

SEG – A Provably Secure Variant of El-Gamal

David Soldera
Trusted E-Services Laboratory
HP Laboratories Bristol
HPL-2001-149
June 21st , 2001*

E-mail: David_Soldera@hp.com

provable
security, Zheng-
Seberry,
Cramer-Shoup

The Zheng-Seberry (ZS) [9] encryption scheme was published in
1993 and was one of the first practical schemes that was
considered secure against an adaptively chosen ciphertext
adversary. This paper shows that the semantic security of the
one-way hash variant of the ZS scheme is actually insecure
against an adaptively chosen ciphertext adversary. Attempts to
modify the ZS scheme resulted in a variant of El-Gamal that is
provably secure against an adaptively chosen ciphertext
adversary using standard public-key cryptography assumptions
i.e. not the random oracle model.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

 1

SEG - A PROVABLY SECURE VARIANT OF EL-GAMAL

David Soldera*

Hewlett-Packard Labs, Bristol BS34 8QZ, England
David_Soldera@hp.com

Abstract. The Zheng-Seberry (ZS) [9] encryption scheme was published in
1993 and was one of the first practical schemes that was considered secure
against an adaptively chosen ciphertext adversary. This paper shows that the
semantic security of the one-way hash variant of the ZS scheme is actually
insecure against an adaptively chosen ciphertext adversary. Attempts to
modify the ZS scheme resulted in a variant of El-Gamal that is provably
secure against an adaptively chosen ciphertext adversary using standard
public-key cryptography assumptions i.e. not the random oracle model.

Keywords: Zheng-Seberry, provable security, Cramer-Shoup.

1 INTRODUCTION

In 1993 Zheng-Seberry presented a paper introducing three new public -key encryption
schemes that were the first efficient schemes (considered) secure against an adaptively chosen
ciphertext adversary, under some assumptions. The ZS paper has been widely referenced in
literature [2, 4], even as recently as Eurocrypt 2000 [6]. This paper introduced a new notion
called ‘sole-samplable space’, a precursor to the idea of message awareness. It was also one
of the first papers to combine encryption and signatures in the one scheme. This would
eventually lead to the new concept of signcryption, introduced by Zheng in [10].

In section 2.2 of this paper we show the ZS one-way hash scheme is not secure against an
IND-CCA2 adversary. Lim and Lee [4] also discovered how ZS can be manipulated, but they
appear to have failed to see how to use it to break ZS in the IND-CCA2 sense. Also
presented is a simple fix for the ZS scheme. Actually the fix is one suggested by Zheng in a
paper extending ZS for use in authenticated encryption [8]; however Zheng stresses the
change is only needed for the authenticated encryption scheme. The fix of ZS says nothing
about its security.

Since then much progress has made in the area of provable security for public -key
cryptosystems, from those that use the Random Oracle (RO) model [2] to the scheme by
Cramer-Shoup (CS) [4] that is provably secure using standard public key cryptography
assumptions.

Using the RO model or standard assumptions for a proof of security, represent opposite ends
of the provable security spectrum. The RO model yields extremely efficient [2] schemes yet
practical implementations using hash functions cannot hope to achieve actual RO’s. At the
other end of the spectrum are standard assumptions, they give us much more confidence in

* This work was partially carried out during a Masters of Computer Science (Hons) with the Centre for Computer Security
Research University of Wollongong, NSW 2522, Australia.

 2

security, yet the schemes that are available are still too inefficient (at least compared to RO
schemes) for the majority of practical implementations.

The new scheme SEG presented in this paper starts to bridge this gap between efficiency and
assumptions. If we compare SEG to CS, SEG has half the communication overhead and has
only 3 exponentiations in total, compared to 8 for CS, yet relies on the same assumption, the
Diffie-Hellman Decision Problem. While SEG falls just short of being as efficient as some
RO schemes, it is closer than any other scheme that enjoys provable security using standard
assumptions.

The new SEG scheme was born out of studying the one-way hash (OWH) variant of the
original ZS scheme. For SEG to be considered secure a proof of security needs to be
provided and the best proof technique (in that it requires the least assumptions) is that by
Cramer-Shoup. So Section 4 presents the new SEG scheme and a proof of security which
borrows many parts of the CS proof.

2 ZS SCHEME

The ZS paper presented three variants of an El-Gamal like cryptosystem. The three variants
were described as ‘immunising’ the cryptosystem against an adaptively chosen ciphertext
adversary. The variants incorporated a one-way hash function (OWH), a universal hash
function and a digital signature.

2.1 ZS-OWH

The OWH variant is presented below.

ZS-OWH
Preliminaries
Consider messages of length n, a one-way hash function H with output length k0 and a PRNG
G with output length n + k0. Operations are modulo p and there is a generator g.
Key Generation
Private key is xR ∈ GF(p) and public key is pgy Rx

R mod= .
Encryption
Encrypt message m
1) x ∈R [1, p – 1]
2) () ()[]01 kn

x
RyGz += K

3) t = H(m)
4) c1 = gx
5) c2 = z ⊕ (m||t)
Ciphertext is (c1, c2)
Decryption
1) () ()[]011 kn

xRcGz +=′ K

2) w = z′ ⊕ c2
3) m = w[1…n]
4) () ()[]01 knnwt ++=′ K

If H(m) = t′ then output m else output ∅

2.2 Breaking ZS-OWH in IND-CCA2 Sense

It has become standard practice that the level of security required for a public -key
cryptosystem is industinguishability of encryptions, IND, (equivalently semantic security or

 3

non-malleability) against a chosen ciphertext adversary (CCA2). For formal definitions and
notation see [1]. The basic idea behind an IND-CCA2 adversary is that they are given access
to an encryption and decryption oracle, they then choose two messages, one of which gets
encrypted (they do not know which). They are then presented with the ciphertext of the
encrypted message and asked to determine which of the two messages was encrypted. A
successful adversary succeeds with probability non-negligible better than ½. The only
restriction is that the adversary may not query the decryption oracle with the challenge
ciphertext.

To break ZS-OWH in the IND-CCA2 sense involves creating a new ciphertext from an
existing ciphertext; however, this can only be done if the message corresponding to the
existing ciphertext is known.

To see how this is achieved consider the last part of the ciphertext, (m || H(m)), it only
depends on the message, so if the message is known, this part of the ciphertext can be
recreated. If the adversary wishes to replace the message m with another message m′, this can
be achieved via:
 c2′ = c2 ⊕ (m || H(m)) ⊕ (m′ || H(m′))
 = z ⊕ (m || H(m)) ⊕ (m || H(m)) ⊕ (m′ || H(m′))
 = z ⊕ [(m || H(m)) ⊕ (m || H(m))] ⊕ (m′ || H(m′)) (expression in [] is 0)
 = z ⊕ (m′ || H(m′))

The new ciphertext is (c1, c2′) and the adversary is successful in manipulating the
cryptosystem.

This attack can be used by a CCA2 adversary to defeat IND and the adversary succeeds 100%
of the time. In this situation the adversary does not know which of two messages, m0 or m1,
has been encrypted, but he knows one of them has been. Let the encrypted message be mb
where b ∈ [0,1]. The adversary uses the above attack by setting m = m0 and m′ = m1 and
creates a new cryptogram via:
 c2′ = c2 ⊕ [m0 || H(m0)] ⊕ [m1 || H(m1)]
 = ()[]

bb
mmz H||⊕

Hence the adversary creates a new ciphertext (c1, c2′), which is a valid ciphertext for the
message that was not encrypted in the challenge ciphertext. Since the adversary is a CCA2
adversary, and the new ciphertext is not the challenge ciphertext, he may query the decryption
oracle with it. The decryption oracle will dutifully return the message that was not encrypted,

bm , and the adversary makes their choice for b as corresponding to the message not returned
by the decryption oracle.

The ZS-OWH scheme is largely of theoretical value to the cryptographic community, so
while breaking the scheme does not have many practical implications, it is still of theoretical
interest. This break highlights the importance of adding random information to the integrity
check on the message.

This attack on ZS-OWH is a relatively trivial one and as could be expected a trivial change to
the scheme thwarts this attack. By simply creating a new variable x

Ryr = and changing t =
H(m||r), then the attack no longer works. The change incorporates some randomness into the
hash calculation and thus defeats the above attack as the adversary can no longer create the
concatenation of message and hash. This is because the adversary does not know the random
information. This change defeats the above attack, but of course this does not prove the
security of the scheme.

 4

This change was borrowed from an authenticated-encryption version of ZS-OWH by Zheng
[8], however Zheng stresses that the changes made are only needed for the new scheme
proposed and that the original scheme is secure.

3 SEG

The attack and the repair of the original ZS-OWH leave a rather large question mark over its
security. Securing the original ZS-OWH scheme led to a new El-Gamal variant. (Note,
completely new notation is adopted for the rest of this paper)

SEG
Preliminaries
Consider messages of length n - k0, a hash H with output length k0. All operations are
performed in the group G of order q (q is a large prime) in which there exists a generator g.
There also exists some (invertible) deterministic method ()⋅π to encode a message as an
element of G.
Key Ge neration
Private key is z ∈ Zq and public key is h = gz.
Encryption
Encrypt message m
1) r ∈R Zq
2) rh=ε
3) t = H(m || ε)
4) ()tmM ||π=
5) u = gr
6) e = ε ⋅ M
Ciphertext is y = (u, e)
Decryption

1) zu='ε

2)
'

'
ε
e

M =

3) ()''|| 1 Mtm −= π
If H(m || ε ′) = t′ then output m else output ∅

If the group chosen were the set of quadratic residues a possible encoding method ()⋅π would
be simple squaring (given m||t was interpreted as an element of Zp modulo a large prime p of
the form 2q + 1). Then in step 2 of the decryption, if neither square root yields a correct hash
then the output is also ∅.

4 PROOF OF SECURITY

4.1 DDHP

All the proofs for SEG rely on the difficulty of the Decision Diffie -Hellman Problem
(DDHP), the definition of which, from [4], is given below.

Definition 1 – [4, pg. 16] Let G be a group of large prime order q, and consider the following
two distributions:

- the distribution R of random quadruples (g1, g2, u1, u2) ∈ G4;

 5

- the distribution D of quadruples (g1, g2, u1, u2) ∈ G4, where g1, g2 are random, and

u1 = g1
r and u2 = g2

r for random r ∈ Zq.

An algorithm that solves the DDHP is a statistical test that can effectively distinguish these

two distributions. ?

4.2 SEG′

We will prove the security of SEG by proving the security of an equivalent cryptosystem
SEG′, presented below.

SEG′
Preliminaries
Consider messages of length n - k0, a hash H with output length k0. All operations are
performed in the group G, of order q (q is a large prime) and there exists two generators g1
and g2. There also exists some (invertible) deterministic method ()⋅π to encode a message as
an element of G.
Key Generation
Private key is z1, z2 ∈ Zq and public key is 21

21
zz ggh = .

Encryption
Encrypt message m
1) r ∈R Zq
2) rh=ε
3) t = H(m || ε)
4) ()tmM ||π=
5) u1 = g1

r
6) u2 = g2

r
7) e = ε ⋅ M
Ciphertext is (u1, u2, e)
Decryption
1) 21

21' zz uu=ε

2)
'

'
ε
e

M =

3) ()''|| 1 Mtm −= π
If H(m || ε ′) = t′ then output m else output ∅

SEG′ can be converted to SEG by setting z2 = 0, this makes u2 completely redundant since it
is no longer needed to decrypt.

4.3 Reducing SEG′ to SEG

We show that the security of SEG′ implies the security of SEG. This will be done in two
steps, first the security of SEG′ with z2 = 0, call it 02

'SEG =z , will be shown, then u2 will be
removed. The two schemes are identical after these changes.

Let A be an IND-CCA2 adversary with an advantage in breaking 02

'SEG =z . We will use A to
construct an IND-CCA2 adversary B with an advantage in breaking SEG′.

We now define adversary B. B can run in two stages, a ‘find’ stage and a ‘guess’ stage. The
find stage is responsible for finding a pair of messages to distinguish (it will also output some

 6

state information s) and the guess stage is responsible for distinguishing which message was
encrypted in the challenge ciphertext. Let D() be the decryption oracle that B has access too.

Algorithm B(find, g1, g2, h, q, G)
 Run A(find, g1, g2, h, q, G)
 When A makes a decryption query, y′, respond with
 m ← D(y′)
 A returns (m0, m1, s)
B returns (m0, m1, s)

Algorithm B(guess, m0, m1, s, y)
 Run A(guess, m0, m1, s, y)
 When A makes a decryption query, y′, respond with
 m ← D(y′)
 A returns b′
B returns b′

Any valid ciphertext that A produces will be of the form ()Mgguu zz 21

2121 ,, since A encrypts

with public key 21
21
zz ggh = , hence any valid ciphertexts can be passed to D() and will be

correctly decrypted. It follows that if A has an advantage then so does B.

By simple inspection of 02

'SEG =z we see that u2 now serves no purpose in the decryption
algorithm and so can be removed from the scheme leaving us with SEG.
4.4 IND-CPA security of SEG′

We will show SEG′ is secure against an IND-CPA adversary. Proving the IND-CPA security
of SEG′ is important as it will be needed to prove the IND-CCA2 security.

Theorem 1 – If the DDHP is hard in the group G, then SEG′ is secure in the sense of IND-
CPA.

Proof.
We assume there exists an adversary, A, that has an advantage in breaking SEG′ in the IND-
CPA sense. We will use A to construct an adversary B with an advantage in breaking El-
Gamal in the IND-CPA sense. El-Gamal encrypts a message m as (gr, hrm) where g is a
generator, h = gz is the public key with z the secret key and r is random. This will complete
the proof as the IND-CPA security of El-Gamal has been shown to be equivalent to DDHP
[7].

Let the number of bits used to represent a group element in El-Gamal be l. Let the number of
bits used to represent the message in SEG′ be l′. Then l = l′ + |H|, where |H| is the size in bits
of the output of the hash function.

Algorithm B(find, g, h, q, G)
 Let g1 = g
 Choose w ∈R Zq such that g2 = g1

w is a generator
 (m0′, m1′, s) ← A(find, g1, g2, h, q, G)
 Choose random elements c0, c1 ← Z|H|
 m0 = m0′ ||c0, m1 = m1′ ||c1
B returns (m0, m1, s)

Algorithm B(guess, m0, m1, s, y)

 7

 Parse y as (u1, e)
 y′ = (u1, u1

w, e)
 m0′ = m0[1..l′], m1′ = m1[1..l′]

 b′ ← A(guess, m0′, m1′, s, y′)
B returns b′

We assume that the same encoding of the message to a group element is used in both
schemes. Note, in SEG′ the encoding is of the message hash concatenation.

Let () α=− kAdvantage CPAIND

SEGA ', where ()kAdvantage CPAIND
SEGA

−
', is the advantage of the IND-CPA

adversary A against SEG′ on input security parameter k . We will show that if this advantage
is non-negligible then () '

, 2 lCPAIND
GamalElB kAdvantage −−

− −=α .

First we argue the construction of B is valid. In the guess stage, B has to choose w ∈R Zq such
that g2 = g1

w is a generator, there are φ(q) generators in the group, so algorithm B2 can do this
in polynomial time. The value hrM has the form gzrM for El-Gamal and ()Mg wzzr 21

1
+ in SEG′,

but the El-Gamal form is submitted to the SEG′ adversary, this is not important however since
DDHP ensures no adversary can tell gzr and ()21

1
wzzrg + apart for random r. Also, without

access to a decryption oracle, the value of the secret key is not important (nor the value of the
hash).

The find stage of A creates and returns m0 and m1, both have length l′. This means that A
cannot be used to distinguish between all the message pairs in the message space for El-
Gamal, as El-Gamal messages are of length l. But A will distinguish between all message
pairs where the first (counting from the most significant bit) l′ bits of both messages differ in
at least 1 bit.

So, we argue that since there is a significant set of message pairs that differ in the first l′ bits
(for suitable large l, l′ and |H|), then the adversary against El-Gamal will have an advantage in
the average case (that is, choose m0 and m1 uniformly).

Pr[[]'..10 lm = []'..11 lm] = 2-(l - |H|) = 2- l′

Hence for suitable large l′, the adversary against El-Gamal will have an advantage.

() '
, 2 lCPAIND

GamalElB kAdvantage −−
− −= α

¦

4.5 The Hash function

The nature of the hash function has not been described yet as it was unimportant for IND-
CPA security. The hash function could be a weakly collision-free one-way hash function (a
weak universal one-way hash function or a weak one-way hash function would be
appropriate). This however, is probably a stronger assumption than is necessary.

Weak collision freeness requires some target x and the problem is to find a y such that H(x) =
H(y). Consider the input to the hash for SEG′, it is the message and ephemeral key (hr), now
a set of possible messages may be known but the DDHP ensures the ephemeral key cannot be
recreated. This means that the input value of the hash cannot be recreated, so we have no
target x to find a collision for. One-wayness assumes you have some hash value H(x) and the
problem is to find x, but IND-CPA and the DDHP guarantees that not one bit of the coded
message (M) is leaked so the ciphertext perfectly hides the value of the hash.

 8

Considering these facts for an adversary trying to attack a challenge ciphertext show the
adversary’s options are severely limited. Even knowing a collision related to m0 or m1 is of
no use if the ephemeral key is not known. Being able to invert a one-way hash function is
only useful if you know the hash value. It is not even clear how the birthday attack would
useful in this situation. These arguments of course do not rule out some ingenious attack, but
they are compelling. Of course if we assume collision freeness and one-wayness then we can
be assured of security.

Certainly standard hash functions like SHA-1 are fine for use in any implementation of the
scheme.

4.6 Sketch of proof for IND-CCA2 security of SEG′

Now we show SEG′ is secure against an IND-CCA2 adversary. First we give the
construction of the proof. It is assumed there exists an adversary A that can break the
cryptosystem in the IND-CCA2 sense and then it is shown how this adversary can unwittingly
be used to help solve what is considered a computationally unfeasible problem, in this case
the DDHP. The construction of the proof can be seen in Figure 1.

The input to the proof are quadruples coming from either D or R (but not both). These go to a
constructed simulator, which is responsible for, the creation of keys, simulation of an
encryption oracle and simulation of a decryption oracle. The adversary receives all its
information, including oracle queries, from the simulator.

The proof runs as follows. A quadruple is input and the simulator creates a valid secret key
and public key. The simulator runs the find stage of A, and A returns two messages, m0 and
m1. The simulator then runs the simulated encryption oracle which chooses a random bit b ∈
[0, 1], encrypts mb and outputs the challenge ciphertext. The adversary cannot see the
simulator’s choice for b.

The simulator then runs the guess stage of the A on input the challenge ciphertext and A
outputs its guess, b′, for the random bit. Both the simulator and the adversary pass b and b′
respectively to a distinguisher that outputs 1 if b = b′ otherwise 0.

Consider the case when the input comes from R, the simulator is unable to create a valid
ciphertext (as the relation that quadruples from D have, are not present in quadruples from R).
This fact will be crucial in showing the adversary cannot succeed in guessing b with any
advantage. Alternatively, when the input comes from D, then the simulator creates a perfectly
valid ciphertext and the adversary can guess the bit b with an advantage.

 9

Figure 1 – Graphical representation for the construction of the SEG′ proof.

Hence by observing the distribution of 0’s and 1’s that are output by the distinguisher, it can
be determined which distribution the quadruples are coming from. If the quadruples are
coming from R then 1’s will occur with probability ½ and 0’s with probability ½. The
adversary will only be correct half the time, as it has no advantage. If the quadruples come
from D then the adversary has an advantage and 1’s will occur with probability ½ + α (where
α is the adversary’s non-negligible advantage) and 0’s with probability ½ - α.

Hence, by observation of the output distribution, one has a statistical test for the DDHP.

The construction of the proof is relatively simple, however there are several properties that
must hold for the proof to be valid.
• The simulator must create a valid ciphertext if the quadruple comes from D and an invalid

ciphertext if the quadruple comes from R.
• When the quadruple comes from D the joint distribution of the adversary’s view and the

random bit b must be statistically indistinguishable from that in an actual attack
• When the quadruple comes from R the distribution of the random bit b must be

(essentially) independent from the adversary’s view.

4.7 IND-CCA2 security for SEG′

Theorem 2 – If the Diffie-Hellman Decision Problem is hard in the group G, then SEG′ is
secure against an adaptive chosen ciphertext attack.

First the simulator is described. On input the quadruple (g1, g2, u1, u2) the simulator generates
random private keys z1, z2 ∈R Zq and outputs the public key as 21

21
zz ggh = .

IND-CCA2
adversary, A, that

can break the
cryptosystem.

Simulator

Key Generation
Set up keys

Simulation of
Encryption
Oracle

Simulation of
Decryption
Oracle

Input from D or R.

Distinguisher
b b′

0 or 1

 10

The simulator simulates the encryption oracle as follows. On input two messages m0 and m1
it selects a random bit b ∈ [0, 1], a random number j ∈R Zq and computes:
 21

21
zz uu=ε

 e = ε ⋅ π(mb || H(j))

The simulated encryption oracle outputs (u1, u2, e), where u1 and u2 come from the input
quadruple to the simulator. Note the change from the normal encryption algorithm, the hash
of mb and ε is replaced with the hash of a random number j. The reason for this will
explained in Lemma 2. It is important that this change does not affect the adversary’s
advantage, and this will be shown in Lemma 1.

The simulated decryption oracle works in exactly the same way as the decryption algorithm,
and is just given for completeness. On input (u1, u2, e) it computes:
 21

21' zz uu=ε

'

'
ε
e

M =

 ()''|| 1 Mtm −= π

If ')'||(tmH =ε the simulated decryption oracle outputs m, else it outputs ∅.

The aim now is to show that when the input comes from D the simulator simulates the
encryption and decryption oracles perfectly (probabilistically) and the advantage of the
adversary is apparent at the distinguisher. Alternatively, if the input comes from R then the
output of the simulated encryption oracle will not be a valid ciphertext in the sense that

21 21
loglog uu gg ≠ and the adversary can have no advantage in guessing b.

The theorem follows from the following two lemmas.

Lemma 1 – When the simulator’s input comes from D, the joint distribution of the
adversary’s view and the hidden bit b is statistically indistinguishable from that in the actual
attack.

In this case it is clear the output of the simulated encryption oracle has the right distribution as

() rrzzrzrzzz hgggguu === 212121
212121 , which gives the same distribution as the output of the actual

encryption oracle due to the ephemeral key being the same.

The presence of the hash of j does not affect the advantage of any passive attack the adversary
might try because IND-CPA guarantees that no information about M is leaked and so a
ciphertext that contains H(j) is indistinguishable from a ciphertext containing H(mb||ε). It is
easy to see if there exists some algorithm C that could distinguish ciphertext c0 = ε 0.π(mb||
H(mb||ε 0)) from c1 = ε 1.π(mb|| H(j)) with some advantage α, then we could construct an
algorithm B to break SEG′ in the IND-CPA sense with advantage α/2. Algorithm B would
just run its find stage and output two messages. B would pass these to the encryption oracle
and receive the challenge ciphertext c. B then chooses a random bit b′ and a random number
j, and constructs c′ = ε′.π(mb′ ||H(j)) and runs C(c, c′). Clearly only ½ of the time, when b =
b′, will C have an advantage, making B’s advantage α/2.

We also need to show there is no adaptive attack the adversary can use that relies on the hash
in the challenge ciphertext being correct. The only attack that would need the correct hash
value would be for the adversary to create some new ciphertext using the challenge
ciphertext, such that this new ciphertext uses the same hash as the hash in the challenge
ciphertext. However, this requires the same message and ε to be used as these are the

 11

corresponding inputs to the hash (we have assumed a collision cannot be found). This makes
it impossible for the new ciphertext to be different from the challenge ciphertext, since the
secret key is fixed and there is only one r that yields ε .

If the simulated encryption oracle produces an indistinguishable output, then the entire
simulation is indistinguishable (from the actual oracles to the adversary) if the simulated
decryption oracle behaves in the exactly same way as the actual decryption oracle. Since the
quadruple comes from D and the simulated decryption oracle is identical in its computations
to the actual decryption oracle, the simulated decryption oracle will be indistinguishable from
the actual decryption oracle.

Lemma 2 – When the simulator’s input comes from R, the distribution of the hidden bit is
(essentially) independent from the adversary’s view.

When the quadruple comes from R we have 1

11
rgu = and 2

22
rgu = where there is only a

negligible chance that r1 = r2. We will show that the adversary’s view is independent of the
hidden bit b by showing that if no information about the secret keys is leaked, then the
challenge ciphertext is equally likely to be the encryption of m0 or m1, or in fact any message.

Assuming the simulated decryption oracle only decrypts valid ciphertexts, we now show that
no information about the secret keys is leaked by a valid ciphertext. Consider the following
equations from the public key and a valid ciphertext.

21

21

loglog
log

rwzrzhr
wzzh

+==
+=

ε

Where g2 = g1
w and log refers to

1
log g . Clearly they are linearly dependant and leak no

information about z1 or z2.

Now consider the output of the simulated encryption oracle, here we derive the following
equation.

2211log wzrzr +=ε
This is clearly linearly independent with 21log wzzh += . If we consider the solutions to

these two equations, they are all the pairs of z1 and z2 that satisfy 21log wzzh += , but all
these pairs cause ε to take on every value (i.e. a permutation) of G. This means ε perfectly
hides Mb, as for every possible Mb there is an ε consistent with e (e is fixed), and that ε can be
constructed from a pair of secret keys z1 and z2 that are consistent with the public key. The
fact that ε hides Mb perfectly makes it equivalent to a one-time pad.

If no other information about z1 and z2 is available (that is the simulated decryption rejects all
invalid ciphertexts and a valid ciphertext leaks no information about z1 and z2), then clearly
determining which solution is correct is impossible, as it varies uniformly. We are showing
that when the quadruple comes from R, e is equally likely to be the encryption of m0 or m1, or
any message. This is why we do not hash the message in the challenge ciphertext, as this
would constrain e to being the encryption of mb, and rule out it being the encryption of bm .
Since the adversary cannot determine the correct solution, the adversary can only guess b,
meaning the adversary has no advantage. Hence, the bit b is independent from the
adversary’s view.

The above argument relies on the simulated decryption oracle rejecting all invalid ciphertexts;
otherwise information about z1 and z2 may be leaked. A valid ciphertext is (u1, u2, e), an

 12

invalid one is (u1′, u2′, e′), and t′ = H(m′ ||ε′). We consider possibly ciphertexts submitted to
the simulated decryption oracle.
1) (u1′, u2′, e). The adversary will choose u1′ and u2′ to create an ε′ such that either ε′ = ε or

ε′ ≠ ε . There are q pairs of r1′ and r2′ such that εε ===′′=′ 21221121
21

'
2

'
121

zzzrzrzz uugguu but
without knowledge of z1 and z2 the adversary can only guess from the set of size q2 of all
r1′ and r2′ pairs, which means he only succeeds with probability 1/q. If ε′ ≠ ε then let

[]0...1

1*
knn

e
t

++

−

′
=

ε
π and

[]n

e
m

...0

1*

′
= −

ε
π and we claim that ()ε ′≠ ||*H* mt except with a

probability equivalent to that of finding a random collision for the hash function. In both
cases the simulated decryption oracle will reject the ciphertexts with overwhelming
probability.

2) (u1, u2, e′). With e ≠ e′, then let
[]0...1

1*
knn

et
++

−

 ′

=
ε

π and
[]n

e
m

...0

1*

 ′

= −

ε
π and we claim

that ()ε||*H* mt ≠ except with a probability equivalent to that of finding a random
collision for the hash function.

Thus, the simulated decryption oracle will reject all invalid ciphertexts, except with negligible

probability. ?

Hence if the DDHP is a computationally unfeasible problem then an IND-CCA2 attacker for
SEG′ cannot exist.

5 CONCLUSION

This paper has shown that the one-way hash variant of the scheme by Zheng-Seberry [9] is
insecure in the sense of IND against an adaptively chosen ciphertext adversary.

A new scheme was created called SEG, which was shown to be provably secure against an
IND-CCA2 adversary. The advantage of this new scheme is its efficiency (compared to CS),
and that its proof relies only on standard assumptions (it does not require the RO assumption).

6 ACKNOWLEDGMENTS

The break of the Zheng-Seberry scheme was discovered during discussions with Associate
Professor Josef Piepzyck. I would also like to thank Steven Galbraith for useful discussions
about the proof of security for SEG′.

7 REFERENCES

1. Bellare, M., Desai, A., Pointcheval, D., and Rogaway, P. "Relations among notions of
security for public-key encryption schemes" in CRYPTO'98. LNCS 1462, pg 26-45.
Springer-Verlag, California, 1998.

2. Bellare, M. and Rogaway, P. "Optimal asymmetric encryption - how to encrypt with
RSA" in EUROCRYTP'94. LNCS 950, pg 92-111. Springer-Verlag, 1994.

3. Boneh, D. "The decision Diffie -Hellman problem" in Third Algorithmic Number
Theory Symposium (ANTS). LNCS 1423, Springer-Verlag, 1998.

4. Cramer, R. and Shoup, V. "A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack" in CRYPTO'98. LNCS 1462, pg 13-25.
Springer-Verlag, California, 1998.

5. Lim and Lee, “Another method for attaining security against adaptively chosen
ciphertext attacks”, in CRYPTO’93, LNCS 773, pg 420-434. Springer-Verlag 1993.

 13

6. Shoup, V. "Using hash functions as a hedge against chosen ciphertext attack" in
EUROCRYPT'00. LNCS 1807, pg 275-288. Springer-Verlag, 2000.

7. Tsiounis, Y. and Yung, M. "On the security of El-Gamal based encryption" in PKC'98.
LNCS 1431, Spinger-Verlag, Japan, 1998.

8. Zheng, Y., "Improved public key cryptosystems secure against chosen ciphertext
attacks", Technical Report 94-1, University of Wollongong, 1994.

9. Zheng, Y. and Seberry, J., "Immunizing public key cryptosystems against chosen
ciphertext attacks". IEEE Journal on Selected Areas in Communications, 1993. 11(5):
p. 715-724.

10. Zheng, Y. "Digital signcryption or how to achieve Cost(Signature & Encryption) <<
Cost(Signature) + Cost(Encryption)" in CRYPTO'97. LNCS 1294, pg 165-179.
Springer-Verlag, California, 1997.

