discussion� In the binary case with Hamming loss� since R��n� 

p
n������ the theorem states

that Rd�n� 
 R��n�
p
d� �� As shown in Appendix A� a direct application of the minimax

strategy to the delayed sequence ��hiding� a window of d symbols� yields a regret that behaves

asymptotically as R��n���d � ��� This strategy� however� does not require prior knowledge of

d� It is also shown that the asymptotic regret of the exponential weighting algorithm used

in a similar fashion� in turn� behaves as R��n�
p
��d � ��� ln � in case d is known� If d is

unknown and the algorithm employs the same weighting parameter as in the non�delayed case�

the corresponding regret behaves as R��n��d� ��
p
� ln ��

The binary case with Hamming loss allows us to establish the optimality of the sub�

sampling strategy in the minimax sense for any value of n� not necessarily a multiple of d� ��

Two properties contribute to this special status� First� the Bayes envelope of a piecewise

constant sequence in An�d is the sum of the Bayes envelopes of the sub�sampled sequences�

whereas in general this is only true when n is a multiple of d � �� Second� a key property of

Cover�s minimax scheme is that the regret is uniform over all sequences xn � An� this property is

not valid in general� Moreover� the �non�delayed� on�line minimax strategy� which is a building

block for the delayed one� cannot be characterized in the general case as easily ��
� Yet� the sub�

sampling strategy can still be applied to achieve vanishing normalized regret� with a possibly

sub�optimal rate of convergence� in conjunction with a �non�delayed� on�line strategy that is not

necessarily minimax�� For example� the exponential weighting algorithm of ��
 and ��
� when

applied without delay in a context in which the �experts� are given by all possible constant

�In fact� in the context of FS reference strategies� we will not be concerned with the convergence rates�

��



strategies� yields a regret REW�x
n� satisfying

REW�x
n� � �max

s
n ln	

�

for all xn � An� where 	 denotes the cardinality of the action space and �max is an upper

bound on the loss� Thus� the sub�sampling strategy used in conjunction with exponential

weighting yields a regret which is upper bounded by �max

p
n�d� ���ln 	���� If� in addition� we

are interested in a horizon�free scheme� a modi	cation to the algorithm is required �see ��
�� at

an additional cost of a constant multiplicative term in the regret�

Logarithmic loss� As discussed in Section �� the delayed prediction scenario is also rel�

evant in the logarithmic loss case with applications to adaptive arithmetic coding� and the

proof of Theorem � applies almost verbatim in this case� Here� the decision maker assigns a

probability pt���xt��jxt�d� to xt�� � A based on the delayed sequence xt�d� incurring a loss

� log pt���xt��jxt�d�� The associated pointwise redundancy takes the form

Rp�x
n� � �

n��X
t��

log pt���xt��jxt�d�� n �H�xn�

where �H�xn� denotes the �zero�order� normalized� empirical entropy of xn� namely

�H�xn� �
X
a�A

na�x
n�

n
log

n

na�xn�
�

Proceeding as in the proof of Theorem �� and assuming that d� � divides n� the 	rst equality

in the chain ���� translates into

�Lp�x
n� � �

n��d��	X
j��

dX
i��

log p�d��	j�i�x�d��	j�ijx�d��	�j��	�i� �

While we cannot directly replace fptg with fp�tg as in the second equality in ����� the key idea
is to use the convexity of the log function to obtain the inequality

�Lp�x
n� � ��d� ��

n��d��	X
j��

log p��d��	�j��	���x�d��	�j��	��jx�d��	�j��	� �

Thus� proceeding as in �����

�Lp�x
n� � ��d� ��

n��d��	X
j��

log p��j �xj jxj��� � �d� �� �Lp���y
n

d�� � �

��



In addition� �H�xn� � �H�y
n

d�� � �notice that this property does not have a counterpart when

d� � does not divide n�� Therefore�

Rp�x
n� � �d� ��

�
�Lp���y

n
d�� �� n

d� �
�H�y

n
d�� �

�
� �d� ��Rp���y

n
d�� � �

Again� there exists a sequence y
n

d�� for which Rp���y
n

d�� � � R��n��d����� where R��n��d����

is the minimax pointwise redundancy without delay for sequences of length n��d� ��� Conse�

quently� the delayed minimax pointwise redundancy is at least �d���R��n��d���� Proceeding

as in the proof of Theorem �� this bound is achieved by the sub�sampling strategy�

Notice that� as in the binary case with Hamming loss� the minimax strategy without

delay is well�characterized and yields uniform pointwise redundancy� It is given by Shtarkov�s

Maximum�Likelihood �ML� code ��
� which assigns to xn a total probability

P �ML	�xn� �
��n

�H�xn	P
yn�An ��n

�H�yn	

through the sequential probability assignment

p
�ML	
t�� �xt��jxt� �

P
y�An�t�� P �ML	�xt��y�P

z�An�t P �ML	�xtz�
�

P
y�An�t�� ��n

�H�xt��y	P
z�An�t ��n

�H�xtz	
�

Hence�

R��n� � log



� X
yn�An

��n
�H�yn	

�
� � jAj � �

�
log n�O���

where the asymptotic expansion is shown in ��
� Consequently� Rd�n� 
 �d� ��R��n��

The ML�code can be replaced by simpler� horizon�free �plug�in� assignments obtained

through mixtures �see� e�g�� ���
�� without a�ecting the main asymptotic redundancy term for

suitable choices of the mixture prior� In a plug�in strategy� the probability assigned to xt�� � a

is an estimate of the probability of a if the observed sample xt were drawn by a memoryless

source� which is given by a ratio of the form �na�x
t� � 
���t � jAj
�� where 
 is a positive

constant that depends on the mixture prior� In particular� it is shown in ��� Eq� ����
 that�

for 
 � �
� � the pointwise redundancy of any n�tuple di�ers from R��n� by a quantity that is

upper�bounded in absolute value by a constant� independent of n�

Interestingly� when any of the above asymptotically optimal schemes is used for delayed

probability assignment �assigning to xt the probability that the original scheme would have

��



assigned to xt�d�� the asymptotic worst�case redundancy in the binary case is at least ��d �

��R��n�� To see that� consider the ratio Pd�

n���n����P �
n���n��� of the probabilities assigned

to the sequence 
n���n�� by a scheme with and without delay� respectively� We have

Pd�

n���n���

P �
n���n���
�

�
�

�

�d dY
i��

p�n��	�i����j
�n��	�i�
p�n��	�i���
j
�n��	�i�pn�i����j
n����n��	�i�

����

where it is assumed that the delayed scheme assigns a probability of �
� to each of the 	rst d

bits� It is easy to see that ���� implies that the delayed scheme assigns at least d log n more bits

to the sequence than the original scheme �up to lower order terms�� provided that pt���
j
t� �
��O���t� and that� for every given constantm� pt�m����j
t����t��	�m� � �

��O���t�� The claim
follows from observing that these conditions clearly apply to any asymptotically optimal plug�in

strategy� as well as to the ML�code� Thus� the asymptotic worst�case pointwise redundancy of

these schemes exceeds the optimal value obtained with the sub�sampling strategy� However�

its average value under any i�i�d� distribution remains upper�bounded by R��n�� as stated in

Section � for the case of Hamming loss� In addition� for the plug�in strategy� it is easy to see

that the asymptotic worst�case pointwise redundancy is precisely ��d���R��n�� Indeed� notice

that ignoring d bits in xt results in decreasing the numerator in the probability assigned to

xt�� by� at most� d� whereas the denominator is decreased by d� An upper bound on the code

length increase  L�xn� results from assuming the worst�case situation for every time instant�
implying for all xn

 L�xn� �
n��xn	��X

i��

log

�
� �

d


 � i

�
�

n��xn	��X
i��

log

�
� �

d


 � i

�
�

dX
i��

log�n� i� jAj
�

� �d

ln �

n��X
i��

�


 � i
� d log�n� d� � d log n�O��� �

Thus� the asymptotic worst�case pointwise redundancy of this scheme is ��d � ��R��n��

Notice that� as shown in ���
� the asymptotic lower bound �jAj � ���log n��� applies not
only to the worst�case pointwise redundancy of any non�delayed probability assignment� but

also to the pointwise redundancy of most sequences in most types� In contrast� the asymptotic

lower bound �d � ���log n��� on the pointwise redundancy for delayed probability assignment

on binary alphabets shown here cannot apply to most sequences in most types� as it would

contradict the fact that for the delayed plug�in scheme with 
 � �
� the average under any i�i�d�

��



distribution is close to �
� logn� The source of this contradiction is that� for any plug�in scheme�

the possible increase in the pointwise redundancy due to the delay is not only upper�bounded

by d log n� but� similarly� it is lower�bounded by �d log n� Thus� by ��
� the asymptotic best�case
�delayed� pointwise redundancy for 
 � �

� cannot be smaller than �
�
� � d� log n� Consequently�

a vanishing fraction of �low redundancy� sequences in a type would not decrease the main

term of the average pointwise redundancy within the type below �d � ���log n���� whereas it

can be shown that the averaging distribution can be chosen so that the �exception� types have

vanishing probability and do not a�ect the asymptotic behavior of the average�

� Delayed FS predictability

In this section� we consider reference strategies of the form bt � g�st�� bt � B� where st is a

state in an FSM with state set S� driven by a next�state function st�� � f�st� xt�� with initial

state s�� We will also extend the setting of Section � to loss functions of the form ���� where

the weights wd are given real numbers� and the expected cumulative loss is given by ���� The

vector of weights �w�� w�� � � � � w���� is denoted by w� and the setting of Section � corresponds

to w � �
� 
� � � � � 
� �� �here� however� we exclude the 	rst � � � actions�� Clearly� the best
reference strategy g for given f and s� achieves� over n� � � � actions� the �normalized� loss

��wf�s��x
n� �

X
s�S

pxn�����s�min
b�B

��
�
���X
d��

wd

X
u�Ad

X
a�A

pxn���d���uajs���b� a�
��
� ����

where pxj �s� denotes the frequency of occurrence of s � S in the state sequence s�s� � � � sj and�
likewise� the conditional empirical probability pxj �uajs� �based on xj� is de	ned as the frequency
with which the �d � ���vector xtxt�� � � � xt�d is ua� given that st � s� 
 � t � j � d� Thus� for

an in	nite sequence of observations x� � x�x� � � �� the asymptotic performance achievable by
the best FS strategy determined in hindsight is given by

��w�x�� � lim

��

lim sup
n��

min
s��S

min
f �jSj�


��
�w	
f�s�
�xn� � ����

We de	ne this value as the delayed FS predictability of x� for the vector w� Notice that� for

� � �� the DFSP coincides with the �generalized� FS predictability of ��
 for the loss function

w����� ���

��



In the remainder of this section� we establish some properties of the DFSP� The 	rst

property relates the DFSP to a non�delayed measure of predictability through sub�sampling�

We then show that� as in the non�delayed case� Markov machines achieve the same asymptotic

performance as the broader set of general FSM�s� when the number of states grows� Finally�

we show that the DFSP is a proper generalization of the usual FS predictability of ��
� These

properties are applied in Section � to the design of on�line algorithms that achieve the DFSP�

Given an in	nite sequence x� over A� let X�i
�� 
 � i � � � denote the in	nite sequence

over A� such that X�i
t � �xt��i� xt��i��� � � � � x�t��	��i���� t � �� �� � � �� Notice that the se�
quences X�i
�� formed by non�overlapping blocks over x� taken at a �phase� given by i� are

the sub�sequences resulting from sub�sampling the sequence of � �vectors obtained by applying

a sliding window of length � to x�� For an observation space A� and an action space B� we

consider non�delayed FS prediction of each sub�sequence X�i
�� 
 � i � � � under the loss

function de	ned in ���� namely

L�b�Y � �
���X
d��

wd��b� yd� ����

where Y � �y�� y�� � � � � y���� � A� and b � B� In this setting� a di�erent FSM� with next�state

function f�i� and initial state s��i�� acts on each sub�sequence X�i

�� and is optimized sepa�

rately� For a pre	x xn of x�� this prediction accumulates � independent losses over the corre�

sponding sub�sequencesX�i
n�i	� where n�i�
�
� b�n�����i���c is the length of the longest pre	x

of X�i
� �over A� � contained in xn� These losses are added together� with ��wf�i	�s��i	�X�i

n�i	�

denoting the �normalized� loss achieved over X�i
n�i	 by the best �non�delayed� strategy for the

FSM determined by f�i� and s��i�� A �sub�sampled predictability� of x
� is de	ned by

�
w�x��
�
� lim


��
lim sup
n��

�

n

���X
i��

n�i� min
s��i	�S�i	

min
f�i	�jS�i	j�


��
�w	
f�i	�s��i	

�X�i
n�i	� � ����

Notice that if the summation in i can be interchanged with the limit superior in n �e�g�� in

case the limit in n exists for all the sub�sequences�� then �
w�x�� is just the average of the

�non�delayed� FS predictabilities ��w�X �i
�� of X �i
�� 
 � i � � � as de	ned in ��
� In general�

however� this average is only an upper bound on the new predictability measure ���� which� as

shown in Theorem � below� coincides with the DFSP�

��



Theorem � For any positive integer � � any vector w� and any in�nite sequence x�� we have

��w�x�� � �
w�x�� � ��
�

Theorem � tells us that in order to achieve the DFSP� it is possible to consider � separate

sub�sampled sub�sequences over the extended alphabet� and apply known techniques for non�

delayed decision making� By emphasizing� again� the optimality of sub�sampling� this result

immediately implies an on�line algorithm for approaching the DFSP� It su�ces to run in parallel

� on�line schemes for non�delayed decision over the extended alphabet� one for each phase of

the sequence� On�line algorithms for approaching the DFSP are further discussed in Section ��

Proof of Theorem �� Consider an FSM with next�state function f over a set of states S� which is

started at state s� and is driven by the symbols in A� By abuse of notation� given a � A� s � S�

and a string u over A� we recursively de	ne f�s� au� � f�f�s� a�� u�� We create a re	nement of

the FSM by splitting each state s � S into � states denoted s��	� s��	� � � � � s����	� and by de	ning
a new next�state function� f� � such that for any a � A and any d� 
 � d � � � f� �s

�d	� a� � s��d
�	�

where s� � f�s� a� and d� � d � � mod � � The initial state of the re	ned machine is selected
to be s

����	
� � so that state s�i	 can only occur at times t � j� � i� namely� at the beginning of

block X�i
j � j � �� �� � � �� By the re	nement property� for every pre	x x
n of x� we have

��w
f� �s

�����
�

�xn� � ��wf�s��xn� � ����

Clearly� by ����� ����� and the fact that for any string u and any length j�
P

u��Aj pxn�uu
�js� �

pxn�j �ujs�� we have

��w
f� �s

�����
�

�xn� �
X
s�S

���X
i��

pxn�����s�i	�min
b�B

��
�
���X
d��

wd

X
u�Ad

X
a�A

X
u��A��d��

pxn�uau
�js�i	���b� a�

��
�

�
X
s�S

���X
i��

pxn�����s�i	�min
b�B

��
�

X
Y �A�

pxn�Y js�i	�L�b�Y �
��
� � ����

Now� we de	ne yet another FSM over S� whose next�state function F� is driven by the symbols in

A� � according to F� �s�Y � � f�s� y�y� � � � y� �� where Y � �y�� y�� � � � � y� �� yj � A� j � �� �� � � � � � �
Clearly� each occurrence of s�i	 in xn���� corresponds to an occurrence of the state s �driven

by F� �� in X�i

n�i	� Therefore� ���� implies

��w
f� �s

�����
�

�xn� �
�

n� � � �

���X
i��

n�i�
X
s�S

pX�i�n�i��s�minb�B

��
�

X
Y �A�

pX �i�n�i��Y js�L�b�Y �
��
�

��



�
�

n� � � �

���X
i��

n�i� ��wF� �s��i
�X �i
n�i	�

and� using ����� minimizing over f and s�� taking the limit superior on n� and letting jSj � ��
we obtain

��w�x�� � �
w�x�� �

To prove the opposite inequality� it is convenient to invoke the asymptotic equivalence

between Markov and FSM predictability shown in ��� Theorem �
 for the non�delayed case�

Notice that the conditions for this equivalence clearly hold in the 	nite matrix games considered

in this paper� Therefore� for any Markov order k� and any set of FSM�s with next�state functions

f�i� and initial states s�i� over a set of ! states� we have

�

n

���X
i��

n�i� ��
�w	
f�i	�s��i	

�X �i
n�i	� � �
n

���X
i��

n�i� ��wMk
�X�i
n�i	�� ��k�!� ����

where Mk denotes the next�state function of a Markov machine of order k with an arbitrary

initial state� and the function ��k�!� vanishes as k tends to in	nity� provided that ! � o��k��

The sum in the right�hand side of ���� accumulates the losses achieved on all �phases� of x�

by separate Markovian machines of order k� driven by the symbols in A� � with the loss function

L�Y � b�� By the Markov property� the same loss can be achieved by a single FSM driven by the

symbols in A� whose state is given by the last k� symbols and the phase i� with the loss function

of ���� Notice that the state space Sk�� of this FSM has � jAjk� states �and is not Markovian��
Therefore�

�

n

���X
i��

n�i� min
s��i	�S�i	

min
f�i	�jS�i	j�


��
�w	
f�i	�s��i	

�X �i
n�i	� � min
s��Sk��

min
f �jSk�� j�� jAjk�

��wf�s��x
n�� ��k�!� �

The result follows from taking the limit superior as n�� and then letting ! �and� therefore�

k� tend to in	nity� �

While the proof of Theorem � also implies that the class of Markov machines which are also

equipped with information on the phase i of the sequence is as powerful as the entire FSM class

in the sense of achieving the DFSP� Theorem � below states a stronger property� Speci	cally� it

is shown that� just as in the non�delayed case� the �delayed� Markov predictability is equivalent

to the DFSP� Thus� the phase information is asymptotically inconsequential��

	It should be noted� however� that the weaker result implied by Theorem � does not appear to be useful in

the proof of Theorem 
�

�




Theorem � For any positive integer � � any vector w� and any in�nite sequence x�� we have

��w�x�� � lim
k��

lim sup
n��

��wMk
�xn� �

Proof� The theorem results from establishing� for every next�state function f over a state space

S� every initial state s�� and every non�negative integer k� the inequality

��wMk
�xn�� ��wf�s��xn� �W�max

vuut � ln jSj
� �

j
k

���

k ����

and letting n � � and k � �� where W �
�

P���
i�� wd and we recall that �max denotes an

upper bound on the loss� Following the method for proving the counterpart of this inequality

in ��� Theorem �
� we upper�bound the left�hand side with an average of di�erences of the

form ��wMj
�xn� � ��wfj �s��xn�� where fj denotes a common re	nement of f and Mj� and j � k�

However� unlike in ��
� we let the integers j take the form j �m� � where 
 � m � bk��c� These
di�erences are bounded� in turn� as shown in Lemma � below �which replaces Equation �A���

of ��
�� Notice that the auxiliary empirical conditional entropies in Lemma � correspond to

distributions on � �tuples� rather than on single letters as in ��
�

Lemma � Let a re�nement of a Markov machine of order j have state space S next�state

function f � and initial state s�� Let �H�X
� jXj� and �H�X� jS� denote the conditional entropies

of the empirical distributions on � �tuples conditioned on the Markov and the re�ned machine�

respectively �with frequencies dictated by xn�� Then�

��wMj
�xn�� ��wf�s��xn� �W�max

q
��ln ��� �H�X� jXj�� �H�X� jS�
 �

Lemma � is proved in Appendix B� The rest of the proof of Theorem � is omitted� since it

proceeds as in ��
� except that here the chain rule of conditional entropies is used on � �tuples�

�

In case w is the � �vector �
� 
� � � � � 
� ��� we will denote ��wf�s��xn�
�
� ��

����	
f�s�

�xn�� The DFSP

of x�� which we will denote ������	�x��� gives the minimum loss per sample incurred by any

FS decision maker that acts � � � steps in advance �or observes a sequence with a delay � � ���
We will refer to ������	�x�� as the DFSP of order � � �� It is easy to see that for any sequence
xn� any FSM de	ned by f and s�� any positive integer � � and any vector of weights w�

��wf�s��x
n� �

���X
d��

wd��
�d	
f�s�
�xn� �

��



Thus� the achievable loss for w is lower�bounded by a linear combination of delayed predictabil�

ities of orders 
� �� � � � � � � ��
As noted in Section �� the performance achieved by a single�state machine is independent of

the delay� However� when general FSM�s are considered� the concept of delayed predictability is

a proper generalization of the usual predictability� The following theorem states that not only

the DFSP cannot decrease with the order� but there indeed exist sequences for which �longer

delay� decision making is sub�optimal�

Theorem �

a� For any in�nite sequence of observations x�� �����	�x�� � ���
���	�x�� for all � � � � � 
�

b� Assume that there exist a�� a� � A such that

��argminb�B��b� a��� a�� � min
b�B

��b� a��

�namely� the loss function is non�trivial� in the sense that there is no single action that

dominates all other actions regardless of the observation�� Then� for any � � �� there

exist in�nite sequences x� for which ������	�x�� � ����	�x���

Proof� The 	rst part of the theorem is straightforward� since an FSM that incurs a loss

��g�st�� ����� xt� on xt for some function g of the state at time t � � � � �� cannot degrade its

performance if g is allowed to depend also on xt�� ���� � � � � xt�� �
As for the second part� it su�ces to show that the strict inequality holds with probability

one for sequences emitted by some ergodic 	rst�order Markov �probabilistic� source S� By the
assumption on the loss function� there exist such sources� with conditional distributions p��j���
that for some � � 
 satisfy the inequality

X
v�A

p�v�min
b�B

��
�

X
u�A���

X
a�A

p�uajv���b� a�
��
� �

X
v�A

p�v�
X

u�A���

min
b�B

�X
a�A

p�uajv���b� a�
�
� � ����

where fp�v�� v � Ag denotes the steady state distribution derived from p��j��� Fix k and consider
the Markov machine Mk with an arbitrary initial state� By Birkho��s ergodic theorem� for

sequences xn emitted by S� the k� � empirical joint distribution tends to the true distribution

almost surely as n��� Hence� by ���� and the continuity of the �delayed� Bayes envelope�

lim sup
n��

��
����	
Mk

�xn� �
X
v�Ak

p�v�min
b�B

��
�

X
u�A���

X
a�A

p�uajv���b� a�
��
� �
� ��

����	
k �S�

��



almost surely� Now� the idea is to prove the theorem in the probabilistic setting� Speci	cally�

since S is Markov of order �� by ����� we have

��
����	
k �S� � ��

����	
� �S� �

X
v�A

p�v�min
b�B

��
�

X
u�A���

X
a�A

p�uajv���b� a�
��
�

�
X
v�A

p�v�
X

u�A���

min
b�B

�X
a�A

p�uajv���b� a�
�
� �

�
X
v�A

p�v�
X

u�A���

p�ujv�min
b�B

�X
a�A

p�ajvu���b� a�
�
� �

�
X

u��A�

p�u��min
b�B

�X
a�A

p�aju����b� a�
�
� �

�
X
v�A

p�v�min
b�B

�X
a�A

p�ajv���b� a�
�
� �

�
X
u�Ak

p�u�min
b�B

�X
a�A

p�aju���b� a�
�
� � � ��

��	
k �S� � � � ����

Again� by the ergodic theorem�

lim sup
n��

��
��	
Mk
�xn� � ��

��	
k �S�

almost surely� and therefore� by �����

lim sup
n��

��
����	
Mk

�xn� � lim sup
n��

��
��	
Mk
�xn� � � ����

with S�probability �� Since the �countable� intersection of probability�� sets also has probability
�� we can let k �� in ����� Finally� since � � 
� by Theorem �� we conclude that

������	�x�� � ����	�x��

with S�probability �� �

� Delayed decision making via incremental parsing

In this section� we propose a sequential algorithm that� for an arbitrary sequence of observations

xn� incurs a loss �Lb�x
n�� as de	ned in ���� which approaches the DFSP for any given loss function

���� �� and weight � �vector w� By Theorem �� one possible approach to achieve asymptotically

��



optimal delayed decision making is to reduce the problem to the non�delayed case studied

in ��
� through sub�sampling� Speci	cally� we can grow � LZ trees in parallel over the extended

alphabet A� � one for each sequence X�i
� 
 � i � � � and use the LZ�based sequential decision

making scheme of ��
 for the loss function ���� Each tree yields a sub�sampled sequence of

decisions� at the corresponding phase i� and the compound loss converges to the DFSP� While

this approach is plausible� a more direct application of the incremental parsing rule to delayed

decision making avoids the costs associated with alphabet extension �especially in terms of

memory usage�� as shown next�

Following ��
� we will 	rst derive a strategy that competes successfully against any given

Markov machine� By Theorem �� a Markov machine of su�ciently large order can perform as

well as any given FSM� We will then take advantage of the growing Markov order induced by

the LZ incremental parsing rule to design the desired sequential algorithm� For simplicity� we

will assume jAj � jBj� so that a one�to�one mapping between observations and actions can be
de	ned� By abuse of notation� we will denote b � a for corresponding values b � B and a � A

under this mapping� Moreover� we will restrict our analysis to the Hamming loss� namely�

��b� a�
�
�

���
��

 if b � a

� otherwise�
����

While our results carry over to general loss functions� the Hamming loss facilitates an e�cient

implementation of the sequential decision scheme� Moreover� the prefetching application to be

discussed in Section � conforms to this restriction �except that the weights can vary arbitrarily

and are only revealed to the decision maker after the corresponding action was taken��

��� Sequential strategies for Markov models

For non�delayed decision making� a sequential scheme that performs essentially as well as the

best constant strategy determined in hindsight can readily be extended to compete against

the best Markov predictor of a given order k� by using it on the sub�sequences of observations

following each k�tuple� Speci	cally� for a sub�sequence of length n�s� occurring at state s� an

O�
p
n�s�� excess loss with respect to the best constant strategy can be sequentially achieved�

Therefore� integrating this result over the state space S of the competing Markov machine

��



through Jensen�s inequality� we obtain an overall �normalized� regret �with respect to the best

Markov strategy� which is O�
pjSj�n� for a sequence of length n �see ��
��

It is possible to extend these considerations to delayed prediction by proceeding as in

Theorem �� creating � separate sequences of observations over A� � which in turn are divided

according to the Markov state in which the observation vector occurred� The actions still

belong to B� and the loss function is given by ���� For each phase and state� a horizon�free

decision scheme with O�
p
n� regret �such as the exponential weighting scheme discussed at the

end of Section �� is applied� and thus the dependency of the regret on jSj and � is given by

an O�
p
� jSjn� term� Consequently� there is a regret cost for both the delay and the number

of states� However� when dealing with sequences such that two consecutive occurrences of a

given state are always at least � time instants apart �namely� st � s implies st�i 	� s for

i � �� �� � � � � � � ��� the delay cost can be avoided� The reason is that� for such sequences�
the vector of observations Xt occurring at state st � s �and the corresponding loss L�bt�Xt�

for action bt� is already available at the next occurrence of state s� Consequently� it is not

necessary to consider � separate phases� This is a key observation in the context of approaching

the Markov predictability� as it will become clear that the assumption is not restrictive due to

the use of the incremental parsing rule to build a machine of growing Markov order�

For a sub�sequence of observations Xt��Xt� � � � � �Xti�s� over A
� occurring at state s� all of

which are assumed to be available at the time of the next visit to s� the exponential weighting

algorithm assigns to action b � B a probability

P �bjXt� �Xt� � � � � �Xti�s�� �
e��Lb�s�i	P

b��B e��Lb� �s�i	
����

where Lb�s� i� is the cumulative loss of action b for the sub�sequence� namely

Lb�s� i�
�
�

i�s	X
j��

L�b�Xtj � ��
�

and � is a constant whose optimal value depends on the length n�s� of the sub�sequence� Since

n�s� depends on the sequence xn� it cannot be assumed known even in cases where the horizon

n is known� To address this problem� it is proposed in ��
 to divide time into exponentially

growing super�segments� and to apply the above algorithm to each super�segment independently�

optimizing � for the corresponding length� Notice that the cumulative loss Lb�s� ni�� where ni is

��



the length of the i�th super�segment� is reset before starting super�segment i��� The normalized

regret is bounded as in the horizon�dependent case� but with a larger constant ��
�

��� Delayed decision algorithm

In order to compete against any FSM� we will rely on the incremental parsing rule of ��

 to

increase the Markov order at a suitable rate� Based on this rule� the decision algorithm will grow

the same tree as in the data compression application� but the count updates will di�er from

those speci	ed in ��
 for binary �non�delayed� prediction� The branches in the tree represent

observations� and a node represents a Markovian state� through the unique path from the root

�the reader is referred to ��

 and ��
 for further details�� In addition� for each node N � a
count cb�N � is associated with each action b � B� As shown in Equation ���� below� this count

stores a �non�negative� di�erence between a node�dependent reference value and the cumulative

loss that would be incurred by a constant strategy that uses action b over the sub�sequence of

observations occurring at the state represented by N � The counts cb�N � are initialized to 
�
and are reset occasionally to account for the exponentially growing super�segments discussed in

Section ���� To this end� a counter n�N � registers the number of visits to N � and determines
a super�segment index m�N ��

The proposed sequential strategy is described through a pointer that at time t � � is
pointing to node Nj�� at level j � � of the tree� after having pointed to each node in the path
N� � � � Nj��Nj�� from the root N� �initially� j � ��� If j � � � we also keep track of additional

nodes visited before the last return to the root� which are denoted N���N��� � � � �Nj�� �from

the most recent to the most remote�� so as to complete a history of length � � Thus� at a given

time� a given node may be labeled by multiple indexes� only one of which can be non�negative

�the level in the tree�� At that point� an observation xt�� � A occurs� The strategy proceeds

as follows�

a� For d � 
 to � � �� increment by wd the count cb�Nj���d�� for the action b � xt���

b� Traverse the tree in the direction of xt��� moving the pointer to Nj� If the branch does

not exist in the tree� add it and reset the pointer to the root N� �j � 
�� in this process�

the node previously pointed to is re�labeled N��� and a history of length � is maintained�

��



c� Draw action bt according to the distribution

P �bjNj� �
e��m�Nj 		cb�Nj	P

b��B e��m�Nj 		cb� �Nj	

where ��m�Nj�� is the parameter in the exponential weighting algorithm associated with

the super�segment index m�Nj��

d� Update n�Nj�� if the update indicates the beginning of a new super�segment� update

m�Nj� and reset all counts cb associated with Nj�

The counts cb�N � in the above procedure di�er from those used in ��
 in that each observa�
tion xt generates up to � updates into the past� The parsing rule� however� which is determined

by the return to the root� is the same as in ��

� Each count updated in Step a� corresponds

to the only action b that� if executed at time t���d� would not have contributed to the loss
component wd��bt���d� xt��� �the other actions would have contributed wd�� 
 � d � � � Thus�

with Tj�t� denoting the set of time instants t�� t�� � � � � tnt�Nj	 � t such that the decision bti was

made at node Nj� � � i � nt�Nj�� if tnt�Nj	 � � � � � t then for every action b � B we have� at

time t�

cb�Nj� �
X

i�Tt�t	

���X
d��

wd��� ��b� xi�d�
 �Wnt�Nj��
X

i�Tj�t	

L�b�Xi�

� Wnt�Nj��Lb�Nj � nt�Nj�� ����

where the second equality in the chain follows from ���� and the third equality follows from ��
��

with the node Nj playing the role of a state� Notice that the condition tnt�Nj	 � � � � � t

guarantees that all previous instantaneous losses L�b�Xi�� i � Tj�t�� have been added to cb�Nj��

in particular� no �edge e�ects� result from the return to the root� since the nodes labeled with

negative indexes ensure the availability of the complete history of length � � Thus� under this

condition� by ���� and ����� Step c� of the algorithm implements the exponential weighting

algorithm for the subsequence fxig� i � Tj�n��

Theorem � Let �LwLZ�xn� denote the �expected� loss incurred by the above on�line strategy over

a sequence xn� for a weight vector w� Then� for any Markov order k�

lim sup
n��

�

n

h
�LwLZ�xn�� ��wMk

�xn�
i
� 
 �

��



Proof� Let c�xn� denote the number of phrases in the incremental parsing of xn� and let

� � max�k� � ���� As in ��
� the proof uses the fact that there are at most � �c�xn� observations
at nodes of level j� j � �� and therefore the loss contributed by actions decided at these nodes

is at most �W�maxc�x
n��

Now� consider the loss due to actions decided at nodes of level j� j � �� Notice that the

evolution of the tree guarantees that when an action bt is decided at a node Nj� then the time

tnt�Nj	 at which the last action was decided at Nj satis	es tnt�Nj	 � t� j� Since j � � � �� the
condition tnt�Nj	 � t � � � � is satis	ed� and Step d� of the algorithm indeed implements the

exponential weighting algorithm for the subsequence occurring at Nj� Hence� by the discussion

in Section ���� the di�erence between the cumulative loss for actions decided at Nj and the loss

that would be obtained with the best 	xed strategy determined in hindsight for this node� is

upper�bounded by an O�
q
n�Nj�� term� where n�Nj� denotes the number of decisions made at

nodeNj � Integrating the decisions made at all the nodesNj � j � �� through Jensen�s inequality�

as discussed in Section ���� noticing that these nodes correspond to states in a re	nement of a

k�th order Markov machine� and observing that there are at most c�xn� nodes in the tree� we

conclude that

�

n

h
�LwLZ�xn�� ��wMk

�xn�
i
� O

�
�
s
c�xn�

n

�
A�O

�
c�xn�

n

�
�

The theorem follows from c�xn� � O�n��log n�� �see ��

�� �

Theorems � and � imply the following Corollary�

Corollary � For any in�nite sequence x� and any weight vector w� we have

lim sup
n��

�

n
�LwLZ�xn� � ��w�x�� �

Remarks�

a� Since the decisions at each node do not require sub�sampling of the corresponding sub�

sequence of observations� as shown in Section ���� the upper bound on the corresponding

regret is smaller than with the alphabet extension suggested by Theorem �� While this

scheme is not shown to yield lower regret than the strategy based on alphabet extension

and sub�sampling �especially since the asymptotic behavior is dominated by the growth

of the LZ tree�� it appears to perform better in practice�

��



b� In terms of complexity� the main advantage of this scheme over alphabet extension appears

to be in memory usage� For e�cient traversal of the LZ trees over the extended alphabet�

each set of branches stemming from a given node can be implemented with a sub�tree of

depth � over the original alphabet �otherwise� identi	cation of each � �tuple would require

moving back and forth in the sequence of observations�� For each sample� a pointer is

advanced in each of the � parallel trees� and the values L�Y � b� are updated for each

possible action b� accumulating the contribution of each component of Y � When all the

components of a vector Y have been observed� a decision is made at the node attained

in the LZ tree corresponding to that phase� and the counts in that node are updated�

The number of operations to complete this process is roughly equivalent to the � updates

into the past required by the proposed scheme� However� the size of each of the � LZ

trees is roughly equivalent to that of the single tree required by the proposed scheme�

This claim follows from the fact that the number of phrases behaves as n�i�� log n�i��

where n�i� 
 n�� is the length of the sub�sequence corresponding to phase i� and each

branch over the extended alphabet corresponds� as discussed above� to � branches over

the original alphabet�

� Application� adaptive prefetching

To conclude this paper� we show that the delayed prediction scenario is encountered when

adaptive prefetching strategies for computer memory architectures are formalized as a sequential

decision problem� In this application� the goal is to prefetch an address from main memory into

a small� faster memory ��cache�� ahead of time� in order to prevent stall time by the central

processing unit �CPU� when accessing this address� Notice that the following brief discussion

is intended only as a motivation� thus ignoring the intricacies of various prefetching system

architectures proposed in the literature�

In a simpli	ed memory architecture� if an address requested by the CPU is neither stored

in fast memory �cache miss� nor on the bus �on its way to satisfy a previous request�� a memory

transaction takes place� The request is placed on the bus� and the data is returned to the CPU

after a memory latency time Tlat� which is the key to view this application in terms of delayed

��



prediction� The bus residency �i�e�� the time during which the request is on the bus� is usually

negligible with respect to the memory latency� so that multiple requests may co�exist� In a

prefetching architecture� a prefetcher recognizes patterns in the sequence of references fxtg and
speculatively requests addresses that are likely to be accessed in the future� We will assume

here that at each time index t a decision to prefetch only one address is made� Therefore� we

can view the prefetched address as an action bt� and the observation space A coincides with the

action space B�� Upon receipt� the requested data is inserted in the cache and� in principle� old

addresses are replaced� For the sake of simplicity� however� we will ignore cache replacement

policies by assuming a large enough cache�

If prefetched data is referenced by the CPU� the CPU stall time caused by accessing main

memory is totally or partially avoided� Partial savings occur when the reference takes place less

than Tlat time units after the referenced data was requested by the prefetcher� so that the data

is still not available� Clearly� this is a delayed prediction scenario in which the prefetcher needs

to account for Tlat� as well as for observed times between cache misses� in order to determine

how many steps in advance the prediction should be issued� The loss in this sequential decision

problem is given by the total CPU stall time� Thus� in principle� the instantaneous loss �CPU

stall time� incurred as a result of referencing address xt� depends not only on the last prefetching

decision bt� but on the entire sequence of actions b�b� � � � bt� Alternatively� a more tractable loss
function of the form ��� for the Hamming loss ���� results from considering an accumulation of

opportunity cost losses� Speci	cally� in this formulation� wd��b� a� is an architecture�dependent

measure of the stall time that could have been saved by prefetching a instead of b at time index

t� given that a occurred at time t� d� 
 � d � � � The weights re�ect the relation between Tlat

and the interval lengths between misses �other system parameters may also be incorporated��

and can therefore vary arbitrarily� depending not only on d but also on t� This dependency is

given by side information independent of the actions fbtg� and is revealed to the decision maker
at times t� d� after the action�


In a practical system� the sequence fxtg will typically be given by the sequence of cache misses� Moreover�

locality can be exploited by de�ning the problem over address di�erences� similar to the use of prediction in the

compression of smooth data �thus working �in the DPCM domain��� This technique e�ects a reduction of the

alphabets A and B� allowing to overcome the high learning costs associated with large alphabets� Here� this

di�erentiation process is disregarded�

�




The sequential decision problem has customarily been treated in the context of repeated

play �see� e�g�� ��
�� where the decision maker wishes to approximate a Bayes envelope by

playing the same game over time� with a 	xed loss function� The 	xed loss assumption is also

made in the setting of learning with expert advice� but it is interesting to notice that it is not

actually required in that setting� The decision strategy resulting from the exponential weighting

algorithm depends only on the loss accumulated by each expert over the past� and only assumes

that this loss is available at the time the decision is made� In particular� it is irrelevant whether

this loss originates from a 	xed loss function or from a sequence of loss functions� as long as

this sequence is the same for every expert� and it is uniformly bounded� In fact� the proof given

in ���
 of the convergence of the normalized loss to the normalized loss of the best expert �for

	nite alphabets� holds verbatim when the assumption of a 	xed loss is removed��

For a given FSM� the above generalization applies to the sub�sequence occurring at each

state� In the delayed prediction case with 	xed loss function but variable weights� the loss

achieved by the best FSM reference strategy is no longer given by ����� Instead� for a sequence

of weight vectors fwgt� where each vector is denoted �wt��� wt��� � � � � wt������ we have

��
fwg
f�s�

�xn� �
X
s�S

pxn�����s�min
b�B

�
���X
d��

X
t � st�s

wt�d��b� xt�d�

�
� ����

The proof of Theorem � carries over to this case� provided that the weights remain bounded�

Thus� even under these variable conditions� the on�line scheme can still compete successfully

against Markov strategies� On the other hand� however� Theorem � does not carry over to this

case� so that the LZ�based scheme may fail against more general FSM strategies� We conclude

this section with an example showing that for a particular sequence of weight vectors� there

indeed exist FSM�s that outperform any Markov machine�

Example� Let � � �� and consider two weight vectors w��� � �
� �� and w��� � ��� 
�� under

Hamming loss� While w��� corresponds to a unit delay in the prediction� w��� corresponds to

non�delayed prediction� Given a �large� integer N � assume that wt � w
��� when bt�Nc is even�

and wt � w
��� otherwise �i�e�� the vector remains constant for N time instants� and alternates

between w��� and w�����

�While this observation is not true for the algorithm proposed in �
�� it was shown in ���� Lemma 
� that a

simple modi�cation of this algorithm can be used with varying losses�

��



Now� consider the binary sequence xn � 
�
�
� � � �� Clearly� for this sequence� a Markov
predictor of any given order k will alternate between two states� denoted s��	 and s��	� for all

t � k� regardless of k� If the predictions g�s��	� and g�s��	� for these states di�er� the Markov

strategy will also alternate its predictions for t � k� In this situation� the loss will always be

either 
 under w��� and � under w���� or vice versa� If� instead� the predictions g�s��	� and

g�s��	� coincide� a constant predictor will incur a loss every other time for both w��� and w����

except for the transitions between the loss phases �every N time instants�� Since N is large� in

both cases the normalized loss approaches 
���

In contrast� an FSM strategy can track the variation of the loss function and adjust the

phase of its alternating predictions as the loss function changes� to achieve virtually 
 loss

�again� with the negligible exception of the transitions between loss functions��

The above example can be modi	ed to show that for variable loss functions in the non�

delayed case� FSM strategies can outperform any Markov strategy� Let ����� �� denote the
Hamming loss function for the binary case� let ����� �� � � � ����� ��� and assume that the two
loss functions alternate� Clearly� for the all�zero sequence� any Markov strategy will remain in

the same state for t � k� and will therefore incur a loss every other symbol� In contrast� an FSM

strategy can adapt to the varying loss function to achieve 
 loss� It should be noticed� however�

that in many cases a variable loss function can be viewed as a 	xed one by considering the loss as

part of the observation� In the above example� given the observation and the corresponding loss

value� the decision maker can infer which loss function was used� Letting the observation space

be given by f
� �g � f��� ��g� while the action space remains f
� �g� the variable loss function
clearly corresponds to a 	xed one� In order to attain the asymptotic equivalence between Markov

and general FSM�s� the machines must be driven by the compound observations� However�

in many practical applications� the corresponding extensions of the proposed on�line schemes

would be prohibitively complex�

A Appendix� Delayed�mode performance of binary predictors

In this appendix we investigate the performance of the minimax binary predictor of ��
� and

the binary predictor resulting from exponential weighting ��
� when applied with a delay d�

��



Minimax predictor� We 	rst show that for any sequence xn� the regret R
�d	
MM�x

n� of the

minimax predictor� when applied to a delayed sequence� satis	es the upper bound

R
�d	
MM�x

n� � �� � �d�
r

n

��
� o�

p
n� �A���

where d is the delay� We then demonstrate a sequence that attains this upper bound asymp�

totically� Let p
�MM	
t�� �xt��jxt�d� n� denote the probability assigned to xt�� under this scheme�

with horizon n� where for 
 � t � d� xt�d is the null sequence �� for which it is assumed that

p
�MM	
t�� �xt��j�� n� � �

� � The corresponding loss incurred on x
n is

�LMM�x
n� �

n��X
t��

��� p
�MM	
t�� �xt��jxt�d� n�
 � �A���

Recall that� for non�delayed prediction of xn�r after observing x
n�r��� the scheme of ��
 can

be interpreted as drawing xn�r��� � � � � xn at random� and choosing xn�r as the most frequent
symbol in the resulting sequence x�x� � � � xn�r��xn�r�� � � � xn of length n� � �with a coin �ip
deciding ties for odd n�� With nh

�
� dn��e� it is easy to see that regardless of the parity of n�

the probability qr�n��� assigned to � by that scheme takes the form

qr�n��� � �
���nh�n�r	

�nh�n�rX
i�nh�n��xn�r��	

�
�nh � n 	 r

i

�
�A���

where we recall that na�x
t� denotes the number of occurrences of a � f
� �g in the sequence xt�

Clearly� p
�MM	
t�� ��jxt�d� n� � qn�d�t���n����

Now� consider the �delayed� probability assignment for horizon �nh � d at time t� d� ��

after observing a sequence of length t composed of xt�d followed by d copies of xt��� Using �A���

and denoting dh
�
� dd��e� it can be veri	ed �e�g�� by distinguishing between the even and odd

d cases� and using the addition formula for combinatorial coe�cients for the latter case� that

this assignment takes the form

p
�MM	
t�d���xt��jxt�dxt�� � � � xt��� �nh � d� � ����nh�t�d��	 �

�� �nh�t�d��X
i�nh�dh�d�nxt���x

t�d	

�
�nh � t	 d� 


i

�
� �dh � d

�
�

�
�nh � t	 d� 


nh � dh � nxt�� �x
t�d�

����

� ����nh�t�d��	 �


�� �nh�t�d��X
i�nh�nxt���x

t�d	

�
�nh � t	 d� 


i

�
�
d

�

�
�nh � t	 d� 
�
nh �

t
�
	 d

�
� �

�

�
���� �A���

��



where the inequality follows from the fact that for any pair of integers m and i� 
 � i � m� we

have

�
m

i

�
�

�
m

bm��c

�
� Thus� using �A��� with r � n� d� t� �� we obtain

p
�MM	
t�d���xt��jxt�dxt�� � � � xt��� �nh � d� � p

�MM	
t�� �xt��jxt�d� n�

�
d

�
����nh�t�d��	

�
�nh � t	 d� 
�
nh �

t
�
	 d

�
� �

�

�
�

� p
�MM	
t�� �xt��jxt�d� n� � d

�
����nh�t�d��	

�
n� t	 d�
n�t�d

�

�
�

� p
�MM	
t�� �xt��jxt�d� n� � d

�

s
�

��n� t� d�
�A���

where the last inequality follows from Stirling�s formula� Therefore� an upper bound on the loss

in �A��� is given by

�LMM�x
n� �

n��X
t��

�
�� p

�MM	
t�d���xt��jxt�dxt�� � � � xt��� �nh � d� �

d

�

s
�

��n� t� d�

 
� �A���

Now� a key observation in the derivation of �A��� is that

p
�MM	
t�d���xt��jxt�dxt�� � � � xt��� �nh � d� � p

�MM	
t�d���xt��jxt� �nh � d�

since additional occurrences of xt�� cannot decrease the probability assigned to it� Hence� �A���

takes the form

�LMM�x
n� �

n��X
t��

��� p
�MM	
t�d���xt��jxt� �nh � d�
 �

dp
��

n�dX
j�d��

�p
j

� �L���nh�d�xn� �
dp
��

Z n

�

dxp
x

�A���

where �L���nh�d�xn� denotes the loss incurred on xn by the minimax scheme without de�

lay� but with a horizon �nh � d� Clearly� �L���nh�d�xn� � �L���nh�d�xnad��nh�n�� where a

denotes the most frequent symbol in xn and am denotes m copies of a� Recalling that

B�xn� � min�n��x
n�� n��x

n��� for any non�negative integer m we have B�xn� � B�xnam��

Thus� by Lemma ��

�L���nh�d�xn� � B�xn� �R��d� �nh�

and since the �non�delayed� minimax regret for horizon m� R��m�� is non�decreasing with

m� �A��� implies

�LMM�x
n� � B�xn� �R��n� d� �� � d

r
�n

�
�

��



The claimed bound �A��� follows from the asymptotic expansion of the explicit expression ���

for R��n��

Next� we show that for any su�ciently large n� the upper bound �A��� is attained by the

sequence yn � ��h
h�m� composed of m copies of a block formed by h ones followed by h zeroes�

where h and m satisfy n � �hm� h� d� and will otherwise be speci	ed later� To this end� we

will compare the performances of the predictor used in delayed and non�delayed mode� After

observing yt�d� the predicted value is compared to yt�� in the delayed case� and to yt�d�� in

the non�delayed case� The key observation is that yt�� � yt�d�� for all t � d� except for those

values of t that take the form t � kh�i� for any positive integer k and any integer i in the range


 � i � d� Now� for odd k� the delayed predictor observes yt�� � 
� whereas the non�delayed

one would have observed the symbol yt�d�� � �� which was assigned a larger probability� as

it was the most frequently observed symbol at that point� In contrast� for even k� the delayed

predictor yields a smaller loss� as it observes the �most frequent� symbol yt�� � �� whereas the

non�delayed one would have observed yt�d�� � 
� It is easy to see that the di�erence  �L�yn�
between the losses incurred by the delayed and the non�delayed predictor satis	es

 �L�yn� �
m��X
j��

d��X
i��

�qr�i�j	�n��� � qr�i�j	�n�
�
�
m��X
j��

d��X
i��

�qr�i�j	�h�n���� qr�i�j	�h�n�
�
 �A���

where r�i� j�
�
� ��j � ��h � d � i � �� Notice that the discrepancy between the left�hand and

right�hand sides of �A��� is due to the fact that the loss di�erence for the 	rst d�� symbols in

the sequence� which is positive� has not been accounted for� Since n is even� by �A��� we have

qr�i�j	�n��� � qr�i�j	�n�
� � ��r�i�j	
�j��	h��X
s�jh�d�i

�
r�i� j�

s

�

� �h� d� i���r�i�j	
�

r�i� j�

jh	 d� i

�
� �A���

For positive integers u and v� it can readily be veri	ed that

��u
�
u

v

�
� ���u��	

�
u	 


v 	 


�

provided that u � �v � �� Thus� since h� d� �A��� implies

qr�i�j	�n���� qr�i�j	�n�
� � �h� d�����j��	h
�
��j 	 
�h

jh

�
�

��



Similarly� it can be shown that

qr�i�j	�a�n��� � qr�i�j	�a�n�
� � d���jh
�
�jh

jh

�
�

Hence� �A��� takes the form

 �L�yn� � d�h� d�
m��X
j��

����j��	h
�
��j 	 
�h

jh

�
� d�

m��X
j��

���jh
�
�jh

jh

�
� �A��
�

Now� for positive integers u and v� the Gaussian approximation of the binomial coe�cients

states �see� e�g�� ���� Chapter �
�

�
�u

u� v

�
�
��up
�u

e�v
��u�� �O���

p
u�


for all v �
p
u� Thus� for all j � h��� we have

����j��	h
�
��j 	 
�h

jh

�
�

e�h���j	p
�jh

�� �O���
p
jh�
 � �A����

Further assuming� e�g�� j � h���� it is easy to see that �A���� implies

����j��	h
�
��j 	 
�h

jh

�
�
��O���h�p

�jh
� �A����

In addition� the negative terms in the right�hand side of �A��
� can be upper�bounded using

Stirling�s approximation as in �A���� which together with �A���� implies

 �L�yn� � d�h� d�
��O���h�p

�h

m��X
j�h���

�p
j
� d�

�
p
�h

m��X
j��

�p
j

� �d�h� d�p
�h

���O���h�
�
p
m� h

�

� d�p

�h

p
m� �A����

Choosing h to be a function of n such that h � � when n � �� and h � o�
p
m� �so that

h � o�n������ it follows that

 �L�yn� � d

r
�n

�
� o�

p
n� �

Since R
�d	
MM�y

n� � R��n� �  �L�yn�� we obtain

R
�d	
MM�y

n� � �� � �d�

r
n

��
� o�

p
n�

as claimed�

��



Exponential weighting� Next� we consider the exponential weighting algorithm in the context

of constant experts� and we start by showing that for any sequence xn� the regret R
�d	
EW�x

n� of

the corresponding binary predictor applied to a delayed sequence satis	es the upper bound

R
�d	
EW�x

n� �
s
�� � �d�n ln �

�
�O��� �A����

for a suitable choice of the weighting parameter �� We then demonstrate a sequence that attains

this upper bound asymptotically�

Recall that for given �� the probability assigned to � by the exponential weighting predictor

�for constant experts� after observing xt is given by

p�EW	��jxt� � �

� � e�����jxt	

where� for a � f
� �g� ��ajxt� �� na�x
t��n��a�x

t�� As in the case of the minimax algorithm� let

 �L�xn� denote the di�erence between the losses incurred by the delayed and the non�delayed
predictor on xn� We have

 �L�xn� �
n��X
t��

�p�EW	�xt��jxt�� p�EW	�xt��jxt�d�
 �

Clearly� if we append d copies of xt�� to x
t�d� we have

p�EW	�xt��jxt�dxt�� � � � xt��� � p�EW	�xt��jxt� �

Therefore�

 �L�xn� �
n��X
t��

�p�EW	�xt��jxt�dxt�� � � � xt���� p�EW	�xt��jxt�d�


�
n��X
t��

�
�

� � e�����xt��jxt�d	�d	
� �

� � e����xt��jxt�d	

�
�
�

n��X
t��

 t � �A����

It is easy to verify that  t is maximum for ��xt��jxt�d� � �d��� Consequently�

 �L�xn� � n�ed��� � ��
�

� �A����

Now� for su�ciently small � and any constant K � �
� � we have

ed��� � � � �d

�
�
K��d�

�
�

��



�E�g�� for K � e � � it su�ces to assume � � ��d�� Thus� for � in that range� �A���� further
implies

 �L�xn� � n

�
�d

�
�
K��d�

�

�
� �A����

Since the regret incurred by a �non�delayed� application of the exponential weighting predictor

on a sequence of length n is upper�bounded by �n���� � �ln ���� �see� e�g�� ���
�� for delayed

prediction �A���� yields the bound

R
�d	
EW�x

n� � �n

�
�
ln �

�
�
�dn

�
�
K��d�n

�
�

Finally� �A���� follows from choosing� for a given horizon�

� �

s
� ln �

��d � ��n

which� for su�ciently large n� indeed satis	es the above condition on the range of �� Notice that

if d is not known to the predictor� which chooses to use the same value of � that is optimum

for the non�delayed case �namely� � �
p
��ln ���n�� the asymptotic upper bound on the regret

is �d���
p
n�ln ����� Thus� the performance is still better than with the minimax scheme of ��


for any d � 
�

Finally� we show that for any value of � and any su�ciently large n� there exists a sequence

yn that attains the upper bound �A����� The sequence takes the form yn � ��h
h�m
z� where

the integers h� m� and z� depend on �� satisfy n � �hm � z� and will otherwise be speci	ed

later� Notice that this sequence di�ers from the one used for the minimax algorithm in that it

contains a tail composed of z zeroes� following the m blocks of the form �h
h� The reason for

this tail is that� otherwise� a weighting parameter value � � 
 would trivially su�ce to approach

the Bayes response with zero regret�

Studying the evolution of the value of ���jyt� across the sequence� and assuming h � d�

it can readily be veri	ed that the loss �LEW�yn� incurred on yn by the delayed predictor under
consideration satis	es

�LEW�yn� � m



� dX
i��

�

� � e�i
�

h�d��X
i��

�

� � e�i
�

hX
i�d��

�

� � e��i
�

h�dX
i�h��

�

� � e��i

�
�

�

�
d

�
�

dX
i��

�

� � e�i

 
�

z�d��X
i��d

�

� � e�i
� �A����

��



In �A����� the term that appears m times corresponds to a typical block of the form �h
h� the

di�erence that follows is a correction term for the 	rst d symbols in the sequence� for which

the behavior di�ers from the typical block� and the last summation corresponds to the all�zero

tail� After some algebraic manipulation� �A���� takes the form

R
�d	
EW�y

n� � �LEW�yn��mh � m
dX

i��

�
�� e�i

� � e�i
�
�� e���h�i	

� � e���h�i	

 
�
m��� e��h	

��� � e��h�

�

�
d

�
�

dX
i��

�

� � e�i

 
�

z�d��X
i��d

�

� � e�i
� �A����

Notice that we can assume � to be a vanishing function of n� for otherwise� taking h � d��

and z � 
� it is easy to see that the normalized regret does not even vanish� Moreover� given ��

we will choose h such that when n � �� h � � but h� vanishes� Thus� for su�ciently large

n� we can use the Taylor expansion of the function ��� ex����� ex� to further lower�bound the

right�hand side of �A����� obtaining

R
�d	
EW�y

n� � m
dX

i��

�
��i

�
�
��h� i�

�
� ���h� i��

��

 
�
m�h

�
� m��h�

��
�

Z z�d��

�d

dx

� � e�x

�
��n� z���d � ��

�
�
�

�
ln�� � e�d�� �

�
ln�� � e���h�d	��mo�h�� � �A��
�

Now� choose z � ��� ln ���� After straightforward manipulations� �A��
� yields

R
�d	
EW�y

n� �
�n��d� ��

�
�
ln �

�
� �o�n��O

�
ln
�

�

�
� �A����

The result follows from minimizing the right�hand side of �A���� with respect to �� Again� if

the given � is the optimal value for non�delayed prediction� the attained asymptotic bound on

the regret is �d� ��
p
n�ln �����

B Appendix� Proof of Lemma �

Let s�j� denote the j�tuple corresponding to a re	ned state s � S� We have

��wMj
�xn�� ��wf �xn� �

X
s�S

pxn�����s�



�min
b�B

��
�
���X
d��

wd

X
u�Ad

X
a�A

pxn���d��uajs�j����b� a�
��
�
�
�

�
X
s�S

pxn�����s�



�min
b�B

��
�
���X
d��

wd

X
u�Ad

X
a�A

pxn���d��uajs���b� a�
��
�
�
� �B����

��



where n��� d�
�
� n � � � d � �� Let b�s� denote the minimizing action for s � S in the second

minimum in the right�hand side of �B����� It follows that

��wMj
�xn�� ��wf �xn� �

X
s�S

pxn�����s�



����X
d��

wd

X
u�Ad

X
a�A

jpxn���d��uajs�j�� � pxn���d��uajs�j��b�s�� a�
�
�

� �max

���X
d��

wd

X
s�S

pxn�����s�
X

v�Ad��

jpxn���d��vjs�j�� � pxn���d��vjs�j

� �max

���X
d��

wd

X
s�S

pxn�����s�
X

v�Ad��

!!!!!!
X

z�A����d

�pxn�vzjs�j�� � pxn�vzjs�

!!!!!!

� �maxW
X
s�S

pxn�����s�
X
y�A�

jpxn�yjs�j�� � pxn�yjs�j � �B����

The lemma follows from Pinsker�s inequality ���� Chapter �� Problem ��
�
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