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Sequences for OFDM and Multi-Code CDMA:

Two Problems in Algebraic Coding Theory

Kenneth G. Paterson

Hewlett-Packard Laboratories,
Filton Road, Stoke Gi�ord,
Bristol BS34 8QZ, UK.

Abstract. We study the peak-to-average power ratio (PAPR) problem for two
di�erent kinds of communications systems, Orthogonal Frequency Division Mul-
tiplexing (OFDM) and Multi-Code Code-Division Multiple Access (MC-CDMA).
We describe a common coding theoretic approach to reducing the PAPR of both
kinds of transmissions. In both cases, the classical Reed-Muller codes turn out to
play a critical role. There is an intimate connection between Reed-Muller codes and
Golay complementary sequences which can be exploited to produce codes suitable
for OFDM. For MC-CDMA, it turns out that bent functions lead to transmissions
with ideal power characteristics. In this way, the problem of �nding good codes for
OFDM and MC-CDMA can be closely related to some old and new problems in
algebraic coding theory and sequence design.

1 Introduction

In this paper, we study the peak-to-average power ratio (PAPR) problem for
two di�erent kinds of communications systems, Orthogonal Frequency Divi-
sion Multiplexing (OFDM) and Multi-Code Code-Division Multiple Access
(MC-CDMA).

OFDM is a method of transmitting data simultaneously over multiple
equally-spaced carrier frequencies, using Fourier transform processing for
modulation and demodulation [2,8]. The method has been proposed for many
types of radio systems such as wireless local area networks [1] and digital au-
dio and digital video broadcasting [44]. OFDM o�ers many well-documented
advantages for multicarrier transmission at high data rates, particularly in
mobile applications.

Code-Division Multiple-Access (CDMA) dominates amongst proposals for
3rd Generation cellular communications systems [56]. Multi-code CDMA is
a very simple, backwards-compatible technique for supporting users who de-
mand widely varying data rates for di�erent applications. In MC-CDMA, a
user who wishes to transmit at a higher data rate is simply assigned addi-
tional orthogonal transmission channels and appears to the base station as
multiple users [21,22]. (We note that the abbreviation MC-CDMA has been
widely used for both multi-carrier CDMA, where characteristics of OFDM
and CDMA systems are combined [20], and multi-code CDMA. Here we use
it to abbreviate the latter.)
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Both OFDM and MC-CDMA involve signals that are the sums of some
number of basic signals from an orthogonal set. In the former case, these
are continuous-time sinusoidal signals and in the latter, discrete-time Walsh-
Hadamard sequences. In both cases, the signal is an orthogonal transform
of the data to be transmitted: in OFDM, the signal is related to a Fourier
transform and in MC-CDMA, it is simply a Walsh-Hadamard transform.
Because of `constructive interference' in the summation of basic signals, both
systems can su�er from high PAPR, a severe handicap in low-cost mobile
applications [4,22,23,26,34].

Coding, selecting for transmission only those sequences with low PAPR,
is a possible solution to the PAPR problem. For OFDM, it turns out that
Golay complementary sequences have excellent PAPR properties. Recently,
Davis and Jedwab gave an explicit description of a large class (possibly all)
of Golay complementary sequences in terms of certain cosets of the �rst order
Reed-Muller codes [10,11]. Because of this intimate connection to algebraic
coding theory, the codes for OFDM in Davis and Jedwab's work have not only
low PAPR but also simple encoding algorithms and good error-correcting
properties. We will review this work and some generalisations [35,42,45,46]
and present some new problems in algebraic coding and sequence design
which arise from it.

Then we'll turn our attention to the PAPR problem for MC-CDMA. Here,
the sequences with optimal PAPR are those whose Walsh-Hadamard trans-
forms are uniformly small. These correspond to the class of Boolean func-
tions known in the literature as bent functions. Based on this connection,
we will describe some classes of codes for MC-CDMA. These codes include
earlier coding schemes of Ottosson [33,34] and Wada et al [52,53] as special
cases. In view of the relationship between the Walsh-Hadamard transform
and Reed-Muller codes, it is perhaps not surprising that the Reed-Muller
codes will once again play a crucial role. We will develop links to old and
new problems about bent functions, Kerdock codes and their relatives, the
Delsarte-Goethals codes.

We will close by speculating on the connections between coding for OFDM
and coding for MC-CDMA.

This paper draws heavily on material contained in [11,35,36]. These refer-
ences contain full details and proofs as well as a full account of independent
work on Golay complementary sequences [30,32], and on power control in
OFDM and MC-CDMA. Further work adopting di�erent approaches to cod-
ing for OFDM can be found in [38,47].
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Fig. 1. Model for communication by orthogonal transforms

2 Communication by Orthogonal Transforms

2.1 Model of Communications Systems

In this section, we outline a general model for communication which includes
OFDM and MC-CDMA. This model allows us to examine the common fea-
tures shared by OFDM and MC-CDMA.

In our model (Fig. 1), a binary data vector c = (c0; c1; : : : ; cn�1) is input
to an orthogonal transform. Each data bit ci modi�es the sign of one of n
orthogonal functions fi(t) of time t, and the output is the sum of these n
modulated functions, the transmitted signal Sc(t). So

Sc(t) =

n�1X
i=0

(�1)cifi(t)

At the receiver (not shown in the �gure), a noise-corrupted version of the
signal is received. By virtue of orthogonality, computing the inner product
of each of the orthogonal functions with the received signal recovers an es-
timate for each data bit ci. In practice, the inner products are computed
simultaneously via computation of the inverse transform.

For OFDM, the orthogonal transform is actually a kind of Fourier trans-
form. The resulting signal is resistant to multi-path fading, which makes
OFDM an attractive transmission technique in certain wireless environments.
More speci�cally, we have fi(t) = e2�j(f+i�f)t where j =

p�1, and given
c = (c0; c1; : : : ; cn�1), the OFDM signal is:

Sc(t) =

n�1X
i=0

(�1)cifi(t) =
n�1X
i=0

(�1)cie2�j(f+i�f)t:
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Fig. 2. (Envelope) powers of OFDM signals for c = 00000000 and c = 00011101,
with t normalised to [0; 1] by taking �f = 1

Here, the n functions fi are called carriers and are orthogonal on the interval
t 2 [0; 1=�f ] with respect to the inner product

hf; gi =
Z
t

f(t)g(t)�dt:

In fact, the transmitted signal for OFDM is actually the real part of the
complex function Sc(t). However, it is more mathematically convenient (and
a good approximation when considering power properties as we shall) to work
with this complex signal, called the envelope signal. Fig. 2 shows the function
jSc(t)j2 for two di�erent OFDM signals. Typically n = 2m where m is small,
say 4 up to 6 or so for mobile applications and as large as 10 or 11 for digital
TV.

For multi-code CDMA, the transform is a Walsh-Hadamard transform.
The system transmits at n times the rate of a basic CDMA system and thus
caters for users demanding higher data rates. Given c = (c0; c1; : : : ; cn�1)
where n = 2m, we model an MC-CDMA signal by:

Sc(t) =

n�1X
i=0

(�1)ciWH(n)it; t = 0; 1; : : : ; n� 1;

where

WH(2m) =

�
WH(2m�1) WH(2m�1)
WH(2m�1) �WH(2m�1)

�
; WH(1) = (1)

is a 2m � 2m Walsh-Hadamard matrix whose rows (and columns) are eas-
ily shown by induction to be orthogonal vectors. Notice that, in contrast
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Fig. 3. MC-CDMA signal for n = 4

to OFDM, our MC-CDMA signal is modelled as a discrete-time signal and
involves a discrete transform. We can write

Sc = (Sc(0); Sc(1); : : : ; Sc(n� 1)) =

n�1X
i=0

(�1)cifi

where fi is the i-th row of WH(n). Thus we once again have that the signal
is a sum of orthogonal functions (vectors in this case) and the transmitted
signal is the sum of modulated versions of these signals. Fig. 3 shows the
formation of two di�erent MC-CDMA signals in the case n = 4. Typically in
applications n = 2m with m between 2 and 6.

In both the OFDM and the MC-CDMA case, our model is only a rough
approximation to what happens in a real system. Nevertheless, it captures
the key parameter, power, that we want to study.

2.2 Peak-to-Average Power Ratio

Now consider the power of the transmitted signals in a system using an
orthogonal transform.

We de�ne the instantaneous power of the signal at time t for data c to
be:

Pc(t) = jSc(t)j2:
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In the context of OFDM, this real-valued function is usually called the enve-
lope power of the signal. If we assume that each of the n orthogonal functions
fi is normalised so that it satis�es hfi; fii = n, then it is easy to show using
orthogonality that the average value of the function Pc(t) is equal to n. On
the other hand, as is easily veri�ed, for both OFDM and MC-CDMA, the sig-
nal Sc(t) in the case c = (0; 0; : : : ; 0) satis�es Sc(0) = n so that Pc(0) = n2.
Informally, this arises because of a temporal alignment of peaks in the or-
thogonal functions, a kind of `constructive interference' in the transform. This
behaviour can be seen in both Figs. 3 and 2.

We de�ne the peak-to-average power ratio (PAPR) of data c to be:

PAPR(c) =
1

n
�maxtjSc(t)j2:

For OFDM, this function is more commonly referred to as the peak-to-mean
envelope power ratio (PMEPR), with PAPR being reserved for the ratio
1
n �maxtRe(Sc(t))

2, representing the peak-to-average power ratio of the actual
transmitted OFDM signal. Of course, this last function is bounded above
by what we call here PAPR(c). Working with the complex signal Sc(t) is
somewhat easier than working with the actual transmitted signal.

The above discussion shows that PAPR(c) can be as large as n in a com-
munication system using an orthogonal transform. If the peak power is sub-
ject to a design or regulatory limit then this has the e�ect of reducing the
allowed average power relative to that which would be allowed with any
constant power transmission scheme. This reduces the e�ective range of the
transmissions and is particularly acute in mobile applications where battery
power is a constraint. Moreover, to prevent signal distortions and spectral
growth due to non-linearities inherent in electronic components, power am-
pli�ers must be operated below their compression point where power is con-
verted most e�ciently. This results in more expensive and ine�ciently used
components. In summary, high PAPR is a serious drawback to both OFDM
and MC-CDMA.

2.3 The Coding Solution

How then can the PAPR of transmissions be controlled? A very simple idea is
to use coding: �nd a code C � f0; 1gn in which every word has small PAPR
and select for transmission only words c 2 C. Thus we sacri�ce transmis-
sion rate for PAPR reduction, inserting an encoder for C between data and
orthogonal transform. At the receiver, the original data is recovered by per-
forming the inverse transform and then decoding the resulting received word.
This idea, perhaps obvious with the bene�t of hindsight, appears to date back
to the series of papers [23,24,55] for OFDM and to [33,52] for MC-CDMA.
We illustrate the idea schematically in Fig. 4.

Several basic questions immediately arise from the idea of using coding
to control PAPR:
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� Given an orthogonal transform, which words can be used to form a code
C with low PAPR?

� What is the maximum rate R that can be achieved while keeping the
PAPR of C below a certain value?

� Can the redundancy introduced to reduce PAPR be exploited for error-
correction?

� If so, for what triples (R; d;PAPR(C)) can we construct codes? Here d
denotes the minimum distance of C and PAPR(C) the peak-to-average
power ratio of C.

� Are there e�cient encoders (and decoders) for the code C?

In Secs. 3 and 4, we will describe at least partial answers to these questions
for OFDM and MC-CDMA.

3 Coding for OFDM

3.1 Golay Complementary Pairs and Sets

A Golay complementary pair is a pair fc; dg of binary sequences of length n
such that:

Ac(u) +Ad(u) = 0; u 6= 0

where

Ac(u) =
X
i

(�1)ci�ci+u

is the aperiodic auto-correlation function of c (in which the summation is
understood to be over only those integer values for which both i and i+u lie
within f0; 1; : : : ; n� 1g).
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Each member of a Golay complementary pair is called a Golay comple-
mentary sequence.

We are interested in using Golay complementary sequences as OFDM
codewords because the resulting OFDM signals have PAPR of at most 2, a
substantial and practically very useful reduction from the maximum value of
n. This result in [39] generalises earlier work of [3]:

Theorem 1. The PAPR of any Golay complementary sequence is at most
2.

Proof. We have

Pc(t) = Sc(t) � Sc(t)�

=

nX
i=0

(�1)cie2�j(f+i�f)t �
nX

k=0

(�1)�cke�2�j(f+k�f)t

=
X
i�k=u
0�i;k<n

(�1)ci�ck � e2�ju�ft

=

n�1X
u=1�n

Ac(u)e
2�ju�ft

= Ac(0) + 2 � Re
n�1X
u=1

Ac(u)e
2�ju�ft:

Using the fact that Ac(u) +Ad(u) = 0 for every u 6= 0, we obtain

Pc(t) + Pd(t) = Ac(0) +Ad(0) = 2n:

Since the function Pa(t) is real-valued and non-negative, we deduce that
Pa(t) � 2n and the theorem follows.

An illustration of this theorem can be seen in Fig. 5. Notice how the sum
of the two powers is exactly 16 for every time t, so that each of the sequences
has instantaneous power at most 16 and hence PAPR at most 2.

Binary Golay complementary pairs were introduced by Golay [15,16] in
connection with infrared multislit spectrometry and have since found appli-
cation in a variety of �elds [29,48]. They are known to exist for all lengths
n = 2�10�26 , where �; �;  � 0 [50], but do not exist for length n having
any prime factor congruent to 3 modulo 4 [13]. A variety of recursive and
direct constructions for Golay complementary pairs were given in [17]. For a
survey of previous results on non-binary Golay complementary pairs, see [14,
Chap. 13].

Golay complementary sets were introduced in [49] as a generalisation of
Golay complementary pairs. For 1 � j � N , let cj = (cj0; c

j
1; : : : ; c

j
n�1) be a
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Fig. 5. OFDM Power for Golay Complementary Pair f00011101; 00010010g

binary sequence of length n. Let C = fc1; c2; : : : ; cNg The set C is called a
Golay complementary set of size N if

NX
j=1

Acj (u) = 0 for each u 6= 0:

Clearly, a Golay complementary set of size 2 is a Golay complementary pair.
A survey of previous work on these sets and their applications can also be
found in [14, Chap. 13].

As with Golay complementary sequences, our motivation for studying
Golay complementary sets is that their sequences can have low PAPR. We
have the following straightforward generalisation of Thm. 1.

Theorem 2. The PAPR of any sequence from a Golay complementary set
of size N is at most N .
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To make use of Golay complementary sequences (and more generally se-
quences from Golay complementary sets) to reduce PAPR in OFDM, we at
least need to �nd large numbers of sequences. To build a practical system, we
also need to answer the basic questions of how to encode and decode. Thus
we need some structure in the set of sequences. But the received wisdom prior
to the work of [10,11] was that aperiodic correlations are relatively di�cult
to understand and that sequences with controlled aperiodic correlations do
not have any particular regularity. With this context, the results of [10,11]
that we describe in Sect. 3.3 below are even more surprising.

3.2 Reed-Muller Codes

We recall the de�nition of the classical binary Reed-Muller codes RM(r;m),
0 � r � m, from [28, Chap. 13]: the code RM(r;m) has

(n; k; d) = (2m;

rX
i=0

�
m

i

�
; 2m�r)

and a generator matrix whose rows are vectors related to certain Boolean
functions in m variables x0; x1; : : : ; xm�1. Each row is obtained by evaluat-
ing a monomial function of non-linear order at most r over all 2m possible
inputs (x0; x1; : : : ; xm�1) in their natural ordering. Notice that we label the
codewords of the Reed-Muller codes somewhat unconventionally, c.f. [11,28].
The following example should clarify our notation:

Example 1. RM(2; 3) has length 8, dimension 7, minimum distance 2 and
generator matrix:2

666666664

1111 1111
0101 0101
0011 0011
0000 1111
0001 0001
0000 0101
0000 0011

3
777777775

1
x0
x1
x2
x0x1
x0x2
x1x2

Each codeword c of RM(r;m) is obtained from a unique Boolean function
in m variables in which the maximum non-linear order is r. We use the two
notions of codeword and Boolean function interchangeably in what follows,
using c to denote both.

3.3 Golay Complementary Pairs and Sets from Reed-Muller

Codes

Theorem 3. [10,11] Let

Q� = x�(0)x�(1) + x�(1)x�(2) + � � �+ x�(m�2)x�(m�1)
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where � is a permutation of f0; 1; : : : ;m�1g. Then the coset Q�+RM(1;m) �
RM(2;m) consists entirely of Golay complementary sequences. The Golay
complementary pairs include:

fQ� + w;Q� + w + x�(0)g
fQ� + w;Q� + w + x�(m�1)g

for each w 2 RM(1;m).

Thm. 3 explicitly determines 2m+1 � m!=2 binary Golay complementary
sequences of length 2m (using the factor m!=2 rather than m! because the

expression
Pm�2

k=0 x�(k)x�(k+1) is invariant under the mapping � 7! �0, where
�0(k) = �(m�1�k)). Exhaustive computations form � 6 by T. Stinchcombe
(personal communication) have shown that, for these parameters, Thm. 3
accounts for all binary Golay complementary sequences.

Open Problem 1 Are there any more binary Golay complementary
sequences of length 2m?

Each of the 2m+1 � m!=2 Golay complementary sequences of length 2m

identi�ed in Thm. 3 has PAPR at most 2. They are neatly arranged in m!=2
second order cosets of RM(1;m), i.e. they occur as a subcode of RM(2;m).
Each coset is identi�ed with a quadratic form of the type Q�. Therefore this
set has all the properties that we need to build practical OFDM systems: a
structure which can be exploited for encoding, a certain minimum distance
(of at least 2m�2 determined by the minimum distance of RM(2;m)) and
a relationship to well-understood error-correcting codes which can be used
to build e�cient decoders. For full details of the variety of coding options
trading-o� rate, minimum distance and PAPR that can be developed from
this result, see [11]. For details on the important issue of e�cient decoding,
see [11,18,37]. We give just one example of the kind of trade-o�s that can be
made:

Example 2. In the case m = 4, Thm. 3 identi�es 12 cosets of RM(1; 4) in-
side RM(2; 4) in which every word has PAPR at most 2. Selecting any 8 of
these cosets (so that the number of encoded bits is an integer, easing imple-
mentation), we get an OFDM code with (R; d;PAPR) = (1=2; 4; 2). We can
increase the minimum distance at the expense of rate by considering just a
single coset, giving a code with parameters (5=16; 8; 2).

Extensive computations reported in [11] indicate that other second order
cosets of RM(1;m) have amazingly regular (but larger) PAPR. Where does
this structure come from? The answer, as we shall see, is connected with
Golay complementary sets. We need to introduce one further concept �rst.
With each quadratic form Q in m variables x0; : : : ; xm�1, we can associate a
labelled graph G(Q) on m vertices, 0; 1; : : : ;m� 1. An example should make
the correspondence clear:
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uu uu
�(2)

.
�(m� 1)�(0) �(1)

Fig. 6. The graph corresponding to Q�

Example 3. Q� =
Pm�2

i=0 x�(i)x�(i+1) has as its graph what we call a path on
m vertices, as depicted in Fig. 6.

With the concept of the graph of a quadratic form in hand, we can now
state:

Theorem 4. [35] Suppose Q is a quadratic form in m variables. Suppose
further that G(Q) contains a set of ` � 0 distinct vertices labelled j1; : : : ; j`
with the property that deleting those ` vertices and all their edges results in a
path graph (necessarily on m� ` vertices). Let t be the label of either vertex
of degree 1 in this path graph. Then for any choice of c; ck 2 Z2,(

Q+

m�1X
k=0

ckxk + c+
X̀
k=1

dkxjk + dxt j dk; d 2 Z2

)

is a Golay complementary set of size 2`+1.

Thm. 4 provides a partial answer to an open problem posed in [49]:

Open Problem 2 Obtain direct construction procedures for complementary
sets with given parameters, namely, the number of sequences in the set and
their lengths.

Example 4. Let m = 4 and

Q = x0x1 + x0x2 + x0x3 + x1x2 + x2x3:

The graph G(Q) is shown in Fig. 7. We see that deleting the vertex labelled 0
results in a path graph on vertices 1; 2 and 3. Applying Thm. 4 with ` = 1, we
get, for each choice of c; c0; c1; c2; c3 2 Z2, the following Golay complementary
set of size 4:

f Q+
P3

k=0 ckxk + c;

Q+
P3

k=0 ckxk + c+ x0;

Q+
P3

k=0 ckxk + c+ x1;

Q+
P3

k=0 ckxk + c+ x0 + x1 g:
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Fig. 7. The graph of the quadratic form Q = x0x1 + x0x2 + x0x3 + x1x2 + x2x3

Using Thm. 4, it is possible to give an explicit form (in terms of Boolean
functions and graphs) for a large class of binary sequences that lie in Golay
complementary sets of size 2`+1. These sequences all have PAPR at most
2`+1. The theorem also gives a bound for the PAPR of each second order
coset Q + RM(1;m) in terms of a graph-theoretic parameter, the minimum
number of vertices in G(Q) whose deletion leads to a path. This bound goes
some way to explaining the PAPR behaviour of second order cosets observed
in [11]. We can also use the theorem and the bound it gives to construct
codes for OFDM { see [35] for details.

Thm. 4 is also a generalisation of Thm. 3: the special case ` = 0 of the
latter theorem recovers the former. However, the methods that were used
to prove the two results are rather di�erent: [11] contains a direct proof of
the result on Golay complementary pairs, while [35] uses a recursive approach
containing as an intermediate step a result on a generalisation of binary Golay
complementary pairs to alphabets f+1;�1; 0g. The direct approach has the
bene�t of being quick, but the recursive approach can be used to shed light
on why the particular quadratic forms Q� appear in the theorems.

3.4 Non-binary Sequences and Codes

So far, we have only considered binary sequences and binary modulation for
OFDM. In practice, other kinds of modulation are also used, resulting in
increased transmission rates. Here the OFDM signal becomes

Sc(t) =

n�1X
i=0

zie
2�j(f+i�f)t:

where zi 2 Z is some �nite subset of the complex numbers, called a con-
stellation or signal set. For the binary modulation considered so far, we have



14 Kenneth G. Paterson

Z = f+1;�1g and one bit of information is transported on each carrier. An-
other common form of modulation is phase-shift keying. In q-PSK, we have
Z = f!i; 0 � i < qg where q is some �xed integer and ! = e2�j=q is a complex
q-th root of unity. Typically q = 2 (which coincides with our usual binary
modulation), 4 (2 bits per carrier, also called QPSK) or 8 (3 bits per carrier).
Another important family are the QAM constellations, see [40, Chap. 4] for
details.

There are nice (and practically valuable) generalisations of Thms. 3 and
4 to q-ary alphabets which lend themselves to q-PSK modulation. We sketch
these generalisations next. In what follows q will be any even integer. We
consider the generator matrix for RM(r;m), but now take linear combina-
tions of rows modulo q. This de�nes a code that is linear over Zq, and which
we denote RMq(r;m). The code RMq(r;m) is distinct from other generali-
sations of the binary Reed-Muller codes [25], but is closely connected to the
quaternary code ZRM(r;m) introduced in [19]. It can be shown [11,35] that
the code has the same minimum Hamming distance 2m�r and `dimension' as
the classical binary code. The minimum Lee distance can also be calculated.
Each codeword can be associated with a (generalised) Boolean function in m
variables with coe�cients from Zq.

We also need to de�ne aperiodic correlation functions and Golay comple-
mentary sequences, pairs and sets for sequences over Zq. To do so, we simply
replace �1 by ! = e2�j=q in the de�nition of aperiodic correlation.

The motivation for the above de�nitions is the following pair of theorems:

Theorem 5. [10,11] Let q = 2h where h � 1. Then the cosets 2h�1Q� +
RMq(1;m) are composed of q-ary Golay complementary sequences.

Theorem 6. [35] Let q = 2h be any even integer. Suppose Q is a quadratic
form in m variables. Associate with Q a labelled graph G(Q) in which there
is an edge between vertices i and j labelled qij whenever qijxixj appears as a
non-zero term in Q. Suppose further that G(Q) contains a set of ` � 0 distinct
vertices labelled j1; : : : ; j` with the property that deleting those ` vertices and
all their edges results in a path graph in which each edge is labelled h. Then
every word of the coset Q+ RMq(1;m) is a sequence lying in a q-ary Golay
complementary set of size 2`+1.

Both theorems can be re�ned to explicitly identify the pair/set which con-
tains any particular codeword. As well as being of theoretical interest, these
theorems can be used to develop many OFDM coding options enjoying low
PAPR for non-binary modulations. This is because Thms. 1 and 2 generalise
straightforwardly to q-ary sequences. Details can be found in [11,35].

OFDM codes designed for 16-QAM alphabets were introduced in [42]: the
codes there are constructed by cleverly decomposing the 16-QAM constella-
tion into a sum of two 4-PSK constellations and using the two sequences from
quaternary Golay complementary pairs to determine the modulation in the
two signal sets. The resulting OFDM signals have PAPR at most 5.
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Table 1. The weight distribution of Q+RM(1;m), rank(Q) = 2h

Weight Number of words

2m�1 � 2m�h�1 22h

2m�1 2m+1 � 22h+1

2m�1 + 2m�h�1 22h

Yet another direction was explored in [46]: here, 4-PSK codes are ob-
tained by using a binary code twice, once to encode bits onto a constellation
f+1;�1g and a second time onto f+j;�jg. The resulting OFDM signals have
PAPR at most 4.

3.5 Ranks of Quadratic Forms and Lower Bounds on PAPR

Let Q be a (binary) quadratic form, Q =
P

i<j qijxixj . Let A = (qij) be

an m � m matrix and B = A + AT . Then the rank of the quadratic form
Q, denoted rank(Q), is de�ned to be the rank of the matrix B (over Z2).
The rank of a quadratic form is a fundamental invariant of the form. As one
example of its importance we have:

Theorem 7. [28, p. 441, Thm. 5] Let Q be a binary quadratic form in m
variables. Then rank(Q) = 2h is even. The coset Q+RM(1;m) has the weight
distribution given in Table 1.

We can use the notion of rank to obtain lower bounds on the PAPR of
cosets. Recall that

Sc(t) =

n�1X
i=0

(�1)cie2�j(f+i�f)t:

Cammarano and Walker [5] �rst suggested considering power in the special
case t = 0. Doing so, we get:

jSc(0)j =
n�1X
i=0

(�1)ci = n� 2wt(c)

where wt(c) denotes the Hamming weight of c. So

PAPR(c) � 1

n
(n� 2wt(c))

2

and it immediately follows that

PAPR(Q+RM(1;m)) � 2m�rank(Q):
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This bound can be used to show that the PAPR bounds on cosets given by
Thms. 3 and 4 are often tight. For example, consider the cosetsQ�+RM(1;m)
in Thm. 3 when m is odd: in this case, the maximum possible rank of Q� is
m� 1 and hence PAPR(Q� +RM(1;m)) � 2. This technique can be pushed
further [35], but there are still many situations where the upper and lower
bounds do not match.

The thesis [45] extends the graph theoretical methods of [35]. For example,
it is shown that under certain conditions, up to two vertices of degree 0 (i.e.
vertices with no incident edges) created in the process of deleting vertices
in a graph G(Q) can be ignored. The result is the identi�cation of smaller
Golay sets than are predicted by Thm. 6 and therefore, better bounds on
PAPR of cosets. Improved lower bounds on the PAPR of binary cosets are
also developed in [45], by examining more carefully the values Sc(0). These
can be used to demonstrate that degree 0 vertices cannot always be ignored
and that certain sequences must lie in large Golay complementary sets. In
this way, PAPR can be a useful tool in the study of the Golay set structure
of cosets of RMq(1;m), itself a theoretically interesting sequence problem

Little more is known about lower bounds in the non-binary case. One
result in [5] is that the quaternary cosets 2Q�+RM4(1;m) have PAPR exactly
2 when m is even. A result of [31] shows that certain cosets of RM8(1;m)
have PAPR at least 3. Earlier computations in [11] suggest that these cosets
should have PAPR exactly 3. But this PAPR behaviour cannot arise from
Golay complementary sets of size 3 because such sets must be of even size
over Z8.

Open Problem 3 Obtain stronger lower and upper bounds on the PAPR of
second order cosets of RMq(1;m).

3.6 Kerdock Codes and Golay Pairs

Here we briey outline another series of interesting open problems on binary
Golay complementary pairs, motivated by the desire to generate more coding
options.

We de�ne an (m;h)-set to be a set of quadratic forms Y in m variables
such that:

rank(Q+Q0) � 2h 8Q;Q0 2 Y :

If such a set Y contains the all-zero form, then clearly every non-zero form
in Y also has rank at least 2h. The code[

Q2Y

Q+RM(1;m)

obtained from such a set contains jYj � 2m+1 codewords and has minimum
distance 2m�1�2m�h�1 (because the distance between any two words in the
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same coset of RM(1;m) is 2m�1 and the distance between any two words in
di�erent cosets is at least 2m�1 � 2m�h�1, being determined by the rank of
the sum of the two forms). This can be substantially larger than the minimum
distance of RM(2;m). It is shown in [28, p. 667, Thm. 13] that for any (m;h)-
set Y , jYj � cbm=2c�h+1, where c = 2m for m odd and c = 2m�1 for m even.
In the even case, maximal (m;h)-sets give rise to the notorious Kerdock and
Delsarte-Goethals codes.

How can these sets be used to produce better OFDM codes? It is shown
in [11] that when m = 4, there is an (m;m=2)-set Y of size 6 in which every
quadratic form is of the type Q� for some �. Selecting any 4 of the forms
and taking the union of cosets they determine leads to a binary OFDM code
with parameters (R; d;PAPR) = (7=16; 6; 2). This gives an attractive coding
option which is midway between the codes of Example 2 in terms of rate and
minimum distance. Actually the set of 6 forms Y in this case is a subset of
the `standard Kerdock set' pictured in [27, p. 55]. This example raises a series
of open questions:

Open Problem 4 Suppose m is even. What is the maximum size of an
(m;m=2)-set containing only quadratic forms of the type Q�?

In fact, a simple argument proves an upper bound of
�
m
2

�
on this intersec-

tion. Because of the special type of quadratic forms under consideration, the
�rst rows of the corresponding matrices B have a 0 as their �rst entry and
must have weight 1 or 2. A simple count shows that there are

�
m
2

�
possible

�rst rows. For the pair-wise sums of the forms in the set to have rank m, the
matrices B must all have distinct �rst rows. Thus there are at most

�
m
2

�
forms

in the set. This bound is attained for m = 4. Is there a general construction?
Does studying the problem in the Z4-domain help?

The problem can be doubly generalised to consider (m;h) sets as well as
the more general quadratic forms considered in Thm. 4:

Open Problem 5 What is the maximum size of an (m;h)-set containing
only quadratic forms Q for which the deletion of some ` vertices in G(Q)
gives a path graph?

Nothing is known about this more general formulation. Its solution may
lead to interesting OFDM codes with high minimum distances and rates.

4 Coding for Multi-code CDMA

4.1 Reed-Muller Codes, Walsh-Hadamard Transforms and Bent

Functions

We recall our discrete time model for an MC-CDMA system from Sect. 2.1.
We have:

Sc = (Sc(0); Sc(1); : : : ; Sc(n� 1)) =

n�1X
i=0

(�1)cifi
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where the fi, 0 � i < 2m, are the rows of the orthogonal matrix WH(2m).
The following key result depends on the observation that fi is just the �1
version of the word

Pm�1
k=0 ikxk 2 RM(1;m), where i =

Pm�1
k=0 ikxk is the

binary expansion of i.

Theorem 8. [36] For any word c of length n = 2m,

PAPR(c) = n

�
1� 2d�(c)

n

�2

;

where d�(c) := minfdH(c; w) : w 2 RM(1;m)g is the minimum Hamming
distance between c and the �rst-order Reed-Muller code of length 2m. In par-
ticular, PAPR(c) = 1 (the minimum possible value) if and only if d�(c) =
2m�1 � 2

m
2
�1.

If we write d�(C) = minfd�(c) : c 2 Cg, then we have PAPR(C) =

n(1 � 2d�(C)
n )2. Thus codes which are far from RM(1;m) will have small

PAPR for MC-CDMA. This idea is exploited in [36] to prove analogues of
the Hamming and Gilbert-Varshamov sphere-packing bounds for MC-CDMA
codes. Similar results for OFDM codes, involving more sophisticated technical
machinery, can be found in [38].

The Walsh-Hadamard transform of the Boolean function c is de�ned to
be the function ĉ with

ĉ(u) =
X
v2Zm

2

(�1)c(v)+Lu(v); u 2 Zm2

where

Lu =

m�1X
k=0

ukxk 2 RM(1;m); u = (u0; u1; : : : ; um�1):

Alternatively, working with vectors, the Walsh-Hadamard transform of c is
just the vector (�1)c �WH(2m). Thus the vector Sc containing the signal
values for codeword c has components that are just the Walsh-Hadamard
transform coe�cients of c. We have:

Theorem 9. Let c be a word of length n = 2m. Then

PAPR(c) =
1

n
max
u

jĉ(u)j2:

Moreover c has PAPR equal to 1 if and only if jĉ(u)j = p
n for every u 2 Zm2 .

A bent function is de�ned to be a Boolean function all of whose Walsh-
Hadamard transform coe�cients are equal in magnitude to 2m=2 =

p
n.

Clearly m must be even for such a function to exist. Equivalently, a bent
function corresponds to a word satisfying d�(c) = 2m�1� 2

m
2
�1, i.e. at max-

imum distance from RM(1;m). Thus:
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Theorem 10. [36,51] C is a constant amplitude MC-CDMA code, i.e. a code
with PAPR equal to 1, if and only if every codeword of C is a bent function.
In particular, constant amplitude codes of length n = 2m exist only for m
even.

Bent functions have received a good deal of attention, see for example
[6,7,12,41,43,54] and the brief overview in [28, Chap. 14, Sect. 5]. It is known
that any bent function has non-linear order at most m=2, that is, lies in the
code RM(m=2;m). So any code of bent functions will automatically have
minimum distance at least 2m=2.

We are also interested in MC-CDMA codes with low PAPR in the case
where m is odd. We know that PAPR(C) = 1 cannot be achieved in this
case. We are therefore motivated to pose:

Open Problem 6 When m is odd, how close to being uniform can the
Walsh-Hadamard transform of a length 2m word be? Additionally, how many
words achieve this most uniform transform and what, if any, coding structure
do they have?

The �rst part of this problem is equivalent to determining the covering
radius of RM(1;m) for odd m. See [9] for further information on this old and
di�cult problem.

4.2 Codes from Bent Functions

In this section, we give several constructions of constant amplitude codes for
MC-CDMA from bent functions. For the remainder of the paper, m will be
even. It is easy to see that if c is bent, then so is every word of the coset
c+RM(1;m). So as with codes for OFDM, our codes will tend to be formed
from unions of cosets of RM(1;m). In this way, they are amenable to decoding
techniques developed for OFDM codes, [11,18,37].

Example 5. The code Q + RM(1;m) where Q is any bent function in m
variables (for example Q = x0x1 + x2x3 + � � � + xm�2xm�1) is a constant
amplitude code of rate (m+1)=2m and minimum distance 2m�1. Whenm = 2
this gives a code equivalent to that obtained in an ad hoc fashion in [52]. See
also [53].

Example 6. A second family of constant amplitude codes is obtained by tak-
ing as the code at length n = 2m a union of many second-order cosets cor-
responding to quadratic forms Q of full rank m: combining Thms. 7 and 8,
it is easy to see that such a code will have PAPR 1. Any code formed in this
way has minimum distance at least 2m�2 as it is a subcode of RM(2;m). For
m = 4, the total number of full rank forms is equal to 28, and a pictorial list
of them can be found in [28, p. 429]. Selecting any 16 of these forms gives a
code with (R; d;PAPR) = (9=16; 4; 1). This code has the same parameters as
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length 16 codes obtained by searching in [34] and an ad hoc construction in
[52]. In the general case, the number of full rank forms is at least 2m(m

2
�1)

and we obtain a code of rate at least
m(m

2
+1)

2m , minimum distance 2m�2 and
PAPR 1. In order to make these codes practical for larger values of m, an
algorithm for encoding data bits directly onto full rank forms is needed.

Yet more families of codes can be obtained from what is known as the
Maiorana-McFarland construction for bent functions:

Theorem 11. Let � be a permutation on f0; 1gt and let g be any Boolean
function in t variables. Then

f(x0; : : : ; x2t�1) = �(x0; : : : ; xt�1) � (xt; : : : ; x2t�1) + g(x0; : : : ; xt�1)

is a bent function of 2t variables. (Note that we interpret � as a vector of t
Boolean functions in t variables).

This construction produces a large number of bent functions with con-
trollable non-linear order. It can be exploited to produce a variety of coding
options. We refer to [36] for the details. To make these codes practical, e�-
cient algorithms for encoding data bits into functions of the type appearing
in Thm. 11 are required.

The above code families give new motivation to a longstanding research
topic:

Open Problem 7 Enumerate, construct and classify bent functions.

As well as being interesting for its own sake, progress on this problem is likely
to lead to better families of constant amplitude codes for MC-CDMA.

4.3 Codes from Kerdock and Delsarte-Goethals Codes

In this section we generate more coding options for MC-CDMA by considering
subcodes of the Kerdock and Delsarte-Goethals codes.

We recall the de�nition of an (m;h)-set from Sect. 3.6. An (m;m=2)-set
is called a Kerdock set. For each even m, a Kerdock set is constructed in [28,
p. 457, eqn. (33)]. The set contains the zero quadratic form and 2m�1 � 1
quadratic forms of full rank. The resulting code K(m), known as the Kerdock
code, contains RM(1;m) as a subcode, has minimum distance 2m�1�2(m=2)�1

and rate 2m=2m. Selecting any 2m�2 of the 2m�1 � 1 non-zero cosets of
RM(1;m) in the Kerdock code gives an MC-CDMA code with the same
minimum distance, rate (2m� 1)=2m and PAPR 1. For example, for m = 4,
we obtain a code with (R; d;PAPR) = (7=16; 6; 1) which is a subcode of the
Nordstrom-Robinson code.

It is unfortunate that we had to remove the zero coset from the Kerdock
code here, since it forced us to reduce the rate from 2m=2m to (2m�1)=2m. It
is not hard to show that any Kerdock set of quadratic forms must contain the
zero form. However, moving to bent functions with higher non-linear order
may help.
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Open Problem 8 Does there exist a code with the same parameters as the
Kerdock code which consists entirely of bent functions? In particular, is there
a Boolean function g (necessarily of non-linear order greater than 2) such
that the set g +K(m) contains only bent functions?

Next we consider subcodes of the Delsarte-Goethals codes [28, p. 461,
Thm. 19]. The code DG(m;h), where 1 � h � m=2, is constructed from
a maximal (m;h)-set, has minimum distance 2m�1 � 2m�h�1 and contains
2(m�1)(m=2�h+1)+m+1 codewords arranged in cosets of RM(1;m).

The quadratic forms in the (m;h)-set include the zero form and so every
non-zero form in the set has rank at least 2h. But to construct a constant
amplitude MC-CDMA subcode of DG(m;h), we must include only full rank
quadratic forms. So to evaluate the rate of this subcode, we must �nd the
number of full rank forms in the (m;h)-set used to construct the Delsarte-
Goethals codes. Fortunately, this number can be calculated, using the results
of [28, Chap. 21, Secs. 7 and 8]. We sketch this calculation next.

Given a set of quadratic forms Y , we de�ne the inner distribution of Y to
be the (m+ 1)-tuple of real numbers (B0; B1; : : : ; Bm=2) where

Bi =
1

jYj jf(Q;Q
0) 2 Y � Y : rank(Q+Q0) = 2igj:

For Y equal to the (m;h)-set used to construct DG(m;h), we would like to
know the numbers (A0; A1; : : : ; Am=2), where

Ai = jfQ 2 Y : rank(Q) = 2igj;
in particular the number Am=2. We have the following lemma:

Lemma 1. Let Y be the (m;h)-set used to construct DG(m;h) and let Ai,
Bi be de�ned as above. Then

Ai = Bi; 0 � i � m=2:

Proof. The code DG(m;h) is the Gray image of a code that is linear over
Z4 and so is distance invariant, i.e. the weight distribution and distance dis-
tribution of DG(m;h) are equal. (We refer to [19] for details of the Gray
map and Z4-linearity.) But by virtue of the code's construction from sec-
ond order cosets of RM(1;m), these two distributions are determined en-
tirely by the numbers Ai and Bi respectively, with the number of words of
weight 2m�1 � 2m�i�1 being determined by Ai and the number of times
2m�1 � 2m�i�1 appears in the distance distribution being determined by
Bi. To obtain equality of these distributions we must then have Ai = Bi,
0 � i � m=2.

The inner distribution (B0; B1; : : : ; Bm=2) of any maximal (m;h)-set is
known exactly from [28, p. 668, Thm. 14]. We have:

Bm=2�i =

m=2�hX
j=i

(�1)j�iCi;j
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where

Ci;j = 4(
j�i
2 )
�
j
i

� �
m=2
j

�
(2(m�1)(m=2�h+1�j) � 1):

Here,

�
x
y

�
denotes a 4-ary Gaussian binomial coe�cient [28, p. 443].

The following result is proved in [36] by carefully examining these coe�-
cients:

Theorem 12. With notation as above, we have

Am=2 � 2(m�1)(m=2�h+1)�2:

Thm. 12 shows that considering only cosets of RM(1;m) corresponding to
the full rank forms in the (m;h)-set used in constructingDG(m;h) results in a
subcode which encodes 2 bits less than the entire code. Since DG(m;h) always
contains the zero form, this is just one bit less than we would have obtained
by considering all the non-zero cosets in the code. This full rank subcode has
minimum distance 2m�1�2m�h�1, rate (m�1)(m=2�h+2)=2m and PAPR
1. For small values of m, the full rank quadratic forms in the (m;h)-set can
be obtained by direct calculation. It would be convenient to �nd a simple
method of selecting such forms directly for larger values of m.

4.4 Further Codes for MC-CDMA

Here we briey mention two other areas worthy of further exploration.

We have concentrated exclusively on binary codes for MC-CDMA. But,
as with OFDM, QPSK and other modulations may be used in place of BPSK
in MC-CDMA.

Open Problem 9 What can be said about quaternary (and larger alphabet)
MC-CDMA codes with low PAPR?

We have only looked at constant amplitude MC-CDMA codes, these hav-
ing optimal PAPR and a nice connection to bent functions. But codes with
approximately constant PAPR may also be useful in practice (especially for
m odd where bent functions do not exist). Some ideas in this direction can
be found in [36].

Open Problem 10 Find constructions for large numbers of `approximately
bent' functions and study the trade-o�s between rate, PAPR and minimum
distance which can be made.
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5 Conclusions

We have seen how the practical problem of designing codes which reduce the
PAPR of OFDM and MC-CDMA transmissions leads to new problems in se-
quence design and algebraic coding theory. We have also seen new motivation
for attacking some well-known (and di�cult) problems on Reed-Muller codes
and bent functions.

Finally, we speculate on the similarities and di�erences between codes for
OFDM and codes for MC-CDMA. In both cases, an orthogonal transform is
used to transform data prior to transmission and the problem is to design
codes which reduce the size of the transform values. The Walsh-Hadamard
transform is a discrete analogue of the Fourier transform inherent in OFDM,
so similar coding solutions might be expected. Indeed, in [11] it is shown
that for m even, the m!=2 cosets of RM(1;m) which consist of binary Golay
complementary sequences are bent cosets. Thus a code formed from these
cosets will simultaneously enjoy low OFDM PAPR and ideal MC-CDMA
PAPR. However the Reed-Muller code, and the constructions as unions of
cosets of RM(1;m), appear to arise for di�erent reasons in the two cases. For
OFDM, an explanation relating the particular Boolean functions yielding
Golay complementary sequences and the recursive constructions for those
sequences was given in [35]. In MC-CDMA, the Reed-Muller code plays a
role because of the connection between rows of the Walsh-Hadamard matrix
and the codewords of RM(1;m) (though this link also has a recursive proof).
A detailed explanation of the double appearance of the Reed-Muller codes
may give greater insight into both practical and theoretical questions.

Finally, we ask:

Open Problem 11 Are there more examples of orthogonal transforms in
communications theory waiting to be identi�ed? Are PAPR considerations
important and if so, what structure do good codes have?
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