

Interleaved Backtracking in Distributed
Constraint Networks

Youssef Hamadi
Publishing Systems and Solutions Laboratory
HP Laboratories Bristol
HPL-2001-153
June 25th , 2001*

E-mail: yh@hplb.hpl.hp.com

distributed
constraint
satisfaction,
distributed AI,
collaborative
software agents,
search

The adaptation of software technology to distributed
environments is an important challenge today. In this work we
combine parallel and distributed search. By this way we add
the potential speed-up of a parallel exploration in the
processing of distributed problems. This paper extends DIBT, a
distributed search procedure operating in distributed constraint
networks [HBQ98]. The extension is twofold. First the
procedure is updated to face delayed information problems
upcoming in heterogeneous systems. Second, the search is
extended to simultaneously explore independent parts of
a distributed search tree. By this way we introduce
parallelism into distributed search, which brings to
Interleaved Distributed Intelligent BackTracking (IDIBT). Our
results show that on problems with nonuniform search space,
IDIBT allows superlinear speed-up over DIBT.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

Interleaved Backtracking in Distributed Constraint Networks

Youssef Hamadi

Hewlett-Packards Labs

Filton road, Stoke Gi�ord, Bristol BS34 8QZ, United Kingdom

yh@hplb.hpl.hp.com

June 14, 2001

Abstract

The adaptation of software technology to distributed environments is an important challenge today.
In this work we combine parallel and distributed search. By this way we add the potential speed-up of a
parallel exploration in the processing of distributed problems. This paper extends DIBT, a distributed
search procedure operating in distributed constraint networks [HBQ98]. The extension is twofold. First
the procedure is updated to face delayed information problems upcoming in heterogeneous systems.
Second, the search is extended to simultaneously explore independent parts of a distributed search tree.
By this way we introduce parallelism into distributed search, which brings to Interleaved Distributed

Intelligent BackTracking (IDIBT). Our results show that on problems with nonuniform search space,
IDIBT allows superlinear speed-up over DIBT.

Keywords: Distributed Constraint Satisfaction, Distributed AI, Collaborative Software
Agents, Search

1 Introduction

The constraint satisfaction problem (CSP) is a powerful framework for general problem solving. It involves
�nding a solution to a constraint network; i.e., �nding values for problem variables subject to constraints that
are restrictions on which combinations of values are acceptable. This formalism has been extended to tackle
distributed problems. In the distributed constraint satisfaction paradigm (DCSP) a problem is distributed
between autonomous agents which are cooperating to compute a global solution. The raise in application
interoperability combined to the move towards decentralized decision process in complex systems raise the
interest for distributed reasoning. In this work we show how to enhance eÆciency of distributed search.

The basic method to search for solution in a constraint network is depth-�rst backtrack search (DFS)
[GB65], which performs a systematic exploration of the search tree until it �nds an instantiation of values to
variables that satis�es all the constraints. DFS has been extended to parallel-DFS to speed-up the resolution
process [RK93, Bur90]. Interestingly the former showed that under some assumptions, speed-up could be
superlinear.

In this paper we present Interleaved Distributed Intelligent BackTracking an algorithm performing parallel-
DFS in DCSPs. Our algorithm interleaves the exploration of subspaces within each agent. Between distinct
agents parallelism is achieved since they can consider distinct subspaces at the same time. Experiments show
that 1) insoluble problems do not greatly degrade performance over DIBT and 2) superlinear speed-up can
be achieved when the distribution of solution is nonuniform.

In the following, we �rst give a basic de�nition of the CSP/DCSP paradigm, completed by a distinction
between parallel and distributed search. Then, we present DisAO a distributed variable ordering method,
and we describe and analyze IDIBT. Afterwards, we give an experimentation with random DCSPs, followed
by a general conclusion.

1

2 Background

2.1 Constraint satisfaction problems

A binary constraint network involves a set of n variables X = fX1; : : : ; Xng, a set of domains D =
fD1; : : : ; Dng where Di is the �nite set of possible values for variable Xi and C the set of binary con-
straints fCij ; : : :g where Cij is a constraint between i and j. Cij(a; b) = true means that the association
value a for i and b for j is allowed. Asking for the value of Cij(a; b) is called a constraint check. G = (X ; C)
is called the constraint graph associated to the network (X ;D; C).

A solution to a constraint network is an instantiation of the variables such that all the constraints are
satis�ed. The constraint satisfaction problem (CSP) involves �nding a solution in a constraint network.

2.2 Distributed constraint satisfaction

A distributed constraint network (X ;D; C;A) is a constraint network (binary in our case), in which variables
and constraints are distributed among a set fAgent1; : : : ; Agentmg of m autonomous sequential processes
called agents. Each agent Agentk \owns" a subset Ak of the variables in X in such a way that A =
fA1; : : : ; Amg is a partition of X . The domain Di (resp. Dj), the constraint Cij (resp. Cji) belongs to the
agent owning Xi (resp. Xj)

1. In the present work, we limit our attention to the extreme case, where there
are n agents, each only owning one variable, so that A = X . Thus, in the following, Agenti will refer to
the agent owning variable Xi. Of course, the instantiation of a single variable can relate the solution of an
embedded subproblem.

Initially, the graph of acquaintances in the distributed system matches the constraint graph. So, for an
agent Agenti, � is the set of its acquaintances, namely the set of all the agents Agentj such that Xj shares
a constraint with Xi. The distributed CSP (DCSP) involves �nding a solution in a distributed constraint
network.

2.3 Communication model

For a DCSP, we assume the following communication model [YH96]. Agents communicate by sending
messages. An agent can send messages to other agents if and only if it knows their address in the network.
The delay in delivering messages is �nite. For the transmission between any pair of agents, messages are
received in the order in which they are sent. Agents use the following primitives to achieve message passing
operations:

� sendMsg(dest;\m") sends message m to the agents in dest.

� getMsg() returns the �rst unread message available.

2.4 Distributed v Parallel Search

Parallel backtrack search is used to speed-up the resolution process [RK93, Kor81]. Distributed backtrack
search faces a situation where the whole problem is not fully accessible; resolution is enforced by collaboration
between subproblems.

Both framework use several processing units. In parallel search, N processors concurrently perform
backtracking in disjoint parts of a state-space tree. In distributed search, distinct subproblems are spread
on several processing units and backtracking is performed by the way of collaboration.

Part a) of �gure 1 presents an example of parallel exploration. Here, the problem is duplicated on two
processors P0 and P1. P0 is in charge of the subspace characterized by X0 = a, P1 explores the remaining
space. During the computation, message passing is useless. However, since a processor can exhaust its task
before another (good heuristic functions, �ltering, . . .), dynamic load balancing is used [RK93]. Usually, an
idle unit asks a busy one for a part of its remaining exploration task.

1We suppose that the constraint network is such that (X ; C) is a symmetric graph.

2

X2 X3

X4

X1
A0

A1 A2

A3

X1

S S S S
(a)

(b)

X2

X3

X4

P1P0

Figure 1: Tree searches: (a) parallel search, (b) distributed search

Part b) of the �gure presents a distribution of this 4-variables problem between four autonomous agents.
Here, state-space exploration uses local resolution for each subproblem with negotiation on the shared con-
straints.

In the following we show how to introduce the eÆciency of parallel search in any distributed exploration.

3 Interleaved Distributed Intelligent BackTracking

We present here IDIBT as a generalization of DIBT. IDIBT mixes parallel and distributed search. The
reader can report to [Ham99b] for details on DIBT.

DIBT realizes a DFS between the agents of a distributed CSP. DFS is a general complete resolution
technique widely used for its storage eÆciency. Given a variable and value ordering, it generates successive
instantiations of the problem variables. It tries to extend a partial instantiation by taking the next variable
in the ordering and by assigning it a value consistent with previously assigned variables. If no value can be
found for the considered variable, the algorithm backtracks. In the basic DFS scheme, it goes back to the
previous variable in the ordering and changes its value. In some re�ned backtracking schemes, the algorithm
jumps back to the origin of the failure.

Our framework is totally asynchronous but we need an ordering between related agents to apply the
backtracking scheme which ensures completeness. In the following we present our distributed ordering
method followed by the IDIBT search process.

3.1 Distributed Agent Ordering

The practical complexity of a search process is highly dependent on user's heuristic choices such as value/variable
ordering. Usually these heuristics take advantage of domain-dependent knowledges. Each agent can use par-
ticular heuristics in the exploration of its subproblem. But in the DCSP, agents must collaborate to use
an eÆcient ordering in the distributed search process. We present here DisAO, a generic method for a dis-
tributed computation of any static agent ordering. With this algorithm, agents cooperatively build a global
ordering between the subproblems.

3.1.1 Algorithm

In our system, each agent locally computes its position in the ordering according to the chosen heuristic.
Concretely, each agent determines the sets �+ and ��, respectively children and parent acquaintances, w.r.t.
an evaluation function f and a comparison operator op which totally de�ne the heuristic chosen. This is done

3

in the lines 1 to 2 of Algorithm 1. Notice that the evaluation function f can involve some communication
between the agents. To avoid a complex communication behavior, it is better to use heuristics for which the
associated function f involves only local communications between neighbor agents.

Algorithm 1: Distributed variable ordering
begin

% � split;
1 �+ ;; �� ;;

for each Agentj 2 � do

if (f(Agentj) op f(self)) then �+ �+ [fAgentjg;
2 else �� �� [fAgentjg;

% �� ordering;
3 max 0;

for (i = 0; i < j�+j; i++) do
m getMsg();
if (m = value:v; from:j) then

if (max < v) then max v;

max ++;
sendMsg(��, \value:max; from:self");
sendMsg(�+, \position:max; from:self");
for (i = 0; i < j��j; i++) do

m getMsg();
if (m = position:p; from:j) then Level[j] p;

Order �� according to Level[] ;
4 Extend �� ;

end

After that, agents know their children (�+) and parents (��) acquaintances. During the search, they
will send instantiation value to children, and in case of dead-end, they will backtrack to the �rst agent in
��. So, we need a total ordering on ��. This is done in the second part of Algorithm 1 (lines 3 to 4).
Agents without children state that they are at level one, and they communicate this information to their
acquaintances. Other agents take the maximum level value received from children, add one to this value,
and send this information to their acquaintances. Now, with this new environmental information, each agent
rearranges (total order) the agents in its local �� set by increasing level. Ties are broken with agent tags.
Finally, for �tting each total order ��, the constraint graph is extended with zero or more additional edges
(lines 4). These new edges are tautological constraints. Their purpose is the enforcement of completeness
by local search space initialization in the forward exploration phases (see section 3.3). We do not present
details about this computation here. In summary, each agent communicates its ordered �� set to its parents.
These agents can locally modify their sets by adding agents lower (resp. higher) in their �� (resp. �+).
This process is repeated until stabilization; i.e., no more � modi�cation.

Figure 2 gives an illustration of this distributed processing for the max-degree variable ordering heuristic.
On the left side of the �gure a constraint graph is represented. For achieving the max-degree heuristic,
Algorithm 1 must be called by each agent with the function f(Agenti) = j�ij (where �i is the set of
acquaintances of Agenti) and the comparison operator op =

0<0. In case of ties, this operator can break them
with agent tags.

Once Algorithm 1 has been applied, the static variable ordering obtained is the one presented on the
right side of Fig. 2. Arrows follow the ordering relation, which represents the instantiation transmission
order of the search procedure. The link between Agent4 and Agent3 comes from the interconnection of
Agent7's parents. Agent7 will go back to X3 then to X4 if Agent3 has no remaining solution. During
forward exploration, a change in X4 will be reported to X3 and to X7. These agents will then get back their
whole search space.

3.1.2 Analysis

In the worst case, w.r.t. a fully connected network with n agents, the split of � uses O(n). The exchange
of value among the path of n agents use O(n2) messages; i.e., level one agent sends n� 1 messages, level 2
agent n � 2 and so on. These messages can overlap, this bring O(n) local operations for performing these

4

X2

X3

X4

X6

X1

X5

X7

DCSP:

X7

X1

X2

X4 X5

X2

X1

X2

X4

X2

X6

level 2

level 3

level 4

X3

max−degree ordering:

level 1

Figure 2: Distributed variable ordering

transmissions. The transmission of position messages is similar but from the top to the bottom. The
extension of the ordering in the hierarchy adds no link but requires O(n2) message to exchange �� sets.
According to that, DisAO uses O(n) local operations and O(n2) messages in the worst case.

Property 3.1 ()
8Ai, if 9Aj ; Ak such that Aj ! Ai and Ak ! Ai, then 9Aj ! Ak or 9Ak ! Aj .

We have Aj ! A1; Ai and Ak ! A2; Ai with A1 2 ��(Ai) and A2 2 ��(Ai). By de�nition we have
f(A1)opf(A2) or f(A2)opf(A1) then by �� extension we have A2 ! A1 or A1 ! A2. We can follow the
previous reasoning by considering Ai = A1 or Ai = A2. In this proof, the extension is \complete", that
mean that if arcs already exist, it is necessary to add them.

Property 3.2 ()
For a problem P = (X ;D; C;A), if (X;C) is connected, the directed graph computed with DisAO has an
unique agent such that �� = ;.

The proof is straight forward, if we consider 3.1. In a DisAO ordering, there is a unique source and the
hierarchy is made of subproblems (involving several agents) organized in a global tree.

Finally, we can remark that in the resulting ordering, at a particular level, unconnected agents are
independent. Connected ones are linked by tautological constraints. This means that their information
will just initialize the search space without loosing current instantiation. Hence, in each level, agents can
perform parallel computations at the same time. This observation will be important when we will consider
the complexity of distributed search.

3.2 IDIBT: Distributed and Parallel search

To add parallel search in our distributed framework, we must divide a search space in independent parts. In
each part a distributed backtrack search will take place. In the system, we will have two kind of agent with
distinct behaviors.

� a Source agent, which will partition its search space in several subspaces called Context

� the remaining agents which will try to instantiate in each context.

For illustration purpose, consider the �gure 3. Here the four-variables problem of �gure 1 is presented for
exploration between four agents using two resolution context. The source agent A0 will use value a in the
�rst context and value b in the second context. According to property 3.2, this agent is unique. Remaining
agents will keep their local search space fa; bg.

5

{a,b} {a,b}

{a,b} {a,b}

{a,b} {a,b}

{b}{a}

X2 X3

X4

X1
A0

A2

A3

X2

X4

X3

Context 1 Context 2

A1

X1
A0

A1 A2

A3

Figure 3: Interleaved search

There is no duplication of processing units here. Agents will successively consider search in the di�erent
contexts. This interleaving will be achieved by message passing operations. The context of resolution added
within each message will allow an agent to successively explore the disjoint search spaces.

3.2.1 Algorithm

The global scheme of the search process is the following (see algorithm 2 and data structure below). In the
initialisation phase (lines 1 to 3), the source agent divides its search space in NC subspaces. Remaining
agents will use the same space D in each context. In each context c each agent instantiates its variable with
respect to its parent constraints. Each timestamp counter valueCptc is then set to one. After instantiation,
the agent informs its children of its chosen value (message content starting by \infoVal").

Interactions start at line 4. Here each incoming message is interpreted in a particular context c (lines 5
and 6).

An \infoVal" message from acquaintance j is processed as follow (line 7). First the reported value is
stored in value[j]c then the associated timestamp valueCpt[j]c is incremented. Finally the agent try to get a
value compatible with the new message. If a compatible value is found, an \infoVal" message with context
c informs children of the new choice2 If no value satis�es the constraints with the agents in ��, a backtrack
message is sent in context c to the nearest parent (message content starting by \btSet" in line 8) . This
message includes the local ordered set �� of parent acquaintances, their level positions and agent beliefs
about their timestamps valueCpt[��]c.

The receiver of the backtrack message (line 9), checks the validity of it by comparing its timestamp with
the reported one and by checking that shared acquaintances are reported with the same timestamps too
(function contextConsistency). In case of di�erent values, this means that the sender and/or the receiver
have not yet received some information. Backtrack decision could then be obsolete or badly interpreted. Here
IDIBT di�ers from the original DIBT [HBQ98] which considers consistency between the receiver's value and
the belief about it enclosed in the message. This assumption is correct if we assume that the network do not
have di�erent transmission time between distinct agents. However if transmission time are heterogeneous,
the global test of IDIBT is more safe.

When the comparison matches, there are two possible behavior. If the agent can �nd a compatible
myV aluec in the remaining search space, this value is addressed to children in line 10. If such a value cannot
be found, we must consider two cases. The �rst one is an agent without possibility for backtracking, (line
11). This agent has detected problem insolubility in the subspace c. A message noSolution in context c is
sent to a System agent. This extra agent stops the distributed computation in context c by broadcasting
a stop message in the whole multi-agent system. With this information agents can stop the processing of
context c messages. If all the context have no solution, the computation is �nished. In addition, it can also

2Of course, current value myV aluec can already satisfy the constraints with j, in which case, information of children is
useless.

6

stop the computation when a solution is found. A global state detection algorithm [CL85] is used to detect
whole satisfaction. Global satisfaction occurs when in a particular context c, agents instantiated according
to parent constraints are waiting for a message (line 5) and when no message with context c transits in the
communication network.

If there exists a parent for backtracking, the agent sends a backtrack message to the nearest agent in the
ordered set union of �� and the sender set (line 12). This new set is attached to the message with related
information about agents for ensuring continuity of backjumping.

Primitives and data structures
IDIBT uses the following structures and methods:

� NC is the number of resolution context.

� self is the agent running the algorithm, Dself;c is its domain in context c.

� myV aluec current value in the context c.

� myCptc current instantiation number in context c. This value will be used as a timestamp in the
system.

� value[]c stores parent acquaintances values in context c.

� valueCpt[]c stores for each parent the current instantiation number, in the right context.

� getV alue(type; c), if a compatible value is found, myCptc is incremented,

{ if type='info', returns the �rst value inDself;c compatible with agents in �
�, starting atmyV aluec

3.

{ if type='bt', returns the �rst value after myV aluec in Dself;c compatible with agents in ��.

� �rst(S) returns the �rst element of an ordered set S. With our application, returns the nearest agent
in S.

� merge(s1;s2) takes two ordered sets and returns their ordered union.

� contextConsistency(set; reportedV alueCpt; c), set contains an ordered list of agents, reportedV alueCpt
contains for each agent in set timestamps computed by the sender of the current message. This func-
tion ensures that, �rstly reported timestamp for self is the good one; i.e., equal to myCptc, secondly
that for the shared acquaintances agents, reported timestamps are the same than in valueCpt[]c. This
mechanism ensures that agents have the same beliefs about the shared parts of the system.

� The previous sendMsg function becomes sendMsg(dest;m; c), which sends message m to the agents
in dest in context c.

3.3 Analysis

Completeness

Property 3.3 ()
When an agent Ai changes its instantiation, agents Aj such that 9Ai ! Aj will reconsider their whole search
space.

The proof is direct if we consider the algorithm 2. When an agent changes its value, �+ agents receive
it. These agents can keep their current instantiation or change it, but they always resume their local search
space. By propagation of instantiations between agents, 3.3 is veri�ed.

3The search for a new compatible value starts from the current value for keeping the maximum of previous work. For
ensuring completeness, the values that are before myV aluec in Dself;c are put at the end of Dself;c.

7

Algorithm 2: Interleaved Distributed Intelligent BackTracking
begin

nearest �rst(��);
1 if (�� = ;) then Split domain D in Dself;1 .. Dself;NC ;

for (1 � c � NC) do
if (��! = ;) then Dself;c D;

2 myV aluec getValue(info, c);
myCptc 1;
sendMsg(�+, \infoVal:myV aluec; from:self", c);

3 endc false;

4 while (9cjendc = false) do
5 m getMsg();
6 c m:context;

if (m = stop) then endc true;
7 if (m = infoVal:a; from:j) then

value[j]c a;
valueCpt[j]c ++;
myV aluec getValue(info, c);
if (myV aluec) then

sendMsg(�+, \infoVal:myV aluec; from:self", c);

else

8 sendMsg(nearest, \btSet:��; Values:valueCpt[��]c", c);

9 if (m = btSet:set; Values:reportedV alueCpt) then
if (contextConsistency(set, reportedValueCpt, c)) then

myV aluec getValue(bt);
if (myV aluec) then

10 sendMsg(�+, \infoVal:myV aluec; from:self", c);

else

11 if (�� = ; and set = ;) then
sendMsg(system, \noSolution", c);
endc true;

else

followSet merge(��, set);
follow �rst(followSet);

12 sendMsg(follow, \btSet:followSet; Values:valueCpt[��]c [reportedV alueCpt", c)
myV aluec getValue(info, c);

end

8

Property 3.4 ()
If Ai changes its instantiation according to a btSet message initially upcoming from Aj , each agent Ak such
that 9Ai ! Ak ! Aj has exhausted its search space.

Consider an Ak which contradicts 3.4. Since we have a path between Ak and Aj , Ak will be included in
the ordered union of �� sets which gives the successive receivers of backtracking message. Now since Ai has
received the message and since 9Ai ! Ak, Ak has exhausted its search space too.

Properties 3.1, 3.3 and 3.4 ensure completeness of the exploration. They prove that according to the
DisAO computed ordering, backtracking between agents is made in an exhaustive way.

Termination
Termination is ensured by search exhaustivity, by the fact that DisAO orders are acyclic and by the use

of a state detection algorithm [CL85] which stops the system when any context c is stuck on a solution.
Interestingly the use of several context within IDIBT do not signi�cantly change the overhead brought by
the Chandy's method. In fact it is easy to generalize the method to manage the monitoring of the di�erent
context without raising the message passing overhead; i.e., each monitoring message informs about each
context.

Complexity
Naturally, search complexity is exponential in the number of variables. But in a distributed execution,

rooms are open to use the relative independence between subproblems. This can enhance complexity results.
In the following, levelj represents the set of agents with a computed level j and h the highest level in the
ordering.

Definition 3.1 ()
A DisAO ordering is called additive if 8b 2 levelj j 1 � j � h, 6 9 agents a; a0 2 leveli with 1 < i � h j a! b
and a0 ! b.

Theorem 3.1 ()
A DCSP P with domain sizes d, using an additive DisAO ordering has a worst case time complexity,

O(

hY

l=1

jlevellj � d)

To prove that we must remark that with an additive ordering, during backtracking, the union of two ��

set do not include two agents at the same level. Then a backtracking occurs between distinct level and at
each time considers at most d values. The whole problem is solved by considering at each level combinations
of values. Since at each level, agents are independent, the number of possibilities is made by the sum of
domains size.

When the ordering produced by DisAO is not additive, the complexity of a backtracking depends on the
size of the longest path between agents. In the worst case we have an O(dn) complexity. We must remark
here that DisAO was not made to construct additive hierarchies, its purpose was to add more parallelism
by extracting subproblems independence. Nevertheless, we think that it must be possible to embolden
parallelism while maximizing the additive property.

Remarks

� From distributed to parallel search: As we saw in section 2.4, parallel exploration allows simultaneous
explorations of disjoint subspaces. This parallelism is achieved by duplication of processing units. Here
we bene�t from the asynchronism in the system. Since distinct agents can simultaneously consider and
operate in di�erent context, IDIBT realizes a parallel exploration of the search space too.

9

� More dynamism: When a particular context c detects insolubility, the search within it is canceled. In
parallel search, the basic behavior when a subspace is exhausted is to rearrange the distribution of the
work between processing units. This is normal since without such reallocation, some unit becomes idle
while others are still working hard. Such load balancing process is automatic in IDIBT. In fact by
doing nothing else that stopping current search in c, more cpu time and bandwidth are allocated for
remaining subspaces. But it is still possible to maintain NC explorations, the source agent has just to
reallocate its subspaces.

� Ordered search: When DFS is used to �nd one solution, heuristics are useful to order the successors of
a node. Within IDIBT, when the source agent splits its search space, he can use heuristics to allocate
the best value as the �rst one in the �rst context, then the second best one as the �rst one in the
second context, and so on. With this method, promising subspaces are more rapidly explored.

� Our system preserves previous work: When an infoVal message occurs at Agenti with context c,
getV alue tests if the current value myV aluec satis�es the constraint with the sender before trying
another value in Dself;c. If it does, no change occurs, and more importantly, no changes are reported
to children, so the maximum of previous work is kept.

� Inherent dynamic feature: At the beginning, agents do not know their parent values. Nevertheless,
they are instantiated in line 2. When an agent does not know the instantiation of one parent, it does
not consider the related constraint (function getV alue()). During the search, acquaintances values are
stored in value[] and instantiations of agent variables are changed according to acquaintances known
values. This point is important in our asynchronous system. In fact, constraints 'appear' with related
values.

� Repair-like technique: Initially, the whole system gets initial parallel instantiation of variables within
each subspaces. During concurrent resolution, agents revise their selected values according to their
environment. So, the system starts with several global instantiations of the problem variables and
performs local repairs on di�erent parts of the instantiation within di�erent subspaces.

4 Experimentations

We made experiments on an Ethernet 10Mbits LAN of 11 Sparc-5. We are using �ve random problems4

each one with 15 variables, domain size set to 5. The DCSP are equally distributed on 15 agents.
The �rst three problems have no solution:

� prob1, (15; 5; 0:5; 0:5); prob2, (15; 5; 0:8; 0:5); prob3, (15; 5; 1; 0:5).

The two remaining have respectively 4536 and 400 solutions:

� prob4, (15; 5; 0:2; 0:5); prob5, (15; 5; 0:3; 0:5).

For each problem we run IDIBT using 1 to 5 context of resolution. In the results we show the median of
10 resolutions. Agents ordering were computed by using the max-degree heuristic.

Execution time and eÆciency In �gures 4 and 5 we present time and eÆciency results. The res-
olution time is the maximum of the CPU time of each agent. The eÆciency, eÆciency=speed-up/NC is
computed by considering the speed-up=Tseq=Tpar, where Tseq is the resolution time with one context and
Tpar the resolution time with NC.

We have two distinct behavior here. As the number of context increase, the eÆciency is decreasing for
the processing of the problems without solution. This result is normal since IDIBT has to exhausts the
whole search space. The decreasing in eÆciency comes from the overhead of using several context, however

4We use the classical tuple-notation number of variables, domain sizes, network connectivity, tightness of the constrains.

10

0

2

4

6

8

10

12

14

16

1 2 3 4 5

tim
e

se
co

nd
s

(m
ed

ia
n)

#context

median LAN

prob1
prob2
prob3
prob4
prob5

Figure 4: IDIBT, time (median)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1 2 3 4 5

E
ffi

ci
en

cy

#context

prob1
prob2
prob3
prob4
prob5

Figure 5: IDIBT, eÆciency (median)

11

it is not dramatic.

Soluble problems prob4 and prob5 present speed-up with several contexts. With prob4, IDIBT resolution
time is respectively 2.21s, 0.6s, 0.72s, 0.79s, 1.39s from 1 to 5 contexts and with prob5, we have respectively
10.59s, 15.21s, 2.58s, 6.51s and 12.59s. These soluble problems, present eÆciency peaks respectively with 2
and 3 context. Moreover with these values, speed-up are superlinear.

After �nely considering the search spaces for prob4 and prob5, it appears that instantiations of the
source agent in solutions are all using the fourth value for prob4 and the second value for prob5. According
to source's partitioning of search space these values are more rapidly introduced in the search process with
several contexts. However, when the system uses more context, the bene�t of parallelism is decreasing since
the overhead in message passing is raising.

These two problems show that IDIBT can compensate the use of a bad value ordering heuristic. Usually
heuristics are bad at the beginning of a DFS exploration and this is exactly where IDIBT partition its search
space. Hence IDIBT can compensate initial misinformation during distributed problem solving. More
generally, the analyse of our soluble instances shows non-uniform search-space, that means that solution are
not equally located in the space. IDIBT is particularly useful to process these instances. We retrieve here
the same conclusion than [RK93] will parallel backtracking.

Constraint checks and message passing We present here measures about local computation (constraint
checks) and about communication in the system. For each execution results present the sum of these
parameters within the system.

0

5000

10000

15000

20000

25000

1 2 3 4 5

#c
ch

ec
ks

 (
m

ed
ia

n)

#context

median LAN

prob1
prob2
prob3
prob4
prob5

Figure 6: IDIBT, constraint checks (median)

Figure 6 presents constraint checks results. We can distinguish between insoluble and soluble instances |
low constraint check consumptions. Interestingly we can see that whatever the number of contexts, the raise
in local computation is reasonable. Variations for insoluble instances come from the uncontrolled interleave
of message in the system.

As previously, message passing (�gure 7) distinguishes between insoluble and soluble problems. The
former are more consuming. But results show that the raise in message is reasonable and more related to
the number of contexts than local computations.

12

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5

#m
es

sa
ge

s
(m

ed
ia

n)

#context

median LAN

prob1
prob2
prob3
prob4
prob5

Figure 7: IDIBT, message passing (median)

5 Conclusion

We have presented IDIBT, as a generalization of DIBT a fully distributed asynchronous system for solving
distributed CSPs. IDIBT can operate in heterogeneous networks where communications between agents are
randomly delayed (contextConsistency function). More importantly, IDIBT allows simultaneous exploration
of disjoint search spaces. Experiments showed that for problems with nonuniform search space, our method
can bring superlinear speed-up over DIBT.

The backjumping in the method uses the graph structure extended by DisAO to reach completeness.
We prove both completeness and termination of IDIBT. Even if backjumping is systematic between related
subproblems, the relative independence between agents can be kept thanks to the DisAO ordering method.
This backjumping can be easily extended to implement con
ict directed backjumping [Pro93].

Beyond the improvement of eÆciency showed here, the interleave of context within search seems promis-
ing. In di�erent context, several agents ordering could be used. This could be an answer to the diÆculty of
making eÆcient dynamic variable ordering in a distributed system. Each agent could implement cooperation
between its local context by exchanging useful informations (instantiations, con
ict-set, nogood, �ltering
[Ham99a],. . .). Here the principal drawback of cooperative frameworks (the cost of exchanging informations
between processes) disappears since the exchanges occur within each agent.

References

[Bur90] B. Burg. Parallel forward checking parts 1 and 2. Technical Report TR-594/595, Institute for
New Generation Computer Technology, Japan, 1990.

[CL85] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed
systems. TOCS, 3(1):63{75, Feb 1985.

[GB65] S. W. Golomb and L. D. Baumert. Backtrack programming. Journal of the ACM, 12:516{524,
65.

[Ham99a] Y. Hamadi. Optimal distributed arc-consistency. In Fifth International Conference on Principles
and Practice of Constraint Programming (CP'99), pages 219{233, 1999.

[Ham99b] Y. Hamadi. Traitement des probl�emes de satisfaction de contraintes distribu�es. PhD thesis,
Universit�e Montpellier II, 1999. (in french).

13

[HBQ98] Y. Hamadi, C. Bessi�ere, and J. Quinqueton. Backtracking in distributed constraint networks. In
ECAI, pages 219{223, Aug 1998.

[Kor81] W. Kornfeld. The use of parallelism to implement a heuristic search. In Patrick J. Hayes, editor,
Proceedings of the 7th International Joint Conference on Arti�cial Intelligence (IJCAI '81), pages
575{580, Los Altos, CA, 24{28 August 1981. William Kaufmann.

[Pro93] P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computational Intelligence,
9(3):268{299, 1993.

[RK93] V. N. Rao and V. Kumar. On the eÆciency of parallel backtracking. IEEE Transactions on
Parallel and Distributed Systems, 4(4):427{437, Apr 1993.

[YH96] M. Yokoo and K. Hirayama. Distributed breakout algorithm for solving distributed constraint
satisfaction problems. In ICMAS, pages 401{408, Dec 1996.

14

