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Abstract

Prediction of individual sequences is investigated for cases in which the decision maker
observes a delayed version of the sequence, or is forced to issue his/her predictions a number
of steps in advance, with incomplete information. For finite action and observation spaces,
it is shown that the prediction strategy that minimizes the worst-case regret with respect to
the Bayes envelope is obtained through sub-sampling of the sequence of observations. The
result extends to the case of logarithmic loss. For finite-state reference prediction strategies,
the delayed finite-state predictability is defined and related to its non-delayed counterpart.
As in the non-delayed case, an efficient on-line decision algorithm, based on the incremental
parsing rule, is shown to perform in the long run essentially as well as the best finite-state
strategy determined in hindsight, with full knowledge of the given sequence of observations.

An application to adaptive prefetching in computer memory architectures is discussed.

Index Terms: Delayed prediction, sequential decision, on-line algorithms, general loss func-

tions, Lempel-Ziv algorithm.
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1 Introduction

The problem of predicting a binary sequence ™ = zjx9---x,, with the goal of achieving an
expected number of prediction errors (or “loss”) that approaches the loss of the best constant
predictor, has received considerable attention over the last five decades. Here, the expectation
is with respect to a possible randomization in the prediction strategy, and the loss of the best
constant predictor is given by the Bayes envelope, min(ng(z™),n1(z™)), where n,(z™) denotes
the number of occurrences in z" of a € {0,1}. The problem was first studied in the framework
of the sequential decision problem [1] and the approachability-excludability theory [2]. The
minimaz strategy, which minimizes the worst-case regret (i.e., the excess loss over the Bayes
envelope) over all n-tuples, was devised by Cover [3]. Other predictors were proposed in [4], in
a context where the “competing” reference strategy was finite-state (FS), rather than constant,
and in [5] and [6], in the context of prediction with expert advice. The worst-case normalized
regret of all these strategies vanishes at an O(1/y/n) rate. In particular, Cover’s minimax
scheme yields the same regret over all sequences, its main asymptotic term being /n/(27).

The usual setting in prediction problems is that the on-line decision maker observes a
prefix z12o - - - 24 of 2™ for each time instant ¢, ¢ = 0,1,---,n — 1 (we assume the horizon n is
known), and makes a prediction pyyq(1]z') € [0,1]. This prediction can be interpreted as the
probability of choosing 1 in a randomized selection of the next bit x;y;. Thus, the expected
loss takes the form 1 — pyyq(741|2!). However, in many applications of practical interest, the
on-line decision maker has access to a delayed version of the sequence, or is forced to make
inferences on the observations a number of instants in advance. Such situations may arise
when the application of the prediction is delayed relative to the observed sequence due to, e.g.,
computational constraints. The delay d, which is assumed known, affects the prediction strategy
in that the prediction for x;y; is now based on z1xs---x;_4 only. Since every such predictor
is a particular case of a non-delayed one, the achievable performance (under any performance
metric) cannot improve. On the other hand, the delay does not affect the performance of a
constant predictor, so that the Bayes envelope is still our targeted loss. The question arises:
How badly can the worst-case regret be affected by this delay?

At first glance it would appear that the effect of the delay is asymptotically negligible,

mainly because the setting of competing against a constant strategy (for a given individual



sequence) is often associated to a probabilistic setting in which the data are drawn from a
memoryless source. For a memoryless source, the expected loss incurred at time ¢ for delayed
prediction is the same as the expected loss that the predictor would incur, without delay, at
time ¢ — d. In addition, for an individual sequence, as t grows, the window of d “hidden” bits
cannot significantly affect the statistics. Therefore, one would be inclined to ignore the delay
and apply any of the above prediction schemes (namely, use at time ¢ the same probability that
the non-delayed predictor would have used at time ¢t —d). As shown in Appendix A, application
of the minimax strategy of [3] in such a manner indeed yields vanishing regret for all sequences,
but it results in an asymptotic worst-case regret 2d + 1 times higher than in the non-delayed
case. It is also shown in Appendix A that for a similar strategy based on the exponential
weighting algorithm of [5] and [6], the worst-case normalized regret behaves asymptotically as

Vv (2d +1)(In2)/(2n) (thus, the multiplicative factor over the d = 0 case is v/2d + 1).!

The above additional regret due to the delay is immediately seen to be too high, once we
realize that a simple “sub-sampling” strategy, used in conjunction with any of the above schemes
for non-delayed prediction, yields a multiplicative factor of only v/d + 1 in the worst-case regret.
Specifically, if we sub-sample the original sequence z™ at a rate 1/(d + 1), and process the
resulting d + 1 sub-sequences separately, each sample x4 is predicted based only on previous
symbols z; such that j = £+ 1 mod (d+ 1). Therefore, any non-delayed scheme applied to each
sub-sequence will satisfy the delay constraint for the original sequence, since the last symbol
in the relevant sub-sequence is x; 4. Now, the sum of the Bayes envelopes corresponding to
each sub-sequence is not larger than the Bayes envelope of the entire sequence, and therefore
an upper bound on the total regret is at most d + 1 times the upper bound corresponding to
each sub-sequence. Since the length of each sub-sequence is about n/(d 4+ 1) and the regret
grows as the square root of the sequence length, the upper bound is multiplied by v/d + 1.

It may be somewhat surprising that a scheme that ignores most of the samples at each
individual step due to sub-sampling, has a better worst-case performance than the same pre-

diction strategy based on the entire past sequence (without the d “hidden” symbols). Even

'One reason for obtaining a smaller factor than with the minimax strategy is that the exponential weighting
algorithm has a weighting parameter, denoted 7 in [6], which can be optimized taking into account the value of
d. But even with the parameter value that would be selected without delay, the factor remains smaller than for

the minimax strategy, namely d + 1.



more surprising is the fact that, as shown in this paper, this simple strategy, when used in
conjunction with the (non-delayed) minimax scheme, is indeed minimax for all n. Moreover,
when n is a multiple of d + 1, this result is shown for more general prediction games, in which
the sequence of observations belongs to some finite alphabet A, and corresponding actions
biby - - by, (taken from an action space B) result in instantaneous losses ¢(b;, z;), where £(-, ")
denotes a non-negative function. In such games, the instantaneous loss contributions from each

action-observation pair yield a cumulative loss
n
Ly(z™) =Y Eyl(by,zy)]
t=1

where the expectation accounts for a possible randomization of the strategy. In this setting,
a delayed on-line strategy is a sequence of conditional probability distributions p;y(-|z!~%),
t=0,1,---,n — 1, on the actions, and the regret is given by the excess loss incurred by an
on-line strategy over the best constant strategy determined in hindsight, with full knowledge of
z™. In general, however, the (non-delayed) on-line minimax strategy to be used in conjunction
with sub-sampling cannot be characterized as easily as Cover’s scheme for the binary case with
Hamming loss [8].

The delayed prediction scenario is also relevant in the logarithmic loss case, with appli-
cations to adaptive arithmetic coding. Consider a situation in which an encoder assigns a

¢ in order to achieve

probability pyi1(zii1|z?) to z1 € A, based on the observed sequence z
an (ideal) code length —logp;i1 (w41 1|z'). Clearly, a decoder cannot start the decoding of 41
until the entire sequence zizs---z; has been decoded, which in a hardware implementation
means that the process cannot be pipelined so as to reduce the number of clock cycles required
by each decoding operation.? If, instead, the probability assigned to z;,1 is based only on 2/~
ignoring the window of d samples x;_g41 --- z;_12¢ for a suitable value of d, a pipeline can be
designed. We show that the optimality of the sub-sampling strategy in a minimax sense can be
extended to the logarithmic loss, provided again that d + 1 divides n. Here, the regret (termed
pointwise redundancy in the data compression case) is computed relative to the zero-order em-

pirical entropy. Notice that, as in the binary case with Hamming loss, the minimax strategy

without delay is well-characterized, and is given by Shtarkov’s Mazimum-Likelihood code [7].

%It is possible to alleviate this situation through speculative processing, but for a large alphabet A this may

require an excessive amount of resources.



Since the asymptotic redundancy of this code is (JA| — 1)(logn)/2, the deterioration caused by
the delay takes the form of a multiplicative factor of d + 1.

The class of competing reference strategies can be extended to cover all FS predictors,
as in [4] and [9], leading to the notion of delayed FS predictability (DFSP) of an individual
sequence, which is introduced and studied in this paper. Here, rather than being constant, the
competing strategy is allowed to vary according to by = g(s;_4), where s; is a state in an FS
machine (FSM) with state set S, driven by a deterministic next-state function s;11 = f(s¢, 7).
For convenience, we assume that s, = sq for ¢ < 1, where s; is some initial state. The functions
g and f, and the initial state s;, are optimized off-line, with full knowledge of z™, and the
optimal ¢ turns out to be deterministic, as in the non-delayed case. The delay in the state
sequence reflects the constraints imposed to the on-line strategy, allowing a “fair” competition.
For an infinite sequence (n — 00), the (normalized) loss incurred as |S| — oo defines the DFSP
of the sequence. For d = 0 and binary Hamming loss, this quantity coincides with the FS
predictability of [4], which was generalized in [9] to other loss functions. The results in [9]
also generalize the classical sequential decision problem [1], where the competing strategies
are assumed constant. The use of FS strategies as reference models was pioneered by Ziv
and Lempel in [10], in the more specific context of data compression. More general classes of
reference strategies arise when these strategies are viewed as a set of generic “experts” that offer
advice to the on-line decision maker [5, 11, 12, 6]. We show that, in general, the DFSP of an
individual sequence is strictly larger than its FS predictability. Thus, comparing convergence
rates of on-line predictors to the DFSP for different values of d is less interesting than in the
single-state case, since the convergence is to a different value.

In practice, the delay applied to the prediction may not be known to the decision maker.
To alleviate this problem, we will define the DFSP in a more general setting, in which each

action b; is based on full knowledge of z!~!, but is “scored” relative to a number 7 of future

observations x¢, £¢11,**, Ti4r—1, 7 > 1. The individual loss contributions, which correspond to
delays d = 0,1,---,7 — 1, respectively, are averaged. Specifically, we assume a loss of the form
7—1
by, e, Teg1,+ Tigr—1) = D wal(by, Typq) (1)
d=0
where wg, d = 0,1,---,7 — 1, are interpreted as weights according to which the loss of action



b; relative to each individual observation xy, 441, -+, Z¢4r—1, respectively, is weighted. The
expected cumulative loss takes the form

n—7+17—1

Ly(a") = D > waly[b(b, z414)]- (2)

t=1 d=0
The setting discussed so far (excluding the first 7 — 1 actions) corresponds to the set of weights
wqg =0,d <71—1, w,—1 =1, whereas non-delayed decision making corresponds to 7 = 1.

In principle, it would appear that the loss in (2) leads to nothing more than a vec-
tor extension of the problem studied in [9], where the observations are vectors X =
(¢, Tgg1,- -+, Terr—1) € AT, whose entries are constrained by a sliding window, and the in-
stantaneous losses take the form

T—1
L(by, X1) £ " wal(by, w14a) - (3)
d=0
However, notice that the observation X; to which action b, is targeted does not drive the FSM
to its next state, which in turn determines b,;. Rather, the observation that determines the
next state of the FSM is X;_ 1. Again, this delay reflects the fact that, in a sequential scheme,
action by must be taken without full knowledge of the observations X¢_ 41, X¢_ 742, -+, X¢_1.
Nevertheless, there still exists a relation between DFSP and (non-delayed) decision making
over extended alphabets, as shown in this paper. Specifically, we show that the DFSP can be
achieved by non-delayed FS prediction performed on 7 separate sequences of non-overlapping
T-vectors, for the same action space and a loss function of the form given in (3). Each such
sequence results from alphabet extension on a different phase of the original sequence. It can
therefore be regarded as a sub-sampling of the sequence of T-vectors obtained by applying a
sliding window of length 7 to the original sequence. Thus, the key to this result is, again,
sub-sampling.

On the other hand, the loss in (2) can be viewed as generated by a particular case of a loss
function with memory, i.e., one that depends on past action-observation pairs. Such functions,
which take the general form £(by_;11,b—719,--,bs, x¢) and are not covered by the classical
setting of the sequential decision problem, are studied in [13]. They may capture the cost of
switching from one action to another (e.g., transaction costs incurred in portfolio selection, or

energy spent in control systems), or the long term effect (“memory”) of an action at a given



time. The cumulative loss in (2) can be written as

Ly(a") =3
t=1

T—

1
wq Ep[l(by—q, 71)] (4)
d=0

where £(b;_g4, ) S0fort—d<landt—d>n—7+1. Thus, the relevant loss function with
memory is given by

7—1
A
e(bt—ﬂ'-i-la bt—T-I—?a Ty bta fL't) = Z /U)dE(bt,d, .’,Ut) .
d=0

While asymptotically optimal decision schemes for loss functions with memory are devised
in [13] in various settings, the proposed on-line strategies are not practical. The main difficulty
resides in the fact that the loss cannot be decomposed into separate contributions from the
sub-sequences occurring at each state.

In contrast, in this paper we also devise an efficient on-line algorithm for delayed decision,
in the setting of competitive optimality relative to F'S strategies. As in [4] and [9], the algorithm
uses the Lempel-Ziv (LZ) incremental parsing rule [10]. As a universal source coding scheme,
the LZ algorithm builds an implicit probabilistic model of the data [14], which can be used
in on-line decision tasks other than data compression. The algorithm dynamically builds a
tree, and makes decisions based on the sub-sequence of previous symbol occurrences at the
current node in the traversal path. Each node corresponds to a Markovian state, given by the
sequence of observations that leads from the root to the node. The decisions at each node
follow on-line algorithms designed for the single-state case.®> For example, as shown in [4],
asymptotically optimal prediction follows from traversing the tree and predicting, at each step,
the symbol associated with the branch most often taken at the corresponding node, up to
the randomization dictated by [1] (a slightly different randomization is proposed in [4]). For
more general games, it is shown in [9] that using an on-line strategy based on the LZ model,
the (normalized) excess loss over the FS predictability vanishes for an arbitrary individual
sequence. For delayed prediction, the asymptotic performance of the on-line scheme proposed
in this paper converges to the DFSP for every individual sequence. While the connection with
the non-delayed case, given by the vector extension (3) and sub-sampling, will immediately

imply an LZ-based delayed prediction scheme, the proposed approach is more efficient.

3Since the notion of predictability applies to infinite sequences, in this context we restrict the discussion to

prediction schemes that, unlike Cover’s [3], are horizon-free.



The delayed prediction scenario is encountered in adaptive prefetching strategies for com-
puter memory architectures. In this application, the goal is to prefetch an address from main
memory into a small, faster memory (“cache”) ahead of time, in order to prevent stall time by
the central processing unit when accessing this address. While a first approximation to this
problem is to predict the next memory reference z; given the previous references x1xo---z; 1
(see [15]), such formulation does not address the ultimate goal, which is to have z; already
in cache at the time it is requested. Here, we briefly discuss the prefetching application and
formalize it in terms of a Hamming loss function, for which the implementation of the above
LZ-based scheme is particularly easy. It should be noted, however, that in this case the weights
wg can vary arbitrarily and are revealed to the decision maker only after the corresponding
action was taken. It turns out that even under these variable conditions, the on-line scheme
can still compete against Markov strategies (defined by an FSM for which the state at time ¢
is given by sy = (£4—1, -,z k), where k is the Markov order), but fails against more general
FSM strategies. Notice that a key contribution in [4] and [9] is to establish that, under mild
regularity conditions, the F'S predictability equals the Markov predictability, namely, that the
set of competing FS machines can be reduced to the set of Markov machines. This result cannot
be extended to the case of varying weights.

The remainder of this paper is organized as follows. In Section 2, we discuss minimax
strategies in the single-state case, with emphasis on binary prediction. In Section 3, we introduce
the notion of DFSP and investigate its properties. In Section 4, we demonstrate an LZ-based on-
line algorithm for delayed decision making. Finally, in Section 5, we elaborate on the prefetching

application.

2 Minimax delayed prediction

Let d denote a non-negative integer, and let "™ = zjz9 - -z, denote a sequence over a finite
alphabet A. Given a finite action space B, at each time instant ¢, 1 < ¢ < n, a (delayed)

decision maker assigns a probability distribution p;(-|z!=%"1)

to an action b; € B, which ignores
the last d samples and depends only on z1z9 - - - £;_4_1, where for non-positive ¢, 2! denotes the

null string. Each possible action b; results in an instantaneous loss £(b;, ), where £(-, -) denotes



a non-negative function. The delayed on-line strategy {p;} yields an expected cumulative loss
n
=2 > pi(bls (b, zy) (5)
t=1beB

which is compared to the Bayes envelope

The minimaz regret Rq(n) for delay d and sequences of length n is defined as

Ry(n) £ min max Rp(z")

where the minimum is taken over all prediction strategies with delay d.

Part of our discussions in this section will focus on (randomized) prediction of binary
sequences under Hamming loss. In this case, we can either interpret the prediction as a
randomized strategy with binary actions and Hamming loss or, since the expected instanta-
neous loss takes the form |z; — p;| where p, 2 p(1|z'=9=1), we can view p; as an action in
the interval [0, 1] under absolute (rather than Hamming) loss. The Bayes envelope takes the
form B(z") = min(ng(z™),n1(z™)), where ny(z™) denotes the number of occurrences in z" of

a € {0,1}. For the non-delayed case (d = 0), the following result is due to Cover [3].

Lemma 1 For A= {0,1} and Hamming loss, the non-delayed minimaz regret satisfies
Ryn)==—-2" % B(a"). (7)
2
T EAN
Moreover, for any prediction strateqy the sum of the redundancies over all sequences in A™ equals

2"Ro(n), and there exists a (horizon-dependent) prediction strategy {p;} for which Ry(z") =
Ry(n) for all ™ € A™.

It is easy to see that the right-hand side of (7) is a lower bound on Ry(n), by observing that
for any prediction strategy the cumulative losses must average to n/2 over all sequences in

A™. A prediction strategy for which the bound is achieved with equality for every sequence is



demonstrated in [3] (see Appendix A). Notice that the strategy depends on the horizon n. It

can readily be verified that

Ry(n) =2""n (n - ) (8)

n_q
if n is even, and Ry(n) = Ry(n + 1) if n is odd. Hence, using Stirling’s approximation, the
non-delayed minimax normalized regret vanishes, with its main asymptotic term taking the
form 1/v/2mn.

When a possible delay d is involved in the decision, we show that the minimax regret
Rg4(n) is achieved by a scheme that sub-samples the original sequence z™ at a rate 1/(d + 1),
and applies the non-delayed minimax strategy to each of the resulting d + 1 sub-sequences
separately. For this result to hold in cases other than binary prediction under Hamming loss, we
will require n to be a multiple of d+ 1. Specifically, let z[i]™ denote the sub-sequence of length
m; = |(n+14)/(d+1)|,i=0,1,---,d, such that x[i]y 2 Ty (g41)—is t = 1,2,---,m;. We predict
z; by applying a non-delayed minimax strategy to x[i;];x[it]y - - - z[if] t/(d+1)]—1 With horizon
m;,, where i, = —t mod (d+1). Notice that this scheme conforms to the delay constraint, since
at the time z; is predicted, the last symbol in the relevant sub-sequence, z; 4 1, is already

available. Let Rgs(z™) denote the regret of this scheme on z™.

Theorem 1 Letng =n mod (d+1). Forng =0 and any loss function ¢(-,-), or for A = {0,1},

Hamming loss, and all n, the minimazx regret Rq(n) for delay d and sequences of length n satisfies

n

Ry(n) = nqRo ([dLJrID +(d+1—ng4)Ro Qmp : (9)

In addition, for every ™ € A™ we have in both cases
Rss(z™) < Ry(n).

Proof: We begin by showing that for any loss function £(-, ), the worst-case regret of any given
delayed on-line strategy {p:;}, applied to n-tuples with a delay d such that d + 1 divides n,
is lower-bounded by (d + 1)Ry(ngss), where ngs = n/(d + 1). To this end, we will show that
this lower bound applies to the expected loss under {p;} for a sequence z" which is piecewise
constant over blocks of length d + 1. The key idea in the proof is to link this loss to the

expected loss under an auxiliary non-delayed strategy for the ngs-tuple obtained by taking one



sample from each constant block in z". While this idea can be extended to the case ng # 0,
the manipulation of the tail of length ny obscures the procedure, and is therefore considered
separately. For any time instant ¢, let £4 2 [(t+1)/(d+1)](d+ 1) denote the smallest multiple
of d + 1 not smaller than ¢ + 1. Since t; —d — 1 < t, we can define an auxiliary (non-delayed)
probability assignment on the actions by

A fg—d—1—
Pig (blz') = d+lzptd (b= (10)

where, as suggested by the notation, pj,  (b|z') depends only on z' and is therefore an on-line
strategy. Clearly, the strategy is piecewise constant over blocks of length d + 1. Now, for each
ngs-tuple y"ss| let " denote the piecewise constant n-tuple obtained by replicating d+ 1 times

each symbol in y"sS, so that z; = yr;/(a41)], 1 < ¢ < n. We define a third on-line strategy,

p{.1(bly"), for ngg-tuples, by
pffl+1 (b|yt) = pl(d+1)t+1 (b|x(d+1)t) . (11)

Given an arbitrary sequence 3", the expected loss under {p;} for the corresponding (piecewise
constant) n-tuple z™ satisfies, by (5),

nsgs d

Lo(z™) = 330N pragay—i (0l T, )
C1is0beB
nss

= @+ sy bl )
j=1beB
nss _

= (d+1)> > ploly e, y;) = (d+ 1) Lo (") (12)
j=1beB

where the second equality follows from (10), and the third equality follows from (11). In

addition, by (6) and the construction of ™ from y"sS, we have in this case

nss

B(z") = (d+1) min {Zf(b, ?/t)} = (d+1)B(y").
t=1

Therefore,
Rp((I,‘n) = (d + I)Rpu (ynSS) . (13)

Now, since {p}} is a non-delayed on-line strategy, there exists a sequence y™sS such that
Rpu (ynss) 2 RO (’I’LSS) .

10



Thus, by (13), the corresponding piecewise constant n-tuple z™ satisfies
Ry(z") > (d +1)Ro(nss) - (14)
Since {p;} is an arbitrary delayed on-line strategy, (14) implies
Ry(n) > (d + 1)Ry(nss) (15)

as claimed.

While the same proof technique is used when n is not a multiple of d + 1 to show that
the right-hand side of (9) is a lower bound on R4(n) for A = {0,1} and Hamming loss, the
definition of pj, (b|z") needs to be adjusted for the incomplete last block of length ng > 0.

Specifically, while (10) holds in the range 0 < ¢ <n — ngy, for t =n —ng,---,n — 1, we define

A 1 "&S
Pipr (blt) = o Z _i(bz" . (16)
i=0

Sincen—d—1—1¢<n—d—1<n—ng, the probability assignment on the actions still depends
only on z'. In this case, ngg = (n/ (d+1)], and a piecewise constant sequence z" is obtained
from an ngs-tuple ™S by replicating d + 1 times each symbol in 3™ss~!, followed by ng copies

of ynes. Using (10) and (16), the expected loss on z" under {p;} derived from (5) takes the

form
- ngs—1 d . . ng—1 .
Lp(xn) — Z ZZp(d_l_l)j_i(b|x(d+1)(9—1)—1)£(b,yj)+ Z Zpn—i(b|xn_d_1_z)e(baynss)
j=1 1=0beB i=0 beEB
et d+1)(j—1
= (d+1) 30 Y Plasi-rya Gl T, y)
j=1 beB
+ 14 Y Py (018" T)E(b, ynss) - (17)
beB

Hence, by (11),

ngs—1

Ly(z™) = (d+1) Y > pi0ly="eb,y;) +na D P (bly™S (b, yngs)
j—1 beB beB
= (d+ 1)Ly (y"5™") + nglyr (yngs) (18)

where £, (ynss) denotes the expected instantaneous loss on yny. for the strategy {p}}. Thus,

ﬁp((L‘n) = (d +1-— nd)Epu (ynssfl) + ’rLdeu (ynss) . (19)

11



In the special case of Hamming loss for binary sequences, which is the only one addressed
when ng # 0, notice that for any sequence z™, there exists a symbol a € {0,1} which is most
frequent in both 2™ and ™ ! (possibly tied with @ for one of the sequences). Therefore, it is
easy to see that

B(z") = (d+1—ng)B(y"™") + naB(y"ss)
implying, by (19),
Rp(a") = (d+ 1 — ng) Ry (y"S571) + naByr (y"5) . (20)
Now, define the subset of n-tuples A, 4 by
Apg={z €A 1z =2y, 2z € {Od'H, 1d+1}”55_1, y € {0, 1"}}

where zy denotes the concatenation of z and y, and for a € A and a non-negative integer i, a*
denotes the all-a i-tuple. Notice that A, 4 is simply the set of all n-tuples obtained by replication
of an ngg-tuple as shown above, and the sequences in this set are formed by juxtaposition of
constant blocks of length d + 1, followed by a tail y of length n,. Next, we sum over 2" € A4, 4
the regret R,(z"). By (20), we have
> Ryx)=2(d+1-ng) >, Ry(y)+na Y, Ry). (21)
T€EA, 4 yeAnss—1 yeAnSS
By Lemma 1, the summations in the right-hand side of (21) are independent of the strategy
{p}}, and we obtain
Z Ry(z) =2"5(d 4+ 1 — ng)Ro(ngs — 1) + 2"55ngRy(nsg) . (22)
2€A, 4
Since the cardinality of A, 4 is 2"5S, (22) implies that there exist a sequence 2" € A,, 4 such
that
Ry(z") > (d+1—ng)Ro(nss — 1) + ngRo(nss) - (23)

Together with (15), (23) implies that the right-hand side of (9) is a lower bound on the worst-
case regret of any delayed on-line strategy on n-tuples with delay d for any value of n.

To show that the sub-sampling strategy attains the bound (9) for a general loss function,
consider any sequence z" and the corresponding sub-sequences z[i]™ defined prior to Theo-

rem 1, 0 <i<d. Let E&)M(x[z]ml) and B(z[i]™) denote, respectively, the cumulative loss of a

12



(non-delayed) minimax strategy (for horizon m;) on the sub-sequence indexed with 7, and the
corresponding Bayes envelope. We have

d

d d
Rss(z") = Y L (xli]™) — < ST l™) = Bli™)] < 30 Ro(mi)  (24)

i=0 i=0 i=0

where the first inequality follows from the fact that the sum of the Bayes envelopes correspond-
ing to each sub-sequence is not larger than the Bayes envelope of the entire sequence, and the
second inequality follows from the minimax property. Since m; = [n/(d 4+ 1)] for d + 1 — ny
sub-sampled sub-sequences, and m; = [n/(d+1)] for the remaining n4 sub-sequences, the proof

is complete. a

Discussion. In the binary case with Hamming loss, since Ro(n) ~ \/n/(27), the theorem states
that Ry(n) ~ Rg(n)v/d+1. As shown in Appendix A, a direct application of the minimax
strategy to the delayed sequence (“hiding” a window of d symbols) yields a regret that behaves
asymptotically as Ry(n)(2d + 1). This strategy, however, does not require prior knowledge of
d. It is also shown that the asymptotic regret of the exponential weighting algorithm used
in a similar fashion, in turn, behaves as Ry(n)\/(2d + 1)mIn2 in case d is known. If d is
unknown and the algorithm employs the same weighting parameter as in the non-delayed case,
the corresponding regret behaves as Ry(n)(d + 1)v/71n2.

The binary case with Hamming loss allows us to establish the optimality of the sub-
sampling strategy in the minimax sense for any value of n, not necessarily a multiple of d + 1.
Two properties contribute to this special status. First, the Bayes envelope of a piecewise
constant sequence in A, 4 is the sum of the Bayes envelopes of the sub-sampled sequences,
whereas in general this is only true when n is a multiple of d + 1. Second, a key property of
Cover’s minimax scheme is that the regret is uniform over all sequences " € A™; this property is
not valid in general. Moreover, the (non-delayed) on-line minimax strategy, which is a building
block for the delayed one, cannot be characterized in the general case as easily [8]. Yet, the sub-
sampling strategy can still be applied to achieve vanishing normalized regret, with a possibly
sub-optimal rate of convergence, in conjunction with a (non-delayed) on-line strategy that is not
necessarily minimax.* For example, the exponential weighting algorithm of [5] and [6], when

applied without delay in a context in which the “experts” are given by all possible constant

In fact, in the context of FS reference strategies, we will not be concerned with the convergence rates.

13



strategies, yields a regret Rpw (2") satisfying

nlnpg
2

Rrpw ($n) < gmax

for all 2™ € A", where # denotes the cardinality of the action space and /.« iS an upper

bound on the loss. Thus, the sub-sampling strategy used in conjunction with exponential

weighting yields a regret which is upper bounded by £y,ax/n(d + 1)(In 3)/2. If, in addition, we
are interested in a horizon-free scheme, a modification to the algorithm is required (see [6]), at

an additional cost of a constant multiplicative term in the regret.

Logarithmic loss. As discussed in Section 1, the delayed prediction scenario is also rel-
evant in the logarithmic loss case with applications to adaptive arithmetic coding, and the
proof of Theorem 1 applies almost verbatim in this case. Here, the decision maker assigns a

t=d incurring a loss

probability pyy1(zs1]zt7¢) to 24,1 € A based on the delayed sequence z
—log pyi1(zei1|z'=¢). The associated pointwise redundancy takes the form

n—1

Ry(a") = — 3" logpusi (msa]a’®) — nfl(z")
t=0

where H(z") denotes the (zero-order, normalized) empirical entropy of ™, namely

H(xn) _ 2;4 nagfn) log nagjn) .

Proceeding as in the proof of Theorem 1, and assuming that d 4+ 1 divides n, the first equality
in the chain (12) translates into

n/(d+1)

i /
Ly(a") =~ )
Jj=1

d
Y log pas1yj—i(@(asyj—ila @I
i=0

While we cannot directly replace {p;} with {p}} as in the second equality in (12), the key idea

is to use the convexity of the log function to obtain the inequality

n/(d+1)
Ly(z™) > —(d+1) > logp'(d+1)(j_1)+1(x(d+1)(j71)+1|x(d+1)(371)) )
j=1
Thus, proceeding as in (12),
_ n/(d+1) ‘ ~ .
Ly(a") > —(d+1) Y logpf(zjla’™") = (d+ 1)Ly (yTT).
j=1
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In addition, H(z") = H(y771) (notice that this property does not have a counterpart when
d + 1 does not divide n). Therefore,

n ~ _n_ _n_

AT = (44 DRy (™).

Ry(a™) > (d + 1) | Ly (yTHT) —

Again, there exists a sequence y7iT for which Ry (yT+1) > Ry(n/(d+1)), where Ry(n/(d+1))
is the minimax pointwise redundancy without delay for sequences of length n/(d 4+ 1). Conse-
quently, the delayed minimax pointwise redundancy is at least (d+1)Ry(n/(d+1). Proceeding
as in the proof of Theorem 1, this bound is achieved by the sub-sampling strategy.

Notice that, as in the binary case with Hamming loss, the minimax strategy without
delay is well-characterized and yields uniform pointwise redundancy. It is given by Shtarkov’s
Mazimum-Likelihood (ML) code [7], which assigns to 2™ a total probability

o-nH(z")

2 ynean 2-n (")

through the sequential probability assignment

P(ML) (xn) —

Syean—iot PO @Hly) 5 gumim 27076

Py (@eala’) = =
" EZGA"—t P(ML) (xtz) EzeAnft 2~ nH(;L't )
Hence,
Al -1
Ry( log[ Z 9-nH(y :%logn—i-O(l)
neAn

where the asymptotic expansion is shown in [7]. Consequently, R4(n) =~ (d + 1)Rp(n).

The ML-code can be replaced by simpler, horizon-free “plug-in” assignments obtained
through mixtures (see, e.g., [16]), without affecting the main asymptotic redundancy term for
suitable choices of the mixture prior. In a plug-in strategy, the probability assigned to z;11 = a
is an estimate of the probability of a if the observed sample z! were drawn by a memoryless
source, which is given by a ratio of the form (ng(z!) + 7)/(t + |Aly), where v is a positive
constant that depends on the mixture prior. In particular, it is shown in [7, Eq. (48)] that,
for v = %, the pointwise redundancy of any n-tuple differs from Ry(n) by a quantity that is
upper-bounded in absolute value by a constant, independent of n.

Interestingly, when any of the above asymptotically optimal schemes is used for delayed

probability assignment (assigning to z; the probability that the original scheme would have
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assigned to z; 4), the asymptotic worst-case redundancy in the binary case is at least (2d +
1)Ry(n). To see that, consider the ratio P;(0%/217/2)/P(0™/21"/2) of the probabilities assigned

to the sequence 0"/21™/2 by a scheme with and without delay, respectively. We have

n/21n/2 d d » 1 0(n/2)77,
Py(0n/=177%) <1> P(n/2)—i+1(1] ) (25)

P0"212) — \2) 4 pnj2)-i41 (01002 ~0)p, i (1077210727
where it is assumed that the delayed scheme assigns a probability of % to each of the first d
bits. It is easy to see that (25) implies that the delayed scheme assigns at least dlog n more bits
to the sequence than the original scheme (up to lower order terms), provided that py1(0]0%) =
1—O(1/t) and that, for every given constant m, py_ 1 (1|0%/21/2)-m) = $—0(1/t). The claim
follows from observing that these conditions clearly apply to any asymptotically optimal plug-in
strategy, as well as to the ML-code. Thus, the asymptotic worst-case pointwise redundancy of
these schemes exceeds the optimal value obtained with the sub-sampling strategy. However,
its average value under any i.i.d. distribution remains upper-bounded by Ry(n), as stated in
Section 1 for the case of Hamming loss. In addition, for the plug-in strategy, it is easy to see
that the asymptotic worst-case pointwise redundancy is precisely (2d + 1)Ry(n). Indeed, notice

that ignoring d bits in z!

results in decreasing the numerator in the probability assigned to
z!t! by, at most, d, whereas the denominator is decreased by d. An upper bound on the code
length increase AL(z™) results from assuming the worst-case situation for every time instant,

implying for all z"

no(z")—1 d ni(z")—1 d
AL(Z™) < I 1+ — | —_— 1 — A
(") < ZZ% 0g< +'y+z'>+ ; og< +7+l> Zogn i+|Aly)

ln2 2% ’)/T —dlog(n —d) =dlogn+ O(1).

Thus, the asymptotic worst-case pointwise redundancy of this scheme is (2d + 1) Ry(n).
Notice that, as shown in [17], the asymptotic lower bound (]A| — 1)(logn)/2 applies not
only to the worst-case pointwise redundancy of any non-delayed probability assignment, but
also to the pointwise redundancy of most sequences in most types. In contrast, the asymptotic
lower bound (d + 1)(logn)/2 on the pointwise redundancy for delayed probability assignment
on binary alphabets shown here cannot apply to most sequences in most types, as it would

contradict the fact that for the delayed plug-in scheme with v = % the average under any i.i.d.
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distribution is close to 5 L Jogn. The source of this contradiction is that, for any plug-in scheme,
the possible increase in the pointwise redundancy due to the delay is not only upper-bounded
by dlogn, but, similarly, it is lower-bounded by —dlogn. Thus, by [7], the asymptotic best-case
(delayed) pointwise redundancy for v = % cannot be smaller than (% — d)logn. Consequently,
a vanishing fraction of “low redundancy” sequences in a type would not decrease the main
term of the average pointwise redundancy within the type below (d + 1)(logn)/2, whereas it
can be shown that the averaging distribution can be chosen so that the ”exception” types have

vanishing probability and do not affect the asymptotic behavior of the average.

3 Delayed FS predictability

In this section, we consider reference strategies of the form b, = g(s;), by € B, where s; is a
state in an FSM with state set S, driven by a next-state function s;41 = f(s¢, z;), with initial
state s;. We will also extend the setting of Section 2 to loss functions of the form (1), where
the weights wy are given real numbers, and the expected cumulative loss is given by (2). The
vector of weights (wg, w1, -+, w;_1) is denoted by w, and the setting of Section 2 corresponds
to w = (0,0,---,0,1) (here, however, we exclude the first 7 — 1 actions). Clearly, the best

reference strategy g for given f and s; achieves, over n — 7 + 1 actions, the (normalized) loss

SES = ucAd acA

,uf,sl prn 7'+1 mln{de Z men T+d+1 ua| ) ( )} (26)

where p,;(s) denotes the frequency of occurrence of s € S in the state sequence s;s3 - - - s; and,
likewise, the conditional empirical probability p,; (ua|s) (based on z7) is defined as the frequency
with which the (d + 1)-vector @;xy1 - %41q 1S ua, given that s, = s, 0 <t < j —d. Thus, for
an infinite sequence of observations £*° = zixzs - - -, the asymptotic performance achievable by

the best F'S strategy determined in hindsight is given by

A7 (2%) = lim limsup min in By (z") (27)

We define this value as the delayed FS predictability of £°° for the vector w. Notice that, for
7 =1, the DFSP coincides with the (generalized) FS predictability of [9] for the loss function

’LU[)E(', )
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In the remainder of this section, we establish some properties of the DFSP. The first
property relates the DFSP to a non-delayed measure of predictability through sub-sampling.
We then show that, as in the non-delayed case, Markov machines achieve the same asymptotic
performance as the broader set of general FSM’s, when the number of states grows. Finally,
we show that the DFSP is a proper generalization of the usual FS predictability of [9]. These
properties are applied in Section 4 to the design of on-line algorithms that achieve the DFSP.

Given an infinite sequence 2™ over A, let X[i]>°, 0 < i < 7, denote the infinite sequence
over A7 such that X[i], = (Ttr—i, Ttr—it1," *, T(t41)r—i=1), t = 1,2,---. Notice that the se-
quences X [i]*°, formed by non-overlapping blocks over £°° taken at a “phase” given by i, are
the sub-sequences resulting from sub-sampling the sequence of 7-vectors obtained by applying
a sliding window of length 7 to £°°. For an observation space A” and an action space B, we
consider non-delayed FS prediction of each sub-sequence X[i]*°, 0 < ¢ < 7, under the loss

function defined in (3), namely

Y) =3 wab(bya) (28)
d=0

where Y = (yo,y1, - -,yr—1) € A” and b € B. In this setting, a different FSM, with next-state

function f(i) and initial state s1(7), acts on each sub-sequence X[i]*

, and is optimized sepa-
rately. For a prefix " of £°°, this prediction accumulates 7 independent losses over the corre-
sponding sub-sequences X [i]"(?), where n.(4) = |(n—7+1+41) /7] is the length of the longest prefix
of X[i]*° (over A7) contained in z™. These losses are added together, with 17}”(2.)751(2.) (X [i]"®)
denoting the (normalized) loss achieved over X [i]*(*) by the best (non-delayed) strategy for the
FSM determined by f(i) and s1(i). A “sub-sampled predictability” of °° is defined by

—1

W, oo\ A 1 . (W) n(i)
= lim 1 X . 29
) = Jim mzpni ) B8 s Prwe o (X H) (29)

Notice that if the summation in ¢ can be interchanged with the limit superior in n (e.g., in
case the limit in n exists for all the sub-sequences), then p% (z>°) is just the average of the
(non-delayed) FS predictabilities v%W (X [i]*°) of X[i]*°, 0 <4 < 7, as defined in [9]. In general,
however, this average is only an upper bound on the new predictability measure (29) which, as

shown in Theorem 2 below, coincides with the DFSP.

18



Theorem 2 For any positive integer T, any vector w, and any infinite sequence r°°, we have
<) =p" (™). (30)

Theorem 2 tells us that in order to achieve the DFSP, it is possible to consider 7 separate
sub-sampled sub-sequences over the extended alphabet, and apply known techniques for non-
delayed decision making. By emphasizing, again, the optimality of sub-sampling, this result
immediately implies an on-line algorithm for approaching the DFSP: It suffices to run in parallel
7 on-line schemes for non-delayed decision over the extended alphabet, one for each phase of

the sequence. On-line algorithms for approaching the DFSP are further discussed in Section 4.

Proof of Theorem 2: Consider an FSM with next-state function f over a set of states S, which is
started at state s; and is driven by the symbols in A. By abuse of notation, given a € A, s € S,
and a string u over A, we recursively define f(s,au) = f(f(s,a),u). We create a refinement of
the FSM by splitting each state s € S into 7 states denoted s(?, s, ... s("=1) and by defining
a new next-state function, f,, such that for any a € A and any d, 0 < d < 7, f-(s(9,a) = '@,
where s’ = f(s,a) and d' = d — 1 mod 7. The initial state of the refined machine is selected
to be ng_l), so that state s can only occur at times t = j7 — 4, namely, at the beginning of

block Xi];, 7 = 1,2,.... By the refinement property, for every prefix ™ of ° we have

B oon(a") < i, (@), (31)

Clearly, by (26), (28), and the fact that for any string u and any length j, >/ c 4j pan (uv|s) =

Pyn—j (uls), we have

T—1
ﬁ}f,sgr—l)(xn) = ZZPZ’"*TJH mm{de Z Z Z pmn(uau'|s(i))€(b,a)}

SES i=0 u€Ad aC€A y'cAT—d-1

T7—1
= S pran (5 mm{zpmn (Y1) L, )}. (32)

s€S =0 Ycar
Now, we define yet another FSM over S, whose next-state function F- is driven by the symbols in

AT? according to FT(SvY) = f(37y1y2"'y7')7 where Y = (y17y27"'7y‘r)7 Yj € Aa .7 = 1727"' y T

n—7+1

Clearly, each occurrence of s() in z corresponds to an occurrence of the state s (driven

by Fy), in X[i]*®. Therefore, (32) implies

i (4) D P X[ (5) lgéilgl{ > pX[i]"(i)(Y|5)L(va)}

Mf (r 1)( n) =
~* seS Yecar

n—71+1
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T—1

= n(i) v, (X[]"0)

_ 15
n—1+1o= Frysr—i
and, using (31), minimizing over f and s, taking the limit superior on n, and letting |S| — oo,
we obtain
B () > o (2)

To prove the opposite inequality, it is convenient to invoke the asymptotic equivalence
between Markov and FSM predictability shown in [9, Theorem 2] for the non-delayed case.
Notice that the conditions for this equivalence clearly hold in the finite matrix games considered

in this paper. Therefore, for any Markov order k, and any set of FSM’s with next-state functions

f(i) and initial states s(i) over a set of Q states, we have

17*1 o i 171 o o
n Z;”(Z) iy (X ") = - ._On(Z) o3 (X [0) - §(k, Q) (33)

where M), denotes the next-state function of a Markov machine of order k£ with an arbitrary
initial state, and the function §(k,Q) vanishes as k tends to infinity, provided that Q = o(2F).
The sum in the right-hand side of (33) accumulates the losses achieved on all “phases” of 2>
by separate Markovian machines of order k, driven by the symbols in A”, with the loss function
L(Y,b). By the Markov property, the same loss can be achieved by a single FSM driven by the
symbols in A, whose state is given by the last k7 symbols and the phase ¢, with the loss function
of (1). Notice that the state space S, of this FSM has 7|A|*" states (and is not Markovian).

Therefore,

T—1
%Zn(i) min i ) o (X["D) > min i (@) — §(k, Q).
=0

> min

1(1)€S (@) £(2):[S(1)|=9 $1€8k,r f:| Sy, |=T|A[FT

The result follows from taking the limit superior as n — oo and then letting 2 (and, therefore,
k) tend to infinity. O
While the proof of Theorem 2 also implies that the class of Markov machines which are also
equipped with information on the phase 7 of the sequence is as powerful as the entire FSM class
in the sense of achieving the DFSP, Theorem 3 below states a stronger property. Specifically, it
is shown that, just as in the non-delayed case, the (delayed) Markov predictability is equivalent

to the DFSP. Thus, the phase information is asymptotically inconsequential.’

5Tt should be noted, however, that the weaker result implied by Theorem 2 does not appear to be useful in

the proof of Theorem 3.
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Theorem 3 For any positive integer T, any vector w, and any infinite sequence r°°, we have

i (x

®) = klg{.lo lirrbriscgp ﬁ%k(xn) .

Proof. The theorem results from establishing, for every next-state function f over a state space

S, every initial state s, and every non-negative integer k, the inequality
2In|S|

T[]

and letting n — oo and £k — oo, where W = ZZ-T;OI wq and we recall that £, denotes an

ﬁ}\u/lk (:L,n) - p',}l‘l,’sl(xn) < ngax (34)

upper bound on the loss. Following the method for proving the counterpart of this inequality
in [9, Theorem 2|, we upper-bound the left-hand side with an average of differences of the
form ﬁ}&j (z™) — [L}f’sl(ﬂin), where f; denotes a common refinement of f and M, and j < k.
However, unlike in [9], we let the integers j take the form j = m7, where 0 < m < |k/7|. These
differences are bounded, in turn, as shown in Lemma 2 below (which replaces Equation (A.3)
of [9]). Notice that the auxiliary empirical conditional entropies in Lemma 2 correspond to

distributions on 7-tuples, rather than on single letters as in [9].

Lemma 2 Let a refinement of a Markov machine of order j have state space S next-state
function f, and initial state s,. Let H(XT|X7) and H(X7|S) denote the conditional entropies
of the empirical distributions on T-tuples conditioned on the Markov and the refined machine,

respectively (with frequencies dictated by x™). Then,

A, (1) = J, (57) < Wlna\/2(n2) [H (X7|X7) — H(X7|S)].

Lemma 2 is proved in Appendix B. The rest of the proof of Theorem 3 is omitted, since it
proceeds as in [9], except that here the chain rule of conditional entropies is used on 7-tuples.
O

In case w is the 7-vector (0,0,---,0,1), we will denote ﬂ}f’SI (z™) = ﬂ(le)(mn). The DFSP
of >, which we will denote ("1 (£°°), gives the minimum loss per sample incurred by any
F'S decision maker that acts 7 — 1 steps in advance (or observes a sequence with a delay 7 — 1).
We will refer to (7= (2°) as the DFSP of order 7 — 1. It is easy to see that for any sequence
z", any FSM defined by f and sq, any positive integer 7, and any vector of weights w,

7—1

_ _(d

A% (2" > 3wl (@").
d=0
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Thus, the achievable loss for w is lower-bounded by a linear combination of delayed predictabil-
ities of orders 0,1, ---,7 — 1.

As noted in Section 2, the performance achieved by a single-state machine is independent of
the delay. However, when general FSM’s are considered, the concept of delayed predictability is
a proper generalization of the usual predictability. The following theorem states that not only
the DFSP cannot decrease with the order, but there indeed exist sequences for which “longer

delay” decision making is sub-optimal.
Theorem 4

a. For any infinite sequence of observations z°°, p(7=1 () < u(™ =D (2>°) for all 7' > 7 > 0.

b. Assume that there exist a1,as € A such that
¢(arg minyc gf(b, a1), as) > Eniélf(b, az)
€

(namely, the loss function is non-trivial, in the sense that there is no single action that
dominates all other actions regardless of the observation). Then, for any T > 1, there

exist infinite sequences x> for which g7~ () > a0 ().
Proof. The first part of the theorem is straightforward, since an FSM that incurs a loss
2(g(s¢_7711),x¢) on z; for some function g of the state at time ¢t — 7/ + 1, cannot degrade its
performance if g is allowed to depend also on x4, -+, Te—7.

As for the second part, it suffices to show that the strict inequality holds with probability
one for sequences emitted by some ergodic first-order Markov (probabilistic) source S. By the
assumption on the loss function, there exist such sources, with conditional distributions p(:|-),
that for some e > 0 satisfy the inequality

Zp(v)ggg{ Y D plualv)e(d, a)} >y pv) géig{zp(ualv)f(b, a)} +e (39)
vEA

ucAT-1lacA veEA ucAT—1 acA

where {p(v), v € A} denotes the steady state distribution derived from p(-|-). Fix k and consider
the Markov machine M} with an arbitrary initial state. By Birkhoff’s ergodic theorem, for
sequences z" emitted by S, the k + 7 empirical joint distribution tends to the true distribution
almost surely as n — 0o. Hence, by (26) and the continuity of the (delayed) Bayes envelope,

liTILIi)Sogp ﬁ%;l)(mn) = Z p(U) min{ Z Z p(ua|v)€(b, a)} é ﬁ](c'rfl)(s)

vEAF



almost surely. Now, the idea is to prove the theorem in the probabilistic setting. Specifically,

since S is Markov of order 1, by (35), we have

ATNs) = ﬁgT_l)(S):Zp(v)rbréig{ > Zp(ualv)f(baa)}

vEA ucA™-1acA

> Y pv) Y gu]g{zp (ualv)e(b, )} +e
vEA ucAT-1 € acA

= Zp Z p(ulv) m1n{2pa|vu ba}
vEA ucAT—1 a€A

— !

= Z p(u 1;)%111;1 { Z p(alu’)l(b, a)} +e
u' €AT a€A

= Zp E%‘E{me ba)}+e
vEA

= Zp mm{Zp (alu)f(b, a)} e:ﬁ,(co)(S)-i—e. (36)
uc Ak

Again, by the ergodic theorem,

limsup iy, (2") = il (S)

n—00

almost surely, and therefore, by (36),

hmsup,us\/( )( ") > hmsupusvz (") + € (37)

n—00 n— 00

with S-probability 1. Since the (countable) intersection of probability-1 sets also has probability

1, we can let k — oo in (37). Finally, since € > 0, by Theorem 3, we conclude that

A (@) > g0 (@)

with S-probability 1. O

4 Delayed decision making via incremental parsing

In this section, we propose a sequential algorithm that, for an arbitrary sequence of observations
z", incurs a loss £, (2™), as defined in (2), which approaches the DFSP for any given loss function

£(-,-) and weight 7-vector w. By Theorem 2, one possible approach to achieve asymptotically
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optimal delayed decision making is to reduce the problem to the non-delayed case studied
in [9], through sub-sampling. Specifically, we can grow 7 LZ trees in parallel over the extended
alphabet A7, one for each sequence X[i], 0 < i < 7, and use the LZ-based sequential decision
making scheme of [9] for the loss function (3). Each tree yields a sub-sampled sequence of
decisions, at the corresponding phase %, and the compound loss converges to the DFSP. While
this approach is plausible, a more direct application of the incremental parsing rule to delayed
decision making avoids the costs associated with alphabet extension (especially in terms of
memory usage), as shown next.

Following [4], we will first derive a strategy that competes successfully against any given
Markov machine. By Theorem 3, a Markov machine of sufficiently large order can perform as
well as any given FSM. We will then take advantage of the growing Markov order induced by
the LZ incremental parsing rule to design the desired sequential algorithm. For simplicity, we
will assume |A| = |B|, so that a one-to-one mapping between observations and actions can be
defined. By abuse of notation, we will denote b = a for corresponding values b € B and a € A

under this mapping. Moreover, we will restrict our analysis to the Hamming loss, namely,

(b, a) (38)

1 otherwise.

While our results carry over to general loss functions, the Hamming loss facilitates an efficient
implementation of the sequential decision scheme. Moreover, the prefetching application to be
discussed in Section 5 conforms to this restriction (except that the weights can vary arbitrarily

and are only revealed to the decision maker after the corresponding action was taken).

4.1 Sequential strategies for Markov models

For non-delayed decision making, a sequential scheme that performs essentially as well as the
best constant strategy determined in hindsight can readily be extended to compete against
the best Markov predictor of a given order k, by using it on the sub-sequences of observations
following each k-tuple. Specifically, for a sub-sequence of length n(s) occurring at state s, an
O(v/n(s)) excess loss with respect to the best constant strategy can be sequentially achieved.

Therefore, integrating this result over the state space S of the competing Markov machine
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through Jensen’s inequality, we obtain an overall (normalized) regret (with respect to the best
Markov strategy) which is O(1/]S[/n) for a sequence of length n (see [4]).

It is possible to extend these considerations to delayed prediction by proceeding as in
Theorem 2, creating 7 separate sequences of observations over A7, which in turn are divided
according to the Markov state in which the observation vector occurred. The actions still
belong to B, and the loss function is given by (3). For each phase and state, a horizon-free
decision scheme with O(y/n) regret (such as the exponential weighting scheme discussed at the
end of Section 2) is applied, and thus the dependency of the regret on |S| and 7 is given by
an O(y/7|S|n) term. Consequently, there is a regret cost for both the delay and the number
of states. However, when dealing with sequences such that two consecutive occurrences of a
given state are always at least 7 time instants apart (namely, s, = s implies s;4; # s for
i =1,2,---,7 — 1), the delay cost can be avoided. The reason is that, for such sequences,
the vector of observations X occurring at state s; = s (and the corresponding loss L(by, X3)
for action b;) is already available at the next occurrence of state s. Consequently, it is not
necessary to consider 7 separate phases. This is a key observation in the context of approaching
the Markov predictability, as it will become clear that the assumption is not restrictive due to
the use of the incremental parsing rule to build a machine of growing Markov order.

For a sub-sequence of observations Xy, , X¢,,- - » Xty OVEr AT occurring at state s, all of
which are assumed to be available at the time of the next visit to s, the exponential weighting

algorithm assigns to action b € B a probability

e_n‘cb(s7i)
P Xty Xeay oo, Xy,)) = Syepe My (D) (39)
where Ly(s,1) is the cumulative loss of action b for the sub-sequence, namely
A i(s)
Ly(s,i) =D L(b, Xy;) (40)
i=1

and 7 is a constant whose optimal value depends on the length n(s) of the sub-sequence. Since
n(s) depends on the sequence z™, it cannot be assumed known even in cases where the horizon
n is known. To address this problem, it is proposed in [6] to divide time into exponentially
growing super-segments, and to apply the above algorithm to each super-segment independently,

optimizing 7 for the corresponding length. Notice that the cumulative loss £y (s,n;), where n; is

25



the length of the i-th super-segment, is reset before starting super-segment 1+1. The normalized

regret is bounded as in the horizon-dependent case, but with a larger constant [6].

4.2 Delayed decision algorithm

In order to compete against any FSM, we will rely on the incremental parsing rule of [10] to
increase the Markov order at a suitable rate. Based on this rule, the decision algorithm will grow
the same tree as in the data compression application, but the count updates will differ from
those specified in [4] for binary (non-delayed) prediction. The branches in the tree represent
observations, and a node represents a Markovian state, through the unique path from the root
(the reader is referred to [10] and [4] for further details). In addition, for each node N, a
count ¢,(N) is associated with each action b € B. As shown in Equation (41) below, this count
stores a (non-negative) difference between a node-dependent reference value and the cumulative
loss that would be incurred by a constant strategy that uses action b over the sub-sequence of
observations occurring at the state represented by A'. The counts c,(N) are initialized to 0,
and are reset occasionally to account for the exponentially growing super-segments discussed in
Section 4.1. To this end, a counter n(N') registers the number of visits to A/, and determines
a super-segment index m(N\).

The proposed sequential strategy is described through a pointer that at time ¢ — 1 is
pointing to node A_; at level j — 1 of the tree, after having pointed to each node in the path
No -+ Nj_oNj_1 from the root Ny (initially, j = 1). If j < 7, we also keep track of additional
nodes visited before the last return to the root, which are denoted N_1,N_g,-++ , N;_, (from
the most recent to the most remote), so as to complete a history of length 7. Thus, at a given
time, a given node may be labeled by multiple indexes, only one of which can be non-negative
(the level in the tree). At that point, an observation z; 1 € A occurs. The strategy proceeds

as follows:

a. For d =0 to 7 — 1, increment by wy the count cb(./\fj,l,d), for the action b = z;_;.

b. Traverse the tree in the direction of z;_;, moving the pointer to N;. If the branch does
not exist in the tree, add it and reset the pointer to the root Ny (j = 0); in this process,

the node previously pointed to is re-labeled A1, and a history of length 7 is maintained.
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c. Draw action b; according to the distribution

en(m(Nj))es(Nj)
Syen en(m(N;))ey (V)

P(bING) =

where n(m(N;)) is the parameter in the exponential weighting algorithm associated with
the super-segment index m(Nj).
d. Update n(N;); if the update indicates the beginning of a new super-segment, update

m(N;) and reset all counts ¢, associated with N;.

The counts ¢;(N) in the above procedure differ from those used in [4] in that each observa-
tion x; generates up to 7 updates into the past. The parsing rule, however, which is determined
by the return to the root, is the same as in [10]. Each count updated in Step a. corresponds
to the only action b that, if executed at time {—1—d, would not have contributed to the loss
component wgf(b;_1_g, ;1) (the other actions would have contributed wy), 0 < d < 7. Thus,
with T} (t) denoting the set of time instants ¢, o, - sty <t such that the decision b;; was

made at node N}, 1 <i < ny(Nj), if tny(n;) T 7 —1 <t then for every action b € B we have, at

time ¢,
T—1
aW;) = D Y wall — b zira)] = Wn(N;) — > L(b, X;)
icTy(t) d=0 i€ Ty (t)
= Wn(Nj) — Lo(Nj, i (Nj)) (41)

where the second equality in the chain follows from (3), and the third equality follows from (40),
with the node N playing the role of a state. Notice that the condition buvy) T7—1 <t
guarantees that all previous instantaneous losses L(b, X;), i € Tj(t), have been added to ¢, (Nj);
in particular, no “edge effects” result from the return to the root, since the nodes labeled with
negative indexes ensure the availability of the complete history of length 7. Thus, under this
condition, by (39) and (41), Step c. of the algorithm implements the exponential weighting

algorithm for the subsequence {z;}, i € Tj(n).

Theorem 5 Let LY (z") denote the (expected) loss incurred by the above on-line strategy over

a sequence ", for a weight vector w. Then, for any Markov order k,

. ]- r n = n
lim sup — [Ei%(w )—u}ﬁk(:ﬁ )] <0.
n—oo T
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Proof. Let c(z™) denote the number of phrases in the incremental parsing of ™, and let
k = max(k,7—1). Asin [4], the proof uses the fact that there are at most - c(z™) observations
at nodes of level j, 7 < k, and therefore the loss contributed by actions decided at these nodes
is at most KW lpaxc(z™).

Now, consider the loss due to actions decided at nodes of level j, 5 > k. Notice that the
evolution of the tree guarantees that when an action b; is decided at a node A}, then the time
tny(v;) at which the last action was decided at N satisfies bny(W;) <t—j. Since j > 7 —1, the
condition Z,,( Ny <t—T+1is satisfied, and Step d. of the algorithm indeed implements the
exponential weighting algorithm for the subsequence occurring at A;. Hence, by the discussion
in Section 4.1, the difference between the cumulative loss for actions decided at N; and the loss
that would be obtained with the best fixed strategy determined in hindsight for this node, is
upper-bounded by an O(y/n(N})) term, where n(N;) denotes the number of decisions made at
node N;. Integrating the decisions made at all the nodes Nj, j > &, through Jensen’s inequality,
as discussed in Section 4.1, noticing that these nodes correspond to states in a refinement of a
k-th order Markov machine, and observing that there are at most ¢(z™) nodes in the tree, we

conclude that

e 0 (2 o ()

The theorem follows from c¢(z") = O(n/(logn)) (see [10]). O

Theorems 3 and 5 imply the following Corollary.

Corollary 1 For any infinite sequence £°° and any weight vector w, we have

1.
limsup — LY (2™) < g% (™).
n—oo T

Remarks.

a) Since the decisions at each node do not require sub-sampling of the corresponding sub-
sequence of observations, as shown in Section 4.1, the upper bound on the corresponding
regret is smaller than with the alphabet extension suggested by Theorem 2. While this
scheme is not shown to yield lower regret than the strategy based on alphabet extension
and sub-sampling (especially since the asymptotic behavior is dominated by the growth

of the LZ tree), it appears to perform better in practice.

28



b) In terms of complexity, the main advantage of this scheme over alphabet extension appears
to be in memory usage. For efficient traversal of the LZ trees over the extended alphabet,
each set of branches stemming from a given node can be implemented with a sub-tree of
depth 7 over the original alphabet (otherwise, identification of each 7-tuple would require
moving back and forth in the sequence of observations). For each sample, a pointer is
advanced in each of the 7 parallel trees, and the values L(Y,b) are updated for each
possible action b, accumulating the contribution of each component of Y. When all the
components of a vector Y have been observed, a decision is made at the node attained
in the LZ tree corresponding to that phase, and the counts in that node are updated.
The number of operations to complete this process is roughly equivalent to the 7 updates
into the past required by the proposed scheme. However, the size of each of the 7 LZ
trees is roughly equivalent to that of the single tree required by the proposed scheme.
This claim follows from the fact that the number of phrases behaves as n(i)/logn(i),
where n(i) =~ n/7 is the length of the sub-sequence corresponding to phase i, and each
branch over the extended alphabet corresponds, as discussed above, to 7 branches over

the original alphabet.

5 Application: adaptive prefetching

To conclude this paper, we show that the delayed prediction scenario is encountered when
adaptive prefetching strategies for computer memory architectures are formalized as a sequential
decision problem. In this application, the goal is to prefetch an address from main memory into
a small, faster memory (“cache”) ahead of time, in order to prevent stall time by the central
processing unit (CPU) when accessing this address. Notice that the following brief discussion
is intended only as a motivation, thus ignoring the intricacies of various prefetching system
architectures proposed in the literature.

In a simplified memory architecture, if an address requested by the CPU is neither stored
in fast memory (cache miss) nor on the bus (on its way to satisfy a previous request), a memory
transaction takes place. The request is placed on the bus, and the data is returned to the CPU

after a memory latency time Tj,;, which is the key to view this application in terms of delayed
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prediction. The bus residency (i.e., the time during which the request is on the bus) is usually
negligible with respect to the memory latency, so that multiple requests may co-exist. In a
prefetching architecture, a prefetcher recognizes patterns in the sequence of references {z;} and
speculatively requests addresses that are likely to be accessed in the future. We will assume
here that at each time index ¢ a decision to prefetch only one address is made. Therefore, we
can view the prefetched address as an action b;, and the observation space A coincides with the
action space B.% Upon receipt, the requested data is inserted in the cache and, in principle, old
addresses are replaced. For the sake of simplicity, however, we will ignore cache replacement
policies by assuming a large enough cache.

If prefetched data is referenced by the CPU, the CPU stall time caused by accessing main
memory is totally or partially avoided. Partial savings occur when the reference takes place less
than Tj,; time units after the referenced data was requested by the prefetcher, so that the data
is still not available. Clearly, this is a delayed prediction scenario in which the prefetcher needs
to account for Tj,;, as well as for observed times between cache misses, in order to determine
how many steps in advance the prediction should be issued. The loss in this sequential decision
problem is given by the total CPU stall time. Thus, in principle, the instantaneous loss (CPU
stall time) incurred as a result of referencing address z;, depends not only on the last prefetching
decision b;, but on the entire sequence of actions b1bs - - - by. Alternatively, a more tractable loss
function of the form (2) for the Hamming loss (38) results from considering an accumulation of
opportunity cost losses. Specifically, in this formulation, wg£(b, a) is an architecture-dependent
measure of the stall time that could have been saved by prefetching a instead of b at time index
t, given that a occurred at time ¢t + d, 0 < d < 7. The weights reflect the relation between Tj,;
and the interval lengths between misses (other system parameters may also be incorporated),
and can therefore vary arbitrarily, depending not only on d but also on ¢. This dependency is
given by side information independent of the actions {b;}, and is revealed to the decision maker

at times ¢ + d, after the action.

Tn a practical system, the sequence {z:} will typically be given by the sequence of cache misses. Moreover,
locality can be exploited by defining the problem over address differences, similar to the use of prediction in the
compression of smooth data (thus working “in the DPCM domain”). This technique effects a reduction of the
alphabets A and B, allowing to overcome the high learning costs associated with large alphabets. Here, this

differentiation process is disregarded.
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The sequential decision problem has customarily been treated in the context of repeated
play (see, e.g., [1]), where the decision maker wishes to approximate a Bayes envelope by
playing the same game over time, with a fixed loss function. The fixed loss assumption is also
made in the setting of learning with expert advice, but it is interesting to notice that it is not
actually required in that setting. The decision strategy resulting from the exponential weighting
algorithm depends only on the loss accumulated by each expert over the past, and only assumes
that this loss is available at the time the decision is made. In particular, it is irrelevant whether
this loss originates from a fixed loss function or from a sequence of loss functions, as long as
this sequence is the same for every expert, and it is uniformly bounded. In fact, the proof given
in [19] of the convergence of the normalized loss to the normalized loss of the best expert (for
finite alphabets) holds verbatim when the assumption of a fixed loss is removed.”

For a given FSM, the above generalization applies to the sub-sequence occurring at each
state. In the delayed prediction case with fixed loss function but variable weights, the loss
achieved by the best FSM reference strategy is no longer given by (26). Instead, for a sequence

of weight vectors {w};, where each vector is denoted (wy g, w1, -+, wsr—1), we have

_}g)l} prn 7—+1 gélél{z Z Wy, de b (Ift+d)} . (42)

s€S d=0t : s¢=s

The proof of Theorem 5 carries over to this case, provided that the weights remain bounded.
Thus, even under these variable conditions, the on-line scheme can still compete successfully
against Markov strategies. On the other hand, however, Theorem 3 does not carry over to this
case, so that the LZ-based scheme may fail against more general FSM strategies. We conclude
this section with an example showing that for a particular sequence of weight vectors, there
indeed exist FSM’s that outperform any Markov machine.

Example. Let 7 = 2, and consider two weight vectors w®) = (0,1) and w(® = (1,0), under
Hamming loss. While w®) corresponds to a unit delay in the prediction, w®) corresponds to
non-delayed prediction. Given a (large) integer N, assume that ws = w(?) when [t/N] is even,
and wy = w? otherwise (i.e., the vector remains constant for N time instants, and alternates

between w1 and w(?).

"While this observation is not true for the algorithm proposed in [1], it was shown in [20, Lemma 1] that a

simple modification of this algorithm can be used with varying losses.
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Now, consider the binary sequence " = 010101 ---. Clearly, for this sequence, a Markov
predictor of any given order k will alternate between two states, denoted s and s@, for all
t > k, regardless of k. If the predictions g(s)) and g(s(?)) for these states differ, the Markov
strategy will also alternate its predictions for ¢ > k. In this situation, the loss will always be
either 0 under w( and 1 under w(®, or vice versa. If, instead, the predictions g(s(")) and
g(s(Z)) coincide, a constant predictor will incur a loss every other time for both w® and w®,
except for the transitions between the loss phases (every N time instants). Since N is large, in
both cases the normalized loss approaches 0.5.

In contrast, an FSM strategy can track the variation of the loss function and adjust the
phase of its alternating predictions as the loss function changes, to achieve virtually 0 loss
(again, with the negligible exception of the transitions between loss functions).

The above example can be modified to show that for variable loss functions in the non-
delayed case, FSM strategies can outperform any Markov strategy. Let £i(-,-) denote the
Hamming loss function for the binary case, let ¢o(-,-) = 1 — #1(+,+), and assume that the two
loss functions alternate. Clearly, for the all-zero sequence, any Markov strategy will remain in
the same state for ¢ > k, and will therefore incur a loss every other symbol. In contrast, an FSM
strategy can adapt to the varying loss function to achieve 0 loss. It should be noticed, however,
that in many cases a variable loss function can be viewed as a fixed one by considering the loss as
part of the observation. In the above example, given the observation and the corresponding loss
value, the decision maker can infer which loss function was used. Letting the observation space
be given by {0,1} x {¢1,¢2}, while the action space remains {0,1}, the variable loss function
clearly corresponds to a fixed one. In order to attain the asymptotic equivalence between Markov
and general FSM’s, the machines must be driven by the compound observations. However,
in many practical applications, the corresponding extensions of the proposed on-line schemes

would be prohibitively complex.

A Appendix: Delayed-mode performance of binary predictors

In this appendix we investigate the performance of the minimax binary predictor of [3], and

the binary predictor resulting from exponential weighting [6], when applied with a delay d.
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Minimax predictor. We first show that for any sequence x™, the regret Rl(\ﬂv[(x") of the

minimax predictor, when applied to a delayed sequence, satisfies the upper bound

R ") < (1424 25+ o(vi) (A1)

where d is the delay. We then demonstrate a sequence that attains this upper bound asymp-
totically. Let pgflM ) (2441|724 n) denote the probability assigned to x;; under this scheme,
with horizon n, where for 0 < t < d, =% is the null sequence A, for which it is assumed that

pg 1 )(:Ist+1|>\, n) = % The corresponding loss incurred on z" is

|
-

n

Lana(z™) = ST = piV Y (@ at=% m). (A.2)

-
Il
=)

Recall that, for non-delayed prediction of x,_, after observing 2 "1, the scheme of [3] can
be interpreted as drawing =, i1, -, %, at random, and choosing z,_, as the most frequent
symbol in the resulting sequence 122 - - Zp_p_1Tp—pi1 - Ty of length n — 1 (with a coin flip
deciding ties for odd n). With ny, = [n/2], it is easy to see that regardless of the parity of n,
the probability ¢, (1) assigned to 1 by that scheme takes the form

2np—n+r
o, —
C]r,n(l) _ 27(2nh7n+r) Z ( np .n+r> (A.3)
)

. )
i=np—nq ("1

where we recall that n,(z') denotes the number of occurrences of a € {0, 1} in the sequence z.

Clearly, pg_ll\_dllvl)(lkpt_d,n) = Gntd—t—1,n(1).

Now, consider the (delayed) probability assignment for horizon 2n; + d at time ¢ +d + 1,
after observing a sequence of length ¢ composed of z'~? followed by d copies of z;y1. Using (A.3)
and denoting dj, 2 [d/2], it can be verified (e.g., by distinguishing between the even and odd

d cases, and using the addition formula for combinatorial coefficients for the latter case) that

this assignment takes the form

(MM)
Piyar1 (Tes

Znpttd=1 p —t+d—1 d p —t+d—1
Z ) + (dp, — 5) oy

i=np+dp—d—ng, (zt=1) ! nh = dn = g,y (2

2np,—t+d—1
2np, —t+d—1 d 2np, —t+d—1
< g-lmtra, d A
< > SRET! )| e

t d
. _ [ n,—5+35—3
z:nhfnmt_‘rl(wt d) 2 2 2

|$t7d o2np,—t+d—1)

Top1 - Topr, 2np +d) = 27
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where the inequality follows from the fact that for any pair of integers m and ¢, 0 <1 < m, we

have <m> < ( " ) Thus, using (A.3) with r =n +d —¢ — 1, we obtain
i |m/2]

MM _ MM _
p el gz, 2+ d) < pI (@l n)

N 42(2nht+d1)< 2y —t+d—1 >
[nn =5+ 5 — 3]

. d (o _sia_n[n—t+d
< ptl\ﬁw)(ﬂﬂtﬂlxt d’n)+§ 9—(2np—t+d 1)( e )
[ 2=
(MM) t—d d 2
< i S A5
S Py ($t+1|(II ,’I’L)+ 9 7r(n—t+d) ( )

where the last inequality follows from Stirling’s formula. Therefore, an upper bound on the loss

in (A.2) is given by

d 2
Lyviv (z ; pt+d+1 (@pr1l2’ Ympgr - w200 + d) + N 7m—t+d)

Now, a key observation in the derivation of (A.1) is that

MM _ MM
p§+d+)1 (zeg1|2 Yy o g, 20p + d) > p§+d+)1 (z41]2", 2np, + d)

since additional occurrences of x;11 cannot decrease the probability assigned to it. Hence, (A.6)

takes the form

n—1 n+d
Lum(z") < D[ pt+d+1 (z441]|2", 20 + d)] Z
=0 j—d+

d " dx

< EO,Znh+d(xn) + (A.7)

Var o Vz
where EO,th+d($n) denotes the loss incurred on z” by the minimax scheme without de-
lay, but with a horizon 2nj, + d. Clearly, Lon,+a(z") < 2072nh+d(x”ad+2nh*”), where a
denotes the most frequent symbol in ™ and o™ denotes m copies of a. Recalling that
B(z™) = min(ng(z"),n1(z™)), for any non-negative integer m we have B(z") = B(z"a™).
Thus, by Lemma 1,

Lo,on, +a(z") < B(z") + Ro(d + 2ny)

and since the (non-delayed) minimax regret for horizon m, Rg(m), is non-decreasing with
m, (A.7) implies

- 2

Lan(z™) < B(z™) + Ro(n+d+1) + d,/?” .
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The claimed bound (A.1) follows from the asymptotic expansion of the explicit expression (8)
for Ry(n).

Next, we show that for any sufficiently large n, the upper bound (A.1) is attained by the
sequence y" = (1"0")™, composed of m copies of a block formed by h ones followed by h zeroes,
where h and m satisfy n = 2hm, h > d, and will otherwise be specified later. To this end, we
will compare the performances of the predictor used in delayed and non-delayed mode. After
observing y'~¢, the predicted value is compared to y;; in the delayed case, and to y;_q41 in
the non-delayed case. The key observation is that y;y1 = yi—q41 for all ¢ > d, except for those
values of ¢ that take the form ¢ = kh+1, for any positive integer k£ and any integer 7 in the range
0 <i < d. Now, for odd k, the delayed predictor observes y;+; = 0, whereas the non-delayed
one would have observed the symbol y;_411 = 1, which was assigned a larger probability, as
it was the most frequently observed symbol at that point. In contrast, for even k, the delayed
predictor yields a smaller loss, as it observes the (most frequent) symbol ;11 = 1, whereas the
non-delayed one would have observed y;_g,1 = 0. It is easy to see that the difference AL(y")

between the losses incurred by the delayed and the non-delayed predictor satisfies

,_.
|
-

m—1d

AL(y") > vy (1) — drigyn(0 Zi D = griiynn(0)]  (AS)
7j=1 =0

7=0

@
I
=)

where 7 (i, 7) = (27 + 1)h +d — i — 1. Notice that the discrepancy between the left-hand and
right-hand sides of (A.8) is due to the fact that the loss difference for the first d + 1 symbols in

the sequence, which is positive, has not been accounted for. Since n is even, by (A.3) we have

- (+Dh-1 L)
qr(i7j)7n(1)_QT(i,j),n(O) = 2*1“(2,]) Z ( , >

s=jh+d—i $

S (h _ d+i)2—r(i,j) (ﬂ:ﬁaji@) . (AQ)

For positive integers u and v, it can readily be verified that

gu (") <o-twrn (vt
v v+1

provided that u > 2v 4+ 1. Thus, since h > d, (A.9) implies

(2j+1)h>

r(ij)mn (1) = @r(i ) (0) > (b — d)2~ i+ Dh ( M
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Similarly, it can be shown that

_osp [ 25h
qr(i,j)fa,n(l) - QT(i,j)fa,n(O) < d2 2h (]h ) :

Hence, (A.8) takes the form
— (2§ + 1)k 2jh
AL(y") > d(h — dz ~(2j+1)h (’f)> d22223"<J> (A.10)
7ih j=1 7ih

Now, for positive integers u and v, the Gaussian approximation of the binomial coefficients

states (see, e.g., [21, Chapter 9])

( 2u ) _ ﬁe—vz/u[l + 0(1/vu)]

—v

for all v < y/u. Thus, for all j > h/4, we have

. ~ e—h/(4)
9—(2j+1)h <(2J;1)h> \/W [1+0(1//jh)]. (A.11)

Further assuming, e.g., j > h?/4, it is easy to see that (A.11) implies

_@j+1)n [ (25 +Dh 1—0(1/h)
2 ( i > BV (A.12)

In addition, the negative terms in the right-hand side of (A.10) can be upper-bounded using

Stirling’s approximation as in (A.5), which together with (A.12) implies

. _1-0(/h) =1 &2 A1
BEWY) > =TT 2 F T e 2 Vi
_ 2
> %[I—O(l/h)][\ﬁm—g]—%\/—m. (A.13)

Choosing h to be a function of n such that h — oo when n — oo, and h = o(y/m) (so that

h = o(n'/3)), it follows that
. 2
ALy") > dy = — o(V).

Since Rl(\%%v[(y”) = Ry(n) + AL(y"), we obtain

R ") > (4 2)) /- ~ o)

as claimed.
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Exponential weighting. Next, we consider the exponential weighting algorithm in the context
of constant experts, and we start by showing that for any sequence z™, the regret R](Ed\gv@") of
the corresponding binary predictor applied to a delayed sequence satisfies the upper bound

(14 2d)nln2

R, (a") < =

+0(1) (A.14)

for a suitable choice of the weighting parameter . We then demonstrate a sequence that attains
this upper bound asymptotically.

Recall that for given 7, the probability assigned to 1 by the exponential weighting predictor
(for constant experts) after observing z! is given by

1
(EW) ty —
p (1|$ ) 1 + e—mo(1]z")

where, for a € {0,1}, d(alz?) = na(xt) —ni1_q(z?). As in the case of the minimax algorithm, let
AL(z") denote the difference between the losses incurred by the delayed and the non-delayed

predictor on ™. We have

—_

n—

AL(") = Y [pW (@a]at) = pW (@]t =)].
t=0

d

Clearly, if we append d copies of ;1 to z'~%, we have

PV (@i |2y - mig) > pW (@ga]at).
Therefore,
_ n—1
AL(z") < P (@ 2™y miga) = W) (@2t
t=0
n—1 n—1
1 1 A
= 2 [1 n o 1(0(e1 |zt—)+d) - 1+ en5($t+1$t_d):| = t:ZO Ay (A15)
It is easy to verify that A, is maximum for §(z,y1|z'~¢) = —d/2. Consequently,
_ dn/2 _
AL(z") < % (A.16)

Now, for sufficiently small  and any constant K > %, we have

2 92
ed’?/2<1+ﬂ+K1d :
= 2
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(E.g., for K = e — 2 it suffices to assume 1 < 2/d.) Thus, for n in that range, (A.16) further

implies

AL(z"™) <n <%1 + KnTQd?> . (A.17)
Since the regret incurred by a (non-delayed) application of the exponential weighting predictor
on a sequence of length n is upper-bounded by (nn/8) + (In2)/n (see, e.g., [19]), for delayed
prediction (A.17) yields the bound
m 2 ndn | Kp'dn
- 8 n 4 8
Finally, (A.14) follows from choosing, for a given horizon,
81n2

(2d + 1)n
which, for sufficiently large n, indeed satisfies the above condition on the range of 7. Notice that
if d is not known to the predictor, which chooses to use the same value of  that is optimum
for the non-delayed case (namely, n = 1/8(In2)/n), the asymptotic upper bound on the regret
is (d+1)y/n(In2)/2. Thus, the performance is still better than with the minimax scheme of [3]
for any d > 0.

Finally, we show that for any value of  and any sufficiently large n, there exists a sequence
y" that attains the upper bound (A.14). The sequence takes the form y” = (170")™0%, where
the integers h, m, and z, depend on 7, satisfy n = 2hm + z, and will otherwise be specified
later. Notice that this sequence differs from the one used for the minimax algorithm in that it
contains a tail composed of z zeroes, following the m blocks of the form 1”0". The reason for
this tail is that, otherwise, a weighting parameter value n = 0 would trivially suffice to approach
the Bayes response with zero regret.

Studying the evolution of the value of §(1]y’) across the sequence, and assuming h >> d,
it can readily be verified that the loss Lrw(y") incurred on y" by the delayed predictor under

consideration satisfies

d hd-1 h | hed
Lrw(y Z + > Y Y ——
11+em o Ltem fpltem g lte
- — . A.18
2 ;1+em Z 1+em (A.-18)
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In (A.18), the term that appears m times corresponds to a typical block of the form 170", the
difference that follows is a correction term for the first d symbols in the sequence, for which
the behavior differs from the typical block, and the last summation corresponds to the all-zero
tail. After some algebraic manipulation, (A.18) takes the form

d

; 1—ef 11— ki) m(l — e—)
R(Edv)v(y") = Lpw(y") —mh= mz (
i—1

Tren " Txend| T 3t emh

z—d—1 1

+ -;d o (A.19)

d &1
5_;1—’—6"7:

Notice that we can assume 7 to be a vanishing function of n, for otherwise, taking h = d+1

+

and z = 0, it is easy to see that the normalized regret does not even vanish. Moreover, given 7,
we will choose h such that when n — oo, h — oo but hn vanishes. Thus, for sufficiently large
n, we can use the Taylor expansion of the function (1 —e*)/(14 e”) to further lower-bound the

right-hand side of (A.19), obtaining

h—1i) n3(h—i)3 N mnh mn>h3 /Zdl dx
2 24

d .
R (um i B
w(") > m; 2 " 1 48 4 1tew
nn—=z)(2d+1) 1

_ A + 24 ey = Lin 4 e 0Dy Z o). (A20)
n Ui

Now, choose z = ' Inn~!. After straightforward manipulations, (A.20) yields

2d +1 In2 1

The result follows from minimizing the right-hand side of (A.21) with respect to 7. Again, if

the given 7 is the optimal value for non-delayed prediction, the attained asymptotic bound on

the regret is (d + 1)y/n(In2)/2.

B Appendix: Proof of Lemma 2

Let s(j) denote the j-tuple corresponding to a refined state s € S. We have

T—1
i, (") = P (") = Y pen—rai(s) |min< Y wg YD puncray (uals(4))4(b, a)
beB
d=0

sES = ucAd a€A

T7—1
— prn—r+l (S) [i%%l {Z wq Z prn(‘r,d) (ua|s)€(b, a)}] (B.22)
d

SES =0 ucAd a€A
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where n(7,d) S p—7+d+1. Let b(s) denote the minimizing action for s € S in the second

minimum in the right-hand side of (B.22). It follows that

an, (") =AY (@) <D pan-rra(s) [dez > [Pyncra (uals( ))—pxn(r,@(uaIS)lf(b(S),a)]

s€S = ucAd acA

< Lpax Z Wq Z Pgn— "'+1 Z |p;pn(‘r,d) (U|S(])) — Pgn(r.d) (U|S)|
d=0 sES ueAdH
= {max Z Wq me" T'H Z Z [pCE" (UZ|S(_])) —pmn(1)2,’|8)]
= SES veAd+1 z€AT—1—d
< laxW prn—m () Y Ipan(yls(5)) — pan (yls)] . (B.23)
seS yEAT

The lemma follows from Pinsker’s inequality [18, Chapter 3, Problem 17].
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