

Customized Library of Modules for
STREAMS-based TCP/IP Implementation to
Support Content-Aware Request Processing for
Web Applications

Wenting Tang, Ludmila Cherkasova, Lance Russell,
Matt W. Mutka1
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-150
June 18th , 2001*

E-mail: wenting, cherkasova, lrussell@hpl.hp.com, mutka@cse.msu.edu

content-aware
request
distribution,
scalable web
server
clusters, TCP
handoff,
STREAMS,
WebQoS, web
differentiated
services

Content-aware request processing enables the intelligent
routing and request processing inside the cluster to provide the
quality of service requirements for different types of content
and to improve overall cluster performance. STREAMS-based
TCP/IP implementation in HP-UX 11.0 provides a convenient
framework to design a library of new STREAMS modules to
support content-aware request distribution and differentiation
inside a cluster. Proposed modules take into account specifics of
different cluster architectures and workload characteristics.
These modules are designed as dynamically loadable modules
and no changes are made to the existing TCP/IP code. The
proposed design has the following advantages: flexibility - new
modules may be loaded and unloaded dynamically, without
node function interruption; modularity - proposed modules may
be ported to other OSes with minimal effort. More importantly,
the proposed STREAMS modules can be easily integrated and
deployed into commercial OS systems, so the end users may
take advantage of these solutions much sooner.

* Internal Accession Date Only Approved for External Publication
1 Dept of Computer Science & Engineering, Michigan State University, East Lansing, MI 48824
Copyright IEEE. Published in the IEEE Third International Workshop on Advanced Issues in
E-commerce and Web-Based Information Systems, June 21-22, 2001, San Jose, CA

Customized Library of Modules for STREAMS-based
TCP/IP Implementation to Support Content-Aware

Request Processing for Web Applications

Wenting Tang, Ludmila Cherkasova, Lance Russell Matt W. Mutka
Hewlett-Packard Labs Dept of Computer Science & Eng.
1501 Page Mill Road Michigan State University

Palo Alto, CA 94303, USA East Lansing, MI 48824, USA
wenting,cherkasova,lrussell@hpl.hp.com mutka@cse.msu.edu

Abstract. Content-aware request processing enables the

intelligent routing and request processing inside the cluster

to provide the quality of service requirements for di�erent

types of content and to improve overall cluster performance.

STREAMS-based TCP/IP implementation in HP-UX 11.0

provides a convenient framework to design a library of new

STREAMS modules to support content-aware request distri-

bution and di�erentiation inside a cluster. Proposed modules

take into account speci�cs of di�erent cluster architectures

and workload characteristics. These modules are designed

as dynamically loadable modules and no changes are made

to the existing TCP/IP code. The proposed design has the

following advantages: exibility - new modules may be loaded

and unloaded dynamically, without node function interrup-

tion; modularity - proposed modules may be ported to other

OSes with minimal e�ort. More importantly, the proposed

STREAMS modules can be easily integrated and deployed

into commercial OS systems, so the end users may take ad-

vantage of these solutions much sooner.

1 Introduction

The replicated web server cluster is the most popular
con�guration used to meet the growing tra�c demands
imposed by the World Wide Web. However, for clusters
to be able to achieve scalable performance as the cluster
size increases, it is important to employ the mechanisms
and policies for a balanced request distribution. As web
sites become the platform to conduct the business, it is
important to protect the web server from overload and
to provide service di�erentiation when di�erent client
requests compete for limited server resources. Mech-
anisms for intelligent request distribution and request
di�erentiation help to achieve scalable and predictable
cluster performance and functionality, which are essen-
tial for today's Internet web sites.

Traditional request distribution try to distribute the
requests among the nodes in the cluster based on param-
eters, such as IP addresses and port numbers, and some
load information. Since the request distribution has the

ability to check the packet header up to Layer 4 in OSI
network reference model (in this case, TCP) when it
makes the distribution decision. This is commonly re-
ferred as Layer 4 request distribution.

Content-aware request distribution takes into ac-
count the content (URL name, URL type, or cook-
ies,etc) when making a decision to which server the re-
quest has to be routed. Content-aware request distribu-
tion mechanisms enable smart, specially tailored rout-
ing inside the cluster and provide many bene�ts. Some
of the bene�ts are: 1) it allows the content of a web
site to be only partially replicated. Dedicated nodes
can be set up to deliver di�erent types of documents.
2) it provides support for di�erentiated Web Quality of
Service (WebQoS). 3) it can signi�cantly improve the
cluster throughput. Previous work on content-aware re-
quest distribution [6, 7, 1, 4] has shown that policies
distributing the requests based on cache a�nity lead to
signi�cant performance improvements compared to the
strategies taking into account only load information.

Comparing to traditional Layer 4 request distribu-
tion, the complexity of content-aware request distribu-
tion lies in the fact that HTTP is a connection-oriented
TCP protocol. In order to serve the client request
(URL), a TCP connection has to be established between
a client and a server node �rst. If the node cannot or
should not serve the request, some mechanism has to
be introduced to forward the request for processing to a
right node in the cluster. TCP splicing and TCP hand-

o� are two mechanisms proposed to support content-
aware request distribution.

a) Back-End

Client Front-End

Back-End

b) Back-End

Client Front-End

Back-End

Figure 1: Tra�c ow with a) TCP splicing mechanism;
b) TCP hando� mechanism.

TCP splicing [5] is an optimization of the front-end
relaying approach, with the tra�c ow represented in
Figure 1 a). In this cluster architecture, the front-end
only dispatches the requests to the back-end node and
it does not serve any requests at all. The TCP hando�
mechanism was introduced in [6] to enable the forward-
ing of back-end responses directly to the clients without
passing through the front-end, with tra�c ow repre-
sented in Figure 1 b). After the front-end establishes
the connection with the client, and the request distri-
bution decision is made, the established connection is
handed o� to the selected back-end node to serve the
request. The TCP state, related to the established con-
nection, is migrated from the front-end to the selected
back-end node. The main bene�t of TCP hando� mech-
anism compared against TCP splicing is that the back-
end node can send the response directly to the client.
The front-end is not involved in the response data for-
warding. It has been shown in [1] that TCP hando�
mechanism provides better performance and scalability
than TCP splicing.

STREAMS-based TCP/IP implementation, which is
available in leading commercial operating systems, of-
fers a framework to implement the TCP hando� mech-
anism as plug-in modules in the TCP/IP stack, and
to achieve exibility and portability without much of a
performance penalty.

In this paper, we use three di�erent applications to
discuss speci�cs of content-aware request routing and
related architectural design issues:

� a multi-language web site;

� partition-based cooperative web proxies;

� a simple e-commerce site.

Using these applications, we distinguish three most typ-
ical usage patterns of the TCP hando� mechanism. The
usage pattern is de�ned by the fraction of the requests
being handed o�:

� rare-TCP hando� { when only a small fraction 1

of the requests are handed o� for processing to a
di�erent cluster node;

� frequent-TCP hando� { when most of the requests
are forwarded for processing to a di�erent node us-
ing the TCP hando� mechanism;

� always-TCP hando� { when the requests are always
handed o� for processing to a di�erent cluster node.

This di�erence in the usage patterns leads to di�er-
ent trade-o� decisions in the modular implementation
of TCP hando� mechanism. We discuss these trade-
o�s and propose a library of STREAMS modules imple-
menting the TCP hando� functionality which addresses

1Small fraction means less than 50% of requests. However,
in the applications we had considered, this portion can be only
5-20% of requests.

di�erent cluster architectures and optimizes the TCP
hando� mechanism for speci�c usage patterns.

Additionally, we discuss how content-aware request
processing (CARP) can provide the necessary request
di�erentiation and performance isolation, which are es-
sential for today's business web site. The requests to
the web site are classi�ed into di�erent classes. Request
di�erentiation means that requests from di�erent classes
are assigned di�erent priorities and high-priority tra�c
get preferred treatment in terms of resources. Perfor-
mance isolation means that the requests are dispatched
and scheduled in such a way that the certain through-
put levels for a particular class are maintained relatively
independent of the tra�c from other classes. Kernel-
level support of content-aware request processing, us-
ing a set of STREAMS modules, provides an interest-
ing framework to implement di�erentiated services in a
web server such as request classi�cation, session man-
agement, request queuing, admission control, and/or re-
quest scheduling.

The proposed approach and a library of STREAMS
modules (called CARISMA: Content-Aware,Request
Intelligent Streams Modules librAry) have the follow-
ing advantages:

� portability: the new modules are relatively inde-
pendent of the implementation internals. New
STREAMS modules are designed to satisfy the
following requirements: all the interactions be-
tween new modules and the original TCP/IP mod-
ules are message-based, no direct function calls are
made; new modules do not change any data struc-
tures or �eld values maintained by the original
TCP/IP modules. This enables maximum porta-
bility, so that the new modules may be ported to
other STREAMS-based TCP/IP implementation
very quickly.

� exibility: the new modules may be dynamically
loaded and unloaded as DLKM (Dynamically Load-
able Kernel Module) modules without service inter-
ruption.

� transparency: no application modi�cation is neces-
sary to take advantage of the new solutions. This is
a valuable feature for applications where no source
code is available.

� e�ciency: the new modules are only peeking into
the messages, with minimum functionality replica-
tion of the original TCP/IP modules.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief introduction to STREAMS and
STREAMS-based TCP/IP implementations. Section 3
outlines three di�erent web applications using content-
aware request distribution and discusses the correspon-
dent supporting architecture. Sections 4, 5, 6, ar-
gue that the e�cient TCP hando� implementation in
STREAMS environment should take into account the

TCP hando� usage patterns to minimize the overhead
introduced by the TCP hando� mechanism. The design
of mechanisms to support content-aware request di�er-
entiation and processing is presented in Section 7.

2 STREAMS-Based TCP/IP
Implementation

STREAMS is a modular framework for developing com-
munication services. Each stream generally has a stream
head, a driver and multiple optional modules between
the stream head and the driver (see Figure 2 a). A
stream is a full-duplex processing and data transfer path
between a STREAMS driver and a process in user space.
Modules exchange the information by messages. Mes-
sages can ow in two directions: downstream or up-

stream. Each module has a pair of queues: write queue
and read queue. When a message passes through a
queue, STREAMS modules for this queue are called to
process the message. The modules may drop a message,
pass a message, change the message header, and/or gen-
erate a new message.

a)

Upstream

Stream head

Module
(optional)

Driver

user process

Downstream

b)

Driver

TCP module

IP module

DLPI

Stream head

 TPI

c)

Stream head

IP module

TCP module

UpperTCP

BottomTCP

Figure 2: a) STREAMS b) STREAMS-Based TCP/IP
Implementation c) New Plug-in Modules for rare-TCP
Hando� in STREAMS-Based TCP/IP Implementation

The stream head is responsible for interacting with
the user processes. It accepts the process request, trans-
lates it into appropriate messages, and sends the mes-
sages downstream. It is also responsible for signaling to
the process when new data arrives or some unexpected
event happens.

The STREAMS modules for STREAMS-based
TCP/IP implementation are shown in Figure 2 b).
Transport Provider Interface (TPI) speci�cation [9] de-
�nes the message interface between TCP and upper
module. Data Link Provider Interface (DLPI) speci�ca-
tion [8] de�nes the message interface between driver and
the IP module. These speci�cations de�ne the message
format, valid sequences of messages, and semantics of
messages exchanged between the neighboring modules.

When the TCP module receives a SYN request for

establishing the HTTP connection on the listen stream,
the TCP module sends a T CONN IND message up-
stream. Under the TPI speci�cation, TCP should
not proceed until it gets response from the applica-
tion layer. However, in order to be compatible with
BSD implementation-based applications, the TCP mod-
ule continues the connection establishment procedure
with the client. When the application decides to accept
the connection, it sends the T CONN RES downstream
on the listen stream. It also creates another stream to
accept this new connection, and TCP module attaches
a TCP connection state to this new stream. The data
exchange continues on the accepted stream until either
end closes the connection.

3 Content-Aware Request Dis-
tribution: Cluster Design and
Application Speci�c Issues

TCP hando� is the mechanism which enable the intelli-
gent routing of web requests between cooperative nodes
either locally or in the wide area. In this section, we
use three di�erent applications to discuss content-aware
request routing and request processing and related ar-
chitectural design issues.

In our discussion of di�erent cluster designs which
can be used to implement content-aware distribution
strategies, we adopt the terminology proposed in [1].
There are three main components comprising a clus-
ter con�guration with content-aware request distribu-
tion strategy: dispatcher which implements the request
distribution strategy, it decides which web server will be
processing a given request; distributor which interfaces
the client and implements the TCP hando� that dis-
tributes the client requests to speci�c web server; and
web server which processes HTTP requests.
1. Multi-language web site design.

Big sites have di�erent language versions to service
di�erent client community. For example, Yahoo has a
site representation in di�erent languages to serve dif-
ferent language groups. A client may access the same
content in di�erent languages. Another example is the
big commercial companies which have on-line manual in
di�erent languages to serve di�erent communities. Due
to the volume of the tra�c to these big sites, generally
these sites are replicated at di�erent places. It is not
economical and necessary to replicate all di�erent lan-
guage versions of the same document in all the places
at the same time. Typical practice is that servers at a
particular place will only partially replicate a group of
languages commonly used in the local community. It is
desirable that a client is automatically directed to the
right server to get the desired language document.

One simple and typical solution is to put a link on
each page pointing to di�erent versions of the same doc-
ument in di�erent languages, and let the user to select

the right version manually. However, this method is
not convenient for web page developers and very hard
to manage in big sites.

An alternative solution is to apply the TCP hando�
mechanism to automatically hando� the connection to
the right server when the content is not present on the
original server, and the selected server will respond to
the client directly.

Each server in a cluster keeps a mapping (de�ned in a
dispatcher module) to manipulate the URL according to
some rules established in advanced by the site admin-
istrators. In particular, these rules assign the speci�c
language versions to be served by di�erent servers in
a cluster. This is more exible and convenient way to
manage multi-language web site.

Server

Distributor

Dispatcher

Server

Distributor

Dispatcher

WAN

Server

Distributor

Dispatcher

Figure 3: Web server cluster con�gurations with
content-aware request distribution to support a multi-
language web site design.

Figure 3 shows a cluster architecture to support a
multi-language web site design. Web servers are con-
nected by a wide area network, and thus, hando� has
to be implemented over a wide area network. In this ar-
chitecture, the distributor component is co-located with
the server and dispatcher component.

For simplicity, we assume that the clients directly
contact the distributor, for instance via Round-Robin
DNS. In this case, the typical client request is pro-
cessed in the following way. 1) Client web browser uses
TCP/IP protocol to connect to the chosen distributor;
2) the distributor component accepts the connection
and parses the request; 3) the distributor contacts the
dispatcher for the assignment of the request to a server;
4) the distributor hands o� the connection using TCP
hando� protocol to the server chosen by the dispatcher;
5) the server takes over the connection using the hand-
o� protocol; 6) the server application at the server node
accepts the created connection; 7) the server sends the
response directly to the client.

The speci�cs of this cluster architecture is that each
node in a cluster has the same functionality: it combines
a function of distributor and a web server. In other

words, each node acts as a front-end and back-end node
in providing TCP hando� functionality. For each web
server, we expect that most of the HTTP requests are
processed by the node accepting the connections (we re-
fer to such requests as local), and hence TCP hando�
happens infrequently. We use a term rare-TCP hand-

o� to specify this usage pattern. Under such an usage
pattern, a goal for the rare-TCP hando� design and im-
plementation is a minimization of the overhead imposed
by TCP hando� mechanism on local requests.
2. Partition-based cooperative web proxies

design.

Web proxy is the typical place where intranet can
access the Internet, it is very easy for a single proxy
to become the bottleneck. In order to provide a scal-
able proxy service, cooperative proxy cluster is com-
monly used. One kind of cooperative proxy is partition-
based proxies[10]. In partition-based cooperative prox-
ies, each proxy caches a disjoint subset of the docu-
ments. Partition-based web proxy clusters increase the
number of cached documents and improve the cache hit
ratios.

However, the same partition function has to be ap-
plied by the browser to contact the correct proxy for a
particular URL . Implementing the partition function
in the browser-transparent way is a challenging and dif-
�cult task in partition-based proxy cluster.

Dispatcher

Server

Distributor

Server

Distributor

Switch

Server

Distributor

 LAN

Figure 4: Partition-based cooperative web proxies de-
sign with content-aware request distribution.

TCP hando� can be used to implement the parti-
tion function in a client transparent manner. Figure 4
shows a cluster architecture to support a partition-based
proxy cluster. In this architecture, the distributor com-
ponent is co-located with the server component. The
dispatcher component can be centralized as shown in
Figure 4 or decentralized as shown in Figure 3 (typi-
cally, the decision is inuenced by the choice of the par-
tition function aiming to cache di�erent �les on a di�er-
ent servers). Round-Robin DNS or a front-end Layer 4
switch can be used to direct the tra�c to the proxies in
the cluster. When an HTTP request comes in, the proxy

consults with a dispatcher module to determine which
server should serve the request. If the request should
be served by another proxy in the cluster, the original
proxy hands the connection o� to the designated proxy
prescribed to process this request. The serving proxy
will send the response back to the client directly.

This cluster architecture is similar to the architec-
ture considered above for multi-language web site de-
sign. The di�erence is in the usage pattern of the TCP
hando�. Let N be the number of nodes in the partition-
based proxy cluster. Statistically, each node in the clus-
ter will be serving only 1=N of the requests locally, while
forwarding (N � 1)=N of the requests to the di�erent
nodes in the cluster using the TCP hando� mechanism.
We use a term frequent-TCP hando� to specify this
usage pattern. Under such an usage pattern, the e�-
cient frequent-TCP hando� design and implementation
should minimize the overhead from TCP hando� for re-
mote request processing.

3. E-commerce site design.

HTTP protocol is stateless, i.e. each request is pro-
cessed by the web server independently from the pre-
vious or subsequent requests. In e-commerce environ-
ment, a concept of session (i.e. a sequence of requests
issued by the client) plays an essential role [2, 3]. For
a session, it is important to maintain a state informa-
tion from the previous interactions between a client and
a server. Such state might contain the content of the
shopping cart or list of results from the search request.
Thus, when the user is ready to make a purchase, or
is asking for the next 10 entries from the search list,
the state information from the previous request should
be retrieved. For e�cient request processing and ses-

sion integrity, it is desirable to send the client request
to the same server. One of the popular scheme proposed
for handling the state on the web is cookies. Content-
aware request routing provides a convenient mechanism
to support a session integrity (the other common term
for this is \sticky" connection).

Figure 5 shows a cluster architecture to support a
simple e-commerce site. In this architecture, the front-
end node has co-located distributor and dispatcher mod-
ules to support the session integrity, i.e. based on the
cookie attached to the URL, it sends the requests be-
longing to the same session to the initially chosen, same
back-end server.

The speci�cs of this cluster architecture is that front-
end and back-end nodes in a cluster have now di�erent
functionality: front-end combines a function of distribu-
tor and dispatcher, while the back-ends perform as web
servers. The front-end node checks the cookie and de-
cides which back-end server has to process the request.
The distributor module always hands o� the connection
to the appropriate back-end server, front-end node never
processes the request. We use a term always-TCP hand-
o� to specify this usage pattern. Under such an usage
pattern, the design and implementation of the always-
TCP hando� is very di�erent from the previously dis-

cussed cases of rare- and frequent-TCP hando�. The
crucial di�erence is that front-end and back-end nodes
play very di�erent roles in this architecture.

Server

CARP

Server

CARP

Server

 LAN

CARP

Front-End

Distributor

Dispatcher

Back-End

Figure 5: Web server cluster con�gurations to sup-
port session integrity and di�erentiated services for e-
commerce site design.

Web server QoS is very important for business web
sites. When a web site is overloaded, it is desirable
that important requests get preferable service [2], or
some form of the admission control mechanism is em-
ployed [3]. Content-aware requests processing (CARP)
provides an interesting framework to implement di�er-
entiated services in a web server. For example, di�er-
ent request scheduling and processing could be deployed
based on client or request priority. Session-based ad-
mission control, introduced in [3], can be easily imple-
mented using CARP on the back-end web server nodes.

Thus, content-aware front-end node in the cluster
con�guration shown in Figure 5 provides the session in-
tegrity mechanism, while back-end web server nodes can
deploy di�erentiated services such as request classi�ca-
tion, session management, request queuing, admission
control, and/or request scheduling.

This concludes our discussion on three di�erent ap-
plications employing content-aware request processing
and TCP hando� for di�erent purposes. We illustrated
the speci�cs of the TCP hando� usage patterns in these
applications. E�cient implementation of the correspon-
dent TCP hando� mechanism should take into account
these usage patterns. The TCP hando� modules may
be developed at di�erent places in a TCP/IP stack to
implement the content-aware request distribution, ac-
cording to the architecture and workload characteris-
tics.

Next Section 4 will present a detailed design of a
rare-TCP hando�. Using this detailed description, we
discuss what should be done di�erently for the e�cient
implementation of frequent-TCP hando� and always-
TCP hando�. The design of mechanisms to support
content-aware request di�erentiation and processing will
be presented in Section 7.

4 Rare-TCP Hando� Design

In the cluster architecture shown in Figure 3, each node
performs both front-end and back-end functionality: the
distributor is co-located with the web server. We use
the following denotations: the distributor-node accept-
ing the original client connection request is referred to
as FE (Front-End). In a case, when the request has to
be processed by di�erent node, this node receiving the
TCP hando� request is referred to as BE (Back-End).

Two new modules are introduced to implement the
functionality of rare-TCP hando� for multiple language
web sites as shown in Figure 2 c). According to the rel-
ative position in the existing TCP/IP stack, we refer to
the module right on top of the TCP module in the stack
as UTCP (UpperTCP), and the module right under the
TCP module as BTCP (BottomTCP).

UTCP

IP

TCP

BTCP

UTCP

IP

TCP

HandoffAck

Termination

Handoff SYN ACK 1

3 4

5

7

6URL

2

Back-End
SY

N
/A

C
K

A
C

K

SYN ACK URL

A
C

K

SY
N

/A
C

K

SY
N

O
ri

gi
na

l 3
-w

ay
ha

ds
ha

ki
ng

Control Connection

SY
N

Network

BTCP

T_CONN_IND

Front-End

Figure 6: Remote Request Processing Flow During rare-
TCP Hando� Procedure.

These two modules provide a wrapper around the
current TCP module. In order to explain the proposed
modular TCP hando� design and its implementation
details, we consider a typical client request processing.
There are two basic cases:
remote request processing, i.e. when the front-end node
accepting the request must hando� the request to a dif-
ferent back-end node assigned to process this request;
local request processing, i.e. when the front-end node
accepting the request is the node which is assigned to
process this request.

First, we consider the remote request processing.
There are six logical steps to perform the TCP hando�
of the HTTP request in rare-TCP hando�:

1) �nish 3-way TCP handshaking (connection estab-
lishment), and get the requested URL; 2) make the rout-
ing decision: which back-end node is assigned to process
the request; 3) initiate the TCP hando� process with the
assigned BE node; 4) migrate the TCP state from FE
to BE node; 5) forward the data packets; 6) terminate

the forwarding mode and release the related resources
on FE after the connection is closed.

Now, we describe in detail how these steps are imple-
mented by the newly added UTCP and BTCP modules
and original TCP/IP modules in the operating system.

3-way TCP handshake. Before the requested URL
is sent to make a routing decision, the connection has to
be established between the client and the server. The
proposed design depends on the original TCP/IP mod-
ules in the current operating system to �nish the 3-
way handshaking functionality. In this stage, BTCPFE
allocates a connection structure corresponding to each
connection request upon receiving a TCP SYN packet
from the client. After that, BTCPFE sends the SYN
packet upstream. Upon receiving a downstream TCP
SYN/ACK packet from the TCPFE module, BTCPFE
records the initial sequence number associated with the
connection, and sends the packet downstream. After
BTCPFE receives an ACK packet from the client, it
sends the packet upstream to TCPFE . During this pro-
cess, the BTCPFE emulates the TCP state transitions
and changes its state accordingly.

In addition to monitoring the 3-way TCP handshak-
ing, BTCPFE keeps a copy of the incoming packets
for connection establishment (SYN packet, ACK to
SYN/ACK packet sent by the client) and URL (Fig-
ure 6), for TCP state migration purpose, which is dis-
cussed later.

Also, because the TCP hando� should be transparent
to server applications, the connection should not be ex-
posed to the user level application before the routing de-
cision is made. UTCPFE intercepts the T CONN IND
message sent by TCPFE . TCPFE continues the 3-way
handshaking without waiting for explicit messages from
the modules on top of TCP.

URL parsing. BTCPFE parses the �rst data packet
from the client, retrieves the URL and makes the distri-
bution decision.

TCP hando� initiation. A special communication
channel is needed to initiate the TCP hando� between
FE and BE. A Control Connection is used for this pur-
pose between two UTCPFE and UTCPBE as shown in
Figure 6. This control connection is a pre-established
persistent connection set up during the cluster initial-
ization. Each node is connected to all other nodes in
the cluster. The TCP hando� request is sent over the
control connection to initiate the hando� process. Any
communication between BTCPFE and BTCPBE mod-
ules goes through the control connection by sending the
message to the UTCP module �rst (see Figure 6). Af-
ter BTCPFE decides to hando� the connection, it sends
a hando� request to the BTCPBE (Figure 6, step 1).
The SYN and ACK packets from the client and the
TCP initial sequence number returned by TCPFE are
included in the message. BTCPBE uses the information
in the hando� request to migrate the associated TCP
state(steps 2-4 in Figure 6, which is discussed next). If
BTCPBE successfully migrates the state, an acknowl-

edgement is returned (Figure 6, step 5). BTCPFE frees
the half-open TCP connection upon receiving the ac-
knowledgement by sending a RST packet upstream to
TCPFE and enters forwarding mode. UTCPFE dis-
cards corresponding T CONN IND message when the
T DISCON IND is received from the TCPFE.

TCP state migration. It is not easy to get the cur-
rent state of a connection at TCPFE, to transfer it and
to replicate this state at TCPBE . First it is di�cult to
obtain the state out of the black box of the TCP mod-
ule. Even if this could be done, it is di�cult to repli-
cate the state at BE. TPI does not support schemes
by which a new half-open TCP connection with pre-
de�ned state may be opened. In the proposed design,
the half-open TCP connection is created by replaying
the packets to the TCPBE by the BTCPBE . In this
case, the BTCPBE acts as a client(Figure 6). BTCPBE
uses the packets from BTCPFE , updates the destina-
tion IP address of SYN packet to BE and sends it up-
stream (Figure 6, step 2). TCPBE responds with SYN-
ACK(Figure 6, step 3). BTCPBE records the initial
sequence number of BE, discards SYN-ACK, updates
the ACK packet header properly, and sends it upstream
(Figure 6, step 4).

Packet forwarding. After the hando� is processed
successfully, BTCPFE enters a forwarding mode. It
forwards all the pending data in BTCPFE , which in-
cludes the �rst data packet (containing the requested
URL) (Figure 6, step 6). It continues to forward any
packets on this connection until the forward session is
closed.

During the packet forwarding step, BTCPFE up-
dates (corrects) the following �elds in the packet: 1)
the destination IP address to BE's IP address; 2) the
sequence number of the TCP packet; 3) the TCP check-
sum.

For packets that are sent directly from BE to the
client, the BTCPBE module updates (corrects): 1) the
source IP address to FE's IP address; 2) the sequence
number; 3) TCP checksum. After that, BTCPBE sends
the packet downstream.

Hando� connection termination. The connection ter-
mination should free states at BE and FE. The data
structures at BE is closed by the STREAMS mecha-
nism. BTCPBE monitors the status of the hando�ed
connection and noti�es the BTCPFE upon the close of
the hando�ed connection in TCPBE (Figure 6, step 7).
BTCPFE releases the resources related to the forward-
ing mechanism after receiving such a noti�cation.

Local request processing is performed in the follow-
ing way. After the BTCPFE �nds out that the re-
quest should be served locally, the BTCPFE noti�es
UTCPFE to release the correct T CONN IND message
to upper STREAMS modules, and sends the data packet
(containing the requested URL) to the original TCP
module (TCPFE). BTCPFE discards all the packets
kept for this connection and frees the data structures
associated with this connection. After this, BTCPFE

and UTCPFE send packets upstream as quickly as pos-
sible without any extra processing overhead.

5 Frequent-TCPHando� Design

Partition-based web proxy clusters demonstrate a dif-
ferent usage pattern of TCP hando�: HTTP requests
are more likely to be handed o� compared to rare-TCP
hando�, as we pointed out in the section 3. This dif-
ference leads to a di�erent TCP hando� design. In this
design, the overhead of remote request should be min-
imized. The ow of the remote request processing is
illustrated in Figure 7.

UTCP

TCP

BTCP

UTCP

TCP

HandoffAck

Termination

1

3 4

5

7

2

SY
N

/A
C

K

A
C

K

Handoff ISN

Back-End

URL

A
C

K

SY
N

/A
C

K

SY
N

O
ri

gi
na

l 3
-w

ay
ha

ds
ha

ki
ng

IPIP

6URL

Network

Control Connection

SY
N

BTCP

Front-End

Figure 7: Remote Request Processing for Frequent-TCP
Hando�

The additional modules are introduced at the same
positions in the protocol stack as in the previous design,
and are referred as BFTCP and UFTCP module, to
indicate these modules have di�erent functionalities.

Connection setup. Under rare-TCP hando� design,
the connection-related resources in TCP module are re-
leased by RST message when the hando� is successful.
In the frequent TCP hando�, it is ine�cient to establish
a TCP connection with the TCP module at the front-
end node and then free the connection most of the time.
Connection setup (the original 3-way handshaking) is
reimplemented by the BFTCPFE module to trigger the
client to send the URL. The BFTCPFE also has better
control on TCP options. After BFTCPFE receives the
URL and makes the decision, BFTCPFE may initiate
the hando� connection through control connection as
before (Figure 7, step 1). However, no packet is shipped
along the persistent connection in the hando� request
at this time. BFTCPFE may gather necessary infor-
mation (for example, Initial Sequence Number (ISN),
etc.) from the connection establishment packets, and
then BFTCPBE may construct these packets from the

information provided in the hando� request, and replay
the packets locally at the back-end node (Figure 7, step
2-4). An acknowledgement is returned by the BE to
the FE through the control connection to indicate that
hando� is successful (Figure 7, step 5). If the request
is processed locally at the front-end, the kept connec-
tion establishment packets are replayed to the local TCP
module to create the necessary state.

Packet forwarding. Packets may be forwarded to the
selected server on top of IP layer, in the IP layer, or
under IP layer, depending on the cluster con�guration
and the ratio between the local tra�c and forwarding
tra�c. While BFTCP module may forward the packets
on top of IP layer, similar functionalities can be achieved
by inserting a module on top of device driver.

When BFTCP is implemented on top of the device
driver, and all the back-end nodes are located on the
same LAN (as in the described partion-based proxy
application), it is possible for a cluster to have a vir-
tual IP address, each back-end node is uniquely iden-
ti�ed by MAC address, and the packet is forwarded
by �lling in the right MAC address. This avoids the
Network Address Translation (NAT) on the front-end
and the NAT on the back-end node for outgoing traf-
�c. Upon receiving the DLPI message from the device
driver, BFTCPFE changes the DLPI message format
and destination MAC address and sends the message
downstream.

When the forwarding packets may need to traverse
a router or across a WAN, packet's destination may be
changed to the selected server's IP address and special
protocol may be developed to carry the packet's orig-
inal IP address to the selected server so that the re-
sponse packet's source IP address may be updated ac-
cordingly. BFTCPFE updates the packet's IP address
to the selected server's IP address, and sends the packet
upstream. The IPFE forwards the packet according to
its routing tables to the back-end node. BFTCPBE has
to manipulate the TCP header anyway and updates the
initial sequence number and TCP checksum.

The original TCP connection establishment can be
done in two di�erent modules: either in operating sys-
tem TCP module or BFTCP module. When TCP mod-
ule is used to establish the connection with the client,
the initial sequence number is correct so local request
may respond to the client directly without any packet
header manipulation. If the BFTCP module is used,
because of the local hando�, the initial sequence num-
ber used by the TCP module and BTCP module might
be di�erent so that BFTCP has to update the initial
sequence number and TCP checksum for every outgo-
ing packet for local requests. In this design, we improve
the remote request processing at a price of an additional
small penalty for the local requests processing.

Hando� connection termination. In order to success-
fully and robustly free the front-end forward session, ei-
ther back-end or the front-end node has to observe the
two-way TCP control tra�c. In the rare-TCP hand-

o� design, the BTCPBE sees the two-way tra�c and
knows the status of the TCP connection and sends the
noti�cation to the front-end upon the termination of the
connection.

In frequent-TCP hando� design, connection termina-
tion depends on where the modules are inserted. If the
modules is on top of IP level, the rare-TCP hando� ter-
mination approach is more elegant. If the functionality
of the BFTCP is implemented by a module inserted on
top of device driver, the termination approach described
in the next section for always-TCP hando� is better2.

6 Always-TCP Hando� Design

In always-TCP hando�, there are two kind of nodes, the
dedicated front-end node and the back-end web servers.
The purpose of the front-end node is to trigger the client
to send the URL, and then hando� the connection to the
selected server. The request ow of always-TCP hand-
o� is shown in Figure 8. In this con�guration, only
one module is introduced, BATCP module, at both the
front-end and the back-end nodes. The di�erence be-

URL

A
C

K

SY
N

/A
C

K

SY
N

O
ri

gi
na

l 3
-w

ay
ha

ds
ha

ki
ng

IPIP

6URL

Network

TCP TCP

BTCP

Back-End

3 42

SY
N

/A
C

K

A
C

K

FINRST

BTCP

SY
N

7

Front-End

Figure 8: Request Processing for always-TCP Hando�

tween always-TCP hando� and the previously described
rare- and frequent-TCP hando� is as follows.

Connection setup. The BATCPFE implements
the connection setup function as in BFTCPFE mod-
ule. Packets are exchanged to establish the connection
with the client and get the URL. The state migration is
done by replaying the packets between the front-end and
the back-end node. Since all web tra�c is hando� traf-
�c, a TCP SYN packet arrived at web server listening
port indicates a hando� request is initiated (Figure 8,
step 1) and BATCPBE sends the SYN packet upstream

2The module on top of the device driver may not see two-way
tra�c in case the multiple network interface cards exist, and in-
coming tra�c and outgoing tra�c go through di�erent interfaces.

(Figure 8, step 2). TCP persistent connection may not
be needed because there is no need to tell the back-end
node that a particular ow is the hando� connection.

The SYN-ACK packet from TCPBE is intercepted
by BATCPBE to the front-end by changing IP address
(Figure 8, step 3). The BATCPBE receives ACK and
records the initial sequence number returned by the
BATCPFE (Figure 8, step 4). No acknowledgement is
needed. URL is forwarded as before in step 6.

Packet forwarding should be done at quickly as possi-
ble. In this con�guration, it might be better to forward
the packet on top of the device driver, also virtual IP
address should be used to avoid network address trans-
lation at the front-end because it is much easy for the
front-end to become the bottleneck for the whole clus-
ter.

Hando� connection termination. The hando�
connection is closed in the following fashion. The
BATCPBE intercepts the TCP control packets (pack-
ets with ags on, for example, RST, FIN) and sends it
to the BATCPFE (step 7). The BATCPFE records the
connection progress and relays the packets to the client.
Data tra�c goes directly to the client. The front-end
sees two way tra�c and may keep track of hando� con-
nection status and closes the connection in timely man-
ner.

7 Content-Aware Request Pro-
cessing and Di�erentiation

Content-aware request processing can provide the nec-
essary request di�erentiation and performance isolation,
which is essential to today's business web site. Request
di�erentiation may be supported either at user level,
or at kernel level by content-aware protocol stack. At
user level, the request di�erentiation is typically imple-
mented by the distributing process, which accepts all
the incoming HTTP requests, classi�es the requests into
one of several classes (queues). The working processes
get the requests from the queues, and process the re-
quests. The distribution process may be implemented
by the web server software itself, or may be supported
by a separate process that feeds the requests to the web
server software transparently.

Kernel based request di�erentiation has the following
advantages:
No extra bottlenecks. User-level implementation

introduces the distribution process, which controls all
the incoming tra�c, and classi�es them into di�erent
priorities queues. That introduces another central con-
trol point, which might become a bottleneck. The num-
ber of distributing processes that are su�cient to pro-
cess the incoming requests e�ciently is highly workload
dependent. Kernel-level implementation does not in-
troduce the additional central control points except the
ones existing in the kernel already.
Less resource consumption. When the server

reaches the overloading point, the admission control has
to take place. It is strongly desirable that if the server
decides to reject the request (or a new session), a sim-
ple rejection message is returned so that the user will
not try to submit the same request again and again. For
such requests, processing them as quickly and e�ciently
as possible is critical. User-level implementation has to
accept the connection, get the request, and return a
message. Kernel-level implementation, performing sim-
ilar actions, is much more e�cient: it does not introduce
context switches and socket bu�ers.
E�cient measurements. Kernel-level implemen-

tation may get accurate information quickly and accu-
rately compared to user-level implementation. These
measurements may be important to the decision pro-
cess, such as the number of connections open at given
moment, activities on each open connection, average
response time, the network bandwidth and roundtrip
times of each connection, etc. The kernel implementa-
tion may take advantages of these measurements and
make more intelligent decision.

Content-aware request processing is designed to per-
form the following functions:
1. Request Classi�cation. The classi�cation iden-

ti�es a request and assigns it to a class. Information
within the request or provided by the application is ap-
plied against the classi�cation policies to determine the
request class.

The back-end node depends on the operating sys-
tem TCP module to �nish three-way handshaking.
The UTCP in back-end node has the necessary num-
ber of priority queues and a partially-�nished con-
nection queue. BTCP creates a simple structure for
each connection and sends the connection establish-
ment packets upstream. UTCP holds the corresponding
T CONN IND message into the partially-�nished con-
nection queue. After TCP module �nishes three-way
handshaking with client, the client sends the URL to
the server. BTCP retrieves the URL after receiving the
packet, and classi�es the request according to the policy
speci�ed by the administrator. BTCP sends the clas-
si�cation of the URL to the UTCP, and UTCP places
the corresponding T CONN IND message from the par-
tially �nished connection queue to one of the supported
class queues.

This design may support the persistent connections.
Since for persistent connections, the connection has
been already established and exposed to the application,
UTCP intercepts the subsequent requests, and classi�es
them into one of the classes, and places the message
(T DATA IND) in one of the queues.

2. Admission Control. The admission control
mechanism prevents server from overload. The classes of
requests, the admission control policies and the system
or service load measurements may be used to determine
whether to accept a request (or a new session). Action
policies may specify redirecting tra�c to other nodes
inside or outside of the cluster, or return a message in-

dicating that the web server is currently busy.
The admission control mechanism can be deployed

using BTCP module. First, BTCP checks the URL (or
cookie), if this request can not be served at this time,
the BTCP sends the message to the client and releases
the connection by sending a RST message upstream.

For subsequent requests on a persistent connection,
UTCP checks the URL (cookie) from the T DATA IND
message, and makes the decision. If such a request can
not be served at this time, UTCP sends the customized
message to TCP module and releases the connection.
The returned message may be a redirection to other
servers, or a customized message stating that the server
is busy at this moment.
3. Request Scheduling. Request scheduling is

used to provide performance isolation or di�erentiation
depending on the scheduling and classi�cation policies.
UTCP module may support a set of request schedul-
ing strategies, for example, FIFO, fair-sharing, weighted
fair-sharing, strict priority queue, etc.

Some advanced request scheduling policies might be
supported too. Additionally, UTCP and BTCP may
take some measurements, so the rate-based schedul-
ing may be used to guarantee a minimum share of the
throughput to a particular class.

8 Conclusion

Research on request distribution and request di�erenti-
ation receives much attention from both industry and
academia. Providing scalable and predictable service is
essential for future Internet web sites. Content-aware re-
quest processing enables intelligent routing and request
processing inside the web cluster to support the quality
of service requirements for di�erent types of content and
to improve overall cluster performance.

STREAMS-based TCP/IP implementation, which is
available in leading commercial operating systems, of-
fers a framework to implement the TCP hando� mech-
anism as plug-in modules in the TCP/IP stack.

In this paper, we use three di�erent applications to
discuss speci�cs of content-aware request routing and
related architectural design issues. The di�erence in
the usage patterns leads to di�erent trade-o� decisions
in the modular implementation of TCP hando� mecha-
nism. We discuss these trade-o�s and propose a library
of STREAMS modules implementing the TCP hando�
functionality which addresses di�erent cluster architec-
tures and optimizes the TCP hando� mechanism for
speci�c usage patterns. Additionally we discuss kernel-
level support of content-aware request processing, using
a set of STREAMS modules. This proposes an interest-
ing framework to implement di�erentiated services in a
web server such as request classi�cation, session man-
agement, request queuing, admission control, and/or re-
quest scheduling.

The library of STREAMS modules, proposed in this

paper, o�ers a set of attractive bene�ts: portability, ex-
ibility, transparency, and e�ciency to support scalable
web server cluster design and smart, specially tailored
request routing inside the cluster. More importantly,
these modules allow easier integration into commercial
systems so that end user may bene�t from them sooner.

References

[1] M. Aron, D. Sanders, P. Druschel, W. Zwaenepoel.
Scalable Content-Aware Request Distribution in
Cluster-based Network Servers. In Proceedings of
the USENIX 2000 Annual Technical Conference,
San Diego, CA, June 2000.

[2] N. Bhatti, R. Friedrich. Web Server Support for
Tiered Services. IEEE Network J., vol. 13, no. 5,
Sept-Oct, 1999, pp. 64-71.

[3] L. Cherkasova, P. Phaal. Session Based Admission
Control: a Mechanism for Improving Performance
of Commercial Web Sites. In Proceedings of Sev-
enth International Workshop on Quality of Service,
IEEE/IFIP event, London, May 31-June 4, 1999.

[4] L. Cherkasova. FLEX: Load Balancing and Man-
agement Strategy for Scalable Web Hosting Ser-
vice. In Proceedings of the Fifth International
Symposium on Computers and Communications
(ISCC'00), Antibes, France, July 3-7, 2000, p.8-13.

[5] A. Cohen, S. Rangarajan, and H. Slye. One the
Performance of TCP Splicing for URL-Aware redi-
rection. In Proceedings of the 2nd Usenix Sympo-
sium on Internet Technologies and Systems, Boul-
der, CO, Oct, 1999.

[6] V. Pai, M. Aron, G. Banga, M. Svendsen, P.
Drushel, W. Zwaenepoel, E. Nahum: Locality-
Aware Request Distribution in Cluster-Based Net-
work Servers. In Proceedings of the 8th Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
1998, pp. 205-216.

[7] X. Zhang, M. Barrientos, J. Chen, M. Seltzer:
HACC: An Architecture for Cluster-Based Web
Servers. In Proceeding of the 3rd USENIX Win-
dows NT Symposium, Seattle, WA, July, 1999.

[8] Data Link Provider Interface (DLPI), UNIX Inter-
national, OSI Work Group.

[9] Transport Provider Interface (TPI), UNIX Inter-
national, OSI Work Group.

[10] D. Karger and A. Sherman and A. Berkheimer:
Web Caching with Consistent Hashing, Proceed-
ings of 8th World Wide Web Conference, May,1999.

