

Evaluation of the Zeus MAS Framework

Steven P. Fonseca, Martin L. Griss, Reed Letsinger
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-154
June 20th , 2001*

E-mail: fonseca@cse.ucsc.edu, martin_griss@hp.com, reed_letsinger@hp.com

e-commerce,
multi-agent
systems, Zeus

Advances in agent technology depend on improving frameworks
for building and supporting agent societies. Experience
suggests that first generation multi-agent systems fall short of
providing a rapid prototyping development environment for the
systematic construction and deployment of agent-oriented
applications. While at least sixty [1] different agent systems
have been implemented, few efforts have been made to use
them as case studies for building second-generation multi-agent
systems. We propose a refactoring of both architecture and
implementation across multiple well-know open-source agent
frameworks to produce a new multi-agent system (MAS)
framework called MAS2. The first step in building MAS2 is the
evaluation of several agent frameworks. The focus of this paper
is to collect reusable abstractions from the Zeus MAS that
support plug-and-play agent infrastructure and behavior,
agent interoperability, building a generic MAS core, and a MAS
interface allowing domain specific extensions. The Zeus MAS
framework was critiqued by implementing an e-commerce
agent society.

* Internal Accession Date Only Approved for External Publication
To be published and presented in the Second International Workshop in Software Agents and
Workflows for Systems Interoperability
 Copyright Hewlett-Packard Company 2001

1

Evaluation of the Zeus MAS Framework

Steven P Fonseca Martin L. Griss Reed Letsinger
University of California, Santa Cruz Hewlett-Packard Labs Hewlett-Packard Labs
fonseca@cse.ucsc.edu martin_griss@hp.com reed_letsinger@hp.com

Abstract

Advances in agent technology depend on improving
frameworks for building and supporting agent societies.
Experience suggests that first generation multi-agent
systems fall short of providing a rapid prototyping
development environment for the systematic construction
and deployment of agent-oriented applications. While at
least sixty[1] different agent systems have been
implemented, few efforts have been made to use them as
case studies for building second-generation multi-agent
systems. We propose a refactoring of both architecture
and implementation across multiple well-known open-
source agent frameworks to produce a new multi-agent
system (MAS) framework called MAS2. The first step in
building MAS2 is the evaluation of several agent
frameworks. The focus of this paper is to collect reusable
abstractions from the Zeus MAS that support plug-and-
play agent infrastructure and behavior, agent
interoperability, building a generic MAS core, and a MAS
interface allowing domain specific extensions. The Zeus
MAS framework was critiqued by implementing an e-
commerce agent society.

1. Introduction
In evaluating the Zeus MAS, it is first necessary to

identify the development issues of building an object-
oriented framework, define a compelling problem that will
produce insight into the agent domain, and introduce the
core capabilities of the Zeus MAS. Included in this
introduction are brief explanations for Zeus classes that
are referred to in the subsequent sections entitled agent
behavior, agent infrastructure, MAS platform
infrastructure, and the FIPA standard.

1.1. Agent frameworks

A MAS written in Java is just an object-oriented
application framework for the agent domain. The
challenges of developing and programming with a multi-
agent system are identical to those for building and using
an object-oriented application framework. The most

significant factor effecting the development of agent
systems today is not understanding the agent domain and
subsequently not having reusable abstractions to guide
development. Other challenges associated with
frameworks are the steep learning curve faced by
application programmers, lack of explicit control flow,
difficulty removing code defects, and integration with
other frameworks, legacy systems, and other components
[2]. Understanding these challenges helps establish the
context of evaluating multi-agent systems and developing
MAS2. Some of the very issues listed above were
encountered while programming with Zeus. The recurring
theme when building the e-commerce agent society was
that a successful MAS must strictly adhere to object-
oriented and framework design principles while also
employing current state-of-the-art practices from the
artificial intelligence community.

During the evolution of a framework, multiple design
and implementation iterations are required to refine
domain knowledge and make corresponding changes to
the framework [2].

1.2. An e-commerce scenario

Serving as motivation for choosing the scenario to
evaluate Zeus is the belief that software agents and mobile
appliances are technologies that have the potential to
change the way people purchase products by connecting
the physical presence of stores with their Internet
representation and delegating consumer tasks to intelligent
pieces of autonomous software. The archetypical example
is the shopping mall of the future; shoppers use personal
digital assistants (PDA) to view web pages (while at the
store) that extend store services, mall-wide services are
also available through the PDA, and intelligent agents
negotiate for desired products based on shopper
preferences. A lightweight version of this scenario was
implemented, however, the mobile appliance technology
and infrastructure elements of the scenario are not
discussed herein. Only the negotiation and mall facilities
portions of the e-commerce scenario are shared because
Zeus was evaluated by focusing on this code and its API.

In the e-commerce scenario, agents purchase products
by participating in an English auction. This protocol is
composed of four roles including the auctioneer, seller,

2

bidder, and facilitator. An agent in the e-commerce
society assumes a single role. Note also that message
types (inform, subscribe, etc.) passed between agents are
taken from the FIPA Communicative Act Library
Specification [3].

Figure 1: AUML English auction sequence diagram.

The general conversation flow beings when the

auctioneer registers with the facilitator to inform the
society that it can hold auctions. Then sellers can
subscribe to the facilitator for a list of available
auctioneers. The facilitator sends the names of available
auctioneers to the seller who can then request that a
product be auctioned. In response to this request, the
auctioneer informs the facilitator that it is selling a
product. This initiates the auction. Agents (future
bidders) wishing to purchase this product consult the
facilitator who informs them of auctions that are currently
open. The auctioneer waits for bidder agents to register.
Once registered, bids can be placed. Whenever a new
high bid is received, the auctioneer informs all registered
bidder agents. Bidding continues until a fixed time has
passed. At the close of the auction, the auctioneer informs
the agents who has won. Though the sequence diagram
does not show the payment conversation, the winning
bidder and seller engage in this message exchange.

1.3. Zeus MAS primer

British Telecom labs developed the Zeus MAS
framework. The MAS development environment consists
of an API, code generator, agent and society monitoring
tools, programming documentation, and three case studies
(including a sample fruit market). The platform is written
in Java and is open-source. The Zeus version evaluated
was 1.03b, released in the summer of 2000.

A complete Zeus agent has a coordination engine
enabling functional behavior organized around
conversation protocols, a planner that schedules sub-goal

resolution, an engine for rule-based behavior, and
databases to manage resources, abilities, relationships
between agents, tasks, and protocols. This evaluation of
Zeus focuses on the coordination engine, protocols and
strategies, abilities (more commonly called services), and
infrastructure agents. These agents include the visualizer
for monitoring an agent society, the nameserver for
address resolution, and a facilitator that matches service
providers with service requesters. What follows is a
description of the core classes for implementing agent
behavior and communication.

Agents in Zeus interact via message exchanges. One
mechanism for specifying agent behavior in Zeus is to
associate messages having certain values to executable
pieces of code. All agents participating in a Zeus society
have a message handling class that is responsible for
retrieving incoming messages and dynamically executing
code. Rules are registered with this message handling
class when it is instantiated and throughout the agent’s
lifetime. Message rules explicitly link the messages with
the methods that should be invoked. The rules that are
added when the message handling class is instantiated
provide most of the behavior that is required of all agents
interacting in a Zeus society.

Zeus agents pass string-based messages to
communicate. When sending a message, a new
Performative object is instantiated and its fields are set
(including message type, sender, receiver, etc.). This
object is placed in the outgoing queue of the MailBox. A
PostMan thread continually retrieves messages from the
queue and is responsible for their transmission. The
PostMan resolves the address (querying the AddressBook)
of the receiving agent and opens a socket connection
using the correct host name and port number. The
receiving agent’s Server creates a Connection object for
the incoming message. The Connection object translates
the byte stream into a performative that is placed in the
incoming message queue. The MsgHandler routes
Performatives to their correct execution objects.

A coordination engine is provided to execute
protocols. A protocol is a defined series of message
exchanges and accompanying processing (behavior).
Agent behavior is broken down into nodes that are
executed by the engine.

2. Agent behavior
The Zeus MAS provides some support for constructing

agents but falls far short of providing a comprehensive
solution for composing agents from reusable behaviors.
Suggestions for improving the modularity of Zeus are
provided and the limitations of not having meta-
negotiation are discussed.

3

2.1. Societal behavior
It is valuable for agents built from multi-agent system

platforms to recognize required society messages and
have the ability to process them. Zeus provides this agent
behavior. While helping promote reuse, however, to fully
leverage code it must also be adaptable. The problem
with the Zeus architecture is that the agent behavior
(registration with the Visualizer, etc.) resides almost
completely in the message handling class. Anytime a new
agent is created, the same message handling class is
instantiated. While this ensures that all agents in the
society are provided with the same society required
capabilities, it does not give programmers the ability to
easily redefine societal behavior.

Practicing object-orientation requires that objects have
clear and intuitive functionality. Objects are composed of
cohesive attributes and methods that provide a focused
and related set of capabilities [4]. Based on these
principles, the message handling class should not be
responsible for containing methods to process the required
Zeus societal messages. Instead, it can be argued that the
responsibilities of the message handler are to receive
incoming messages and forward them to appropriate
helper objects for further processing. This architecture
provides a more clean and clear interface between
receiving a message and subsequent processing of that
message.

The flexibility gained by uncoupling message
receiving from agent behavior makes the Zeus multi-agent
platform more flexible and extendable. This allows multi-
agent society developers to specify the rules or
conventions that agents must follow. Previously, a Zeus
agent society was defined by the behavior in the message
handler. Now one can view the Zeus agent society as all
the classes that are reused to support agent interaction.
These classes enable agent interaction but do not dictate
how that interaction takes place.

At the agent level, separation of message receiving
from behavior enables agents to dynamically switch the
societal conventions they follow. While the benefits of
this are not apparent in considering a single society,
consider the electronic commerce domain where
businesses are likely to have their own interaction
conventions. Agents interacting with multiple businesses
may need the ability to switch the standard set of rules that
define their behavior. Similarly, in the case of mobile
agents, societal conventions may depend on the current
host computer.

Society classes can be used to specify and provide the
fundamental abilities agents need to posses. The Zeus
platform could contain classes that provide
implementations for standard models of interaction. In
this scenario, a catalog of multi-agent society patterns and
their implementation classes are provided for Zeus
developers. It can be imagined that these society classes

could be adapted using inheritance or by configuring
society objects using an API. Through the appropriate use
of Java interfaces, the Zeus platform could also support
customized society objects developed by users when the
built-in society objects are unsatisfactory. Zeus
developers could then share these classes in much the
same way as classes (API’s) are shared in the Java
community.

In addition to improving the flexibility of the Zeus
platform, encapsulating message types and corresponding
processing methods into society classes centralizes the
code that partially defines agent behavior. Developers
know where to search for society level functionality. In
the current Zeus platform it is not intuitive to look in the
message handling class for society level functionality.
Further, the MailBox and Engine also contain society
required agent behavior and thus force developers to
search multiple classes. Searching multiple classes is not
prohibitive when all classes are conceptually well
connected to each other and to the behavior they provide.
This principle, however, is violated by the MailBox object
because when instantiated it registers its agent with the
nameserver.

Centralization of society functionality using a single
class or cluster of cohesive classes also makes
documentation and maintenance easier.

2.2. Implicit protocol agreement

In both the FruitMarket case study and our
implementation of an English auction, the negotiation
protocol is specified at compile time. Compatible
protocols are loaded into the participating agents protocol
database and are used as the only coordinated
communication mechanism for interaction in the society.
A single communication method is sufficient and
favorable when demonstrating the functionality of a
protocol. A single protocol is too restrictive for
marketplaces composed of heterogeneous merchants and
consumers. It is anticipated that marketplace participants
will engage in conversations with different conventions.
This requires the ability to understand multiple protocols,
agree on a negotiation protocol, and switch between
protocols at runtime.

The Zeus MAS partially supports the use of multiple
protocols. It is possible to store multiple protocols in an
agent’s protocol database, however, it is not possible to
easily select the protocol that should be active during a
negotiation. For example, there is no selection process for
loading the negotiation protocol that is used when trying
to sell an item. Zeus is hard-coded to retrieve the first
protocol stored in the protocol database. Furthermore,
there is no built-in support for meta-negotiation. A
standardized way for agents to agree on the protocols to

4

use during the negotiation process is required for all but
the simplest of agent societies.

2.3. Protocol and strategy parameterization

While implementing an English auction, it was
recognized that several variations of this common
protocol could be created with minimal code changes.
Rather than create a suite of nearly identical protocols, a
better solution is to pass a configuration object that
specifies the flexibility points and therefore characteristics
of the auction. Some constraints that could be configured
include the minimum bid, minimum bid increment, and
the elapsed time required before a bidder is selected as the
winner. One could also imagine other variations of an
English auction that are not sufficiently different to
warrant their own name.

2.4. Agent and domain API’s

Two primary problems were encountered while
programming with the Zeus API. First, no interfaces were
defined for the subsystems for which an agent is
composed. Second, The API provided methods at an
abstraction level that was too low.

While high granularity code promotes more flexible
programming, as was found out using Zeus, it can also
overly burden programmers by requiring them to manage
too many details. A multi-level API is a possible solution.
The low level API could be composed of classes that,
when used in combination would form a second level API
supporting programming concepts from the agent domain
such as achieving goals, sending messages, or changing
state. The domain level API would be at the highest level.
In the case of e-commerce, concepts such as buying and
selling would be directly supported. Unfortunately, the
Zeus API is composed mostly of level-one concepts,
augmented with a couple of e-commerce domain concepts.
If done correctly, these domain concepts are supported by
lower-level API calls. This is not the case in Zeus because
concepts such as buy and sell are not built from general
behavior methods from a lower abstraction level.

Zeus agents are composed of subsystems that are tied
together using a container (AgentContext) object. By
programming convention, a reference to the container
object is generally available. The AgentContext provides
basic access methods for retrieving references to the
subsystem objects (planner, rule engine, etc). Passing
subsystem references results in poor encapsulation.
Although building an agent from components that
intuitively and logically split functionality is the first step
toward reusable agent behavior, interfaces to these
subsystems must exist and explicit links to the objects
must also be removed. Interfaces establish pseudo
standards making it possible for the agent to be composed
of components from multiple vendors. Zeus provides

implementations for its subsystems and provides no
mechanism for leveraging work by other developers in the
agent community. A notable example of composing an
agent from multiple developers is the JADE and FIPAOS
[5,6]platforms. They both provide the means to use JESS,
a third-party open-source rule engine.

3. Agent infrastructure
The topic of agent infrastructure is meant to include

the agents provided by Zeus to facilitate interaction in the
society and also the core components from which all Zeus
agents are built.

3.1. Behavior engine

The coordination engine is a useful abstraction that
could benefit from refactoring. The engine paradigm
successfully separates agent specific functionality into
behavior elements (nodes), executes behavior using an
interleaving scheduler, supports time limited behavior,
and provides event monitoring at multiple levels of
abstraction. A weakness of the engine is the lack of
generality of its methods. Also causing difficulties while
implementing the English auction was engine-based
message retrieval.

 For new and continuing dialogues, the engine
provides methods for sending and receiving messages to
alleviate programmers from writing tedious and redundant
code. The problem is that incoming messages are
converted into an internal data structure. Information
contained in the message is lost during this translation.
For example, the replyWith and envelope fields of a
message are not transferred when using the
continue_dialogue method provided by the Zeus
coordination engine. A central message storing
mechanism is a useful abstraction, however, this facility
should only store messages and forward copies to their
owner when requested. Subsequent processing of the
message remains the responsibility of the message owner.

Buy, sell, and achieve methods are provided by the
Zeus coordination engine. The code for these methods is
essentially the same, the only difference being the type of
graph that is run. The graph type is hard-coded into the
method when it should be passed as a parameter. This
lack of generality required a Zeus source code change to
implement the English auction. Buy and sell are concepts
from the e-commerce domain and not the agent domain.
While it makes sense to support domain specific
extensions to a MAS framework, putting this functionality
in the core MAS classes is inappropriate.

5

3.2. Facilitation
Zeus provides a facilitator agent to serve as a yellow

pages service for other agents in the society. In Zeus,
agent services are called abilities. These abilities are
described using concepts from the active ontology. The
ontology is used by the facilitator to match the attributes
of an ability with requests for that ability. Unfortunately,
the matching service is not sophisticated enough to handle
the IS-A relationship. For example, if a Macintosh (as in
apples) is advertised for sale, the facilitator will not
inform agents wanting to purchase any type of apples of
Macintosh availability. Assuming Macintosh is a sub-
concept of apple, one would intuitively expect a match.

3.3. Content parsing

Zeus provides all agents with a parser for translating
the content field of messages into objects. This parser has
decoding methods to convert the string content field into a
corresponding object. The problem is that the type of
object that is sent in the content field must be known prior
to receiving a message so the corresponding method can
be used for parsing. Because the facilitator and
nameserver were inadequately documented, decoding
messages from them was difficult because it was not easy
to match the string representation of an object to itself.
Furthermore, strings were appended to the beginning of
the content field by the nameserver and facilitator to
further specify the message meaning. This ad hoc content
language is too cryptic.

The poor parsing mechanism in Zeus could be
replaced by using XML as the content language. Given
the document type definition, agents could parse content
information using general code as opposed to using
message specific methods. The string version of the
content field would be readable. Further, since XML is a
popular technology for storing information, programmers
are not burdened with learning yet another language.

3.4. Message transport encapsulation

A flexibility point of possible importance to multi-
agent system platforms is the transport layer for agent
communication. This layer is responsible for transmitting
raw data across the network.
Multi-agent system developers can choose between at
least two transport options when building an extensible
communication subsystem. The MAS can be built such
that one transport mechanism (HTTP, for example) can be

easily compiled with the message subsystem.
Alternatively, the MAS could support runtime selection of
a message transport mechanism (possibly on a message by
message basis). In either case, the interfaces between the
transport layer and the MAS communication subsystem
must be specified. Minimally, this requires an interface for
sending and an interface for receiving messages. It is
advantageous to use adapter classes at these interfaces to
keep classes implementing the transport layer separate
from those classes comprising the MAS communication
infrastructure. This is shown in Figure 2. Consider the
transport mechanism and corresponding adapter classes as
a single software component. A MAS could support plug-
and-play component reuse for message delivery and
translation simply by establishing a fixed interface that
component developers could connect to using adapter
classes. The underlying architecture key is requiring that
no dependencies (coupling) exist between MAS classes
and the transport classes.

Given the need for an interface between the MAS
communication subsystem and the transport mechanism,
interface design must be addressed. First, adapters for
sending messages must translate the recipient name into
their address. Addresses could take the form of a host and
port number (as with TCP/IP Socket) or a URL for
HTTP-based communication. Second, observe that a
single versus multi-transport mechanism has a simpler
interface. With multi-transport systems, agents must
provide the transport mechanism in addition to the
message itself when sending a message. Third, the adapter
should be able to forward incoming messages to other
servicing objects. Figure 3 shows an EDI adapter that
receives an incoming EDI transmission. The adapter has
the ability to pass the data to an EDI handler object or
translate the data into an ACL performative and forward it
to the central ACL performative message handler.

6

 Figure 3: Multi-transport coordination.

Though the Zeus Technical Manual states that it is

“possible to replace the TCP/IP mechanism with a
middleware alternative” [7], it is not a simple endeavor
because interfaces were not defined and there is
prohibitive coupling between classes. A Performative
object is the informal interface to the transport
mechanism. But good design would establish Java
interfaces on the sending and receiving ends of the
transport mechanism to isolate it from the rest of the
agent. Further, an agent does not have the ability to store
addresses that do not follow the host/port convention.
Therefore, coupling exists between the message transport
and address book of the agent.

3.5. Multi-transport support

One can imagine that alternate multi-agent system
deployments would have different transport requirements.
Consider several examples: 1) In the e-commerce domain
it may be desirable to securely transport some messages.
2) HTTP based message exchange might make sense
when Internet-based agent control is desirable. 3) The
message exchange patterns in a multi-agent system could
dictate the appropriateness of transport protocol selection.
If two agents regularly engage in conversation, then it is
more efficient to use a transport layer with dedicated
connections to avoid the setup performance penalty
associated with establishing a connection on a message-
by-message basis. Additionally, a publish-subscribe
transport such as Java JMS could be more appropriate
when conversations require regularly broadcasting
messages to the agent society. 4) The recipient of a
message could dictate the required transport and may not
be another software agent.

It is conceivable that a given domain might benefit
from having multiple transport mechanisms for more
efficient communication. An agent could rely on its

conversation manager to switch transport mechanisms
based on the past message exchanges.

4. MAS platform infrastructure
 To successfully develop agent societies, programmers
must minimally be supported with good documentation
and have the ability to view agent state and interaction. A
third component that a MAS platform infrastructure might
provide, as Zeus does, is a code generation tool to build
agents.

4.1. Monitoring and managing

The Zeus MAS provides GUI-based views for
monitoring the society as a whole and also for individual
agents. An infrastructure agent called the visualizer
controls the society wide viewer. It provides a number of
different graphical representations of interaction including
such things as the number of messages sent between
agents, the type of messages sent by each agent, animated
display of message exchanges, goal resolution, and
strategy graphs. The majority of the views the visualizer
provides are visually appealing but lack utility.
Conversation management facilities are completely
lacking but should be included with any comprehensive
MAS development environment. Of use to programmers
are conversation sequence diagram generation, a tool for
constructing conversations, conversation recognition and
verification, a view of message traffic using filters to
organize their presentation, identification of conversation
roles, ontology usage, agent state, society state, and
tracking conversation context.

While Zeus fails to provide a compelling solution to
society level monitoring and management, it provides a
very well done agent-monitoring interface. All aspects of
agent state are visually represented, incoming and
outgoing messages are available, and the runtime state of
conversations is pictorially represented as a color-coded
graph. The elements of this GUI serve as an excellent
model for viewing agent state and behavior.

4.2. Code generation

While the code generation tool provided by Zeus was
not fully evaluated, for configuring a simple agent with
strategies, protocols, and resources it was more
burdensome than beneficial. For example, the interface is
difficult to use, programmers are required to know in
advance the strategy parameters and legal values, and
adding to the list of known protocols is cumbersome. To
sidestep these problems, XML agent configuration files
were used and a parser was developed to write source
code for initializing agents. Intuition suggests that the
code generation tool may prove more useful when writing
agents that utilize the Zeus rule engine. As with other
portions of Zeus, the code generation tool is conceptually

7

a good idea, however, the current implementation needs
improvement.

4.3. Documentation

Documentation is critical to efficient application
framework programming. It well known that learning a
framework, regardless of domain, is costly and time
consuming [8]. Work on the e-commerce scenario was
inhibited because the Zeus API and source code are
poorly documented. Imagine trying to program with an
API that provides little or no information about classes,
methods, or attributes. The only recourse was studying
sparsely commented source code, which defeated the
purpose of having an API.

Case studies, an application guide, technical manual,
and role-modeling guide supplemented the API
documentation. While this documentation did offer
insights into the Zeus MAS, topics were never covered
fully enough to enable solving significant programming
problems. It was always the case that additional
information, elicited from the source code, was always
required.

5. FIPA standard
At the time Zeus was written, the Foundation for

Intelligent Physical Agents (FIPA) was beginning to
develop specifications for multi-agent system
development, agent-to-agent communication, and domain
specific application of agents. The Zeus communication
subsystem was written to conform to what are presently
the ACL Message Structure and Communicate Act
Library specifications. The infrastructure agents provided
by Zeus speak the FIPA agent communication language
(ACL) and parsing classes are available to decode
messages following the FIPA performative syntax.

After version 1.03b of Zeus was released, FIPA wrote
an Agent Management Specification that, among other
things, defines the legal messages for interfacing with a
FIPA compliant name service and directory facilitator.
The advantage of this, and what was lacking when
developing the English auction, was a standardized and
documented way of interacting with the society support
agents. For example, writing a routine to communicate
with the facilitator required looking at its message
processing code to determine the message format it
expected for service queries. The disadvantage of
following the FIPA standard are the message
inefficiencies paid for not tailoring message interfaces
between agents to the domain. The amount of information
required in a FIPA compliant message does not seem
appropriate for simple domains or simple solutions.

Another concern of FIPA is the process used to
generate its specifications. It is generally understood that
frameworks evolve by applying them to solve problems,

evaluating their weaknesses, adjusting domain models,
and then refactoring the implementation [9]. Solving
“real” problems of importance drives this process. What’s
troubling is that FIPA is generating specifications based
on conceptual design and not from direct experience.
These specifications are used to guide MAS framework
implementations. It seems more appropriate to define
specifications based upon the collective experience of
MAS framework developers as they attempt to solve
problems from their domains of interest.

6. Conclusion
 Construction of next generation MAS frameworks can
benefit from the first round of abstractions elicited from
the multi-agent system domain. British Telecom’s main
contributions are the identification of valuable agent
concepts and component design for executing agent
behavior using a protocol-based paradigm. Most of the
Zeus MAS framework requires refactoring. The lesson is
that multi-agent system design must follow object-
oriented framework design principles if a development
environment that offers significant design and code reuse
is desired.
 Further domain analysis is needed across both the
domain of problems that MAS frameworks attempt to
solve and the current MAS framework solutions.
 The Zeus high-level architecture must be replaced with
a flexible alternative that enables agents to be composed
of subsystems from potentially different developers.
Establishing interfaces among subsystems is a possible
solution.

The success of a multi-agent system platform depends
on the same factors that make any framework successful.
At a minimum, a MAS should provide adequate
documentation, a usable API, monitor and debugging
tools, capture the essential concepts of the domain, and
support points of variability. The struggle to achieve
these design criteria will continue until the multi-agent
system domain is well understood. Until such time, the
iterative and incremental process of refining the domain
model and architecture continues. Successful MAS
implementations will follow.

7. Acknowledgement
Special thanks to team members David Bell, Harry Chen,
Ye Chen, Dick Cowan, Peter Finin, Ed Katz, Thomas
Raffill, and Farrell Wymore.

8. References
[1] www.agentbuilder.com/AgentTools
[2] M. Fayad, D. Schmidt, R. Johnson, Building
Application Frameworks: Object-Oriented Foundations
of Framework Design, John Wiley & Sons, New York,
1999

8

[3] Foundation for Intelligent Physical Agents, “FIPA
Communicative Act Specification”, PC00037E, 2000
[4] G. Booch, Object-Oriented Analysis and Design,
Addison-Wesley, Menlo Park, 1994
[5] F. Bellifemine, G. Caire, T. Trucco, G. Rimassa, “Jade
Programmer’s Guide”, CSELT, 2000
[6] Nortel Networks, “FIPA-OS V1.3.2 Distribution
Notes”, Ontario, 2000
[7] J. Collis, “The Zeus Technical Manual”, British
Telecommunications, BT Labs, 1999

[8] S. Fonseca, “Object-Oriented Application Framework
Documentation”, Master’s thesis, UC Santa Cruz, 2000
[9] K. Czarnecki, U.W. Eisenecker, Generative
Programming, Addison-Wesley, Canada, 2000

