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Abstract 
To date, one of the common problems e-business 
and e-service want to solve is how to use their large 
volumes of sales histories, web transactions, and 
information resource data to know their customers’ 
behavior. They want to understand their customers 
to develop long-term relationships and to improve 
service quality. Many data analysis methods use bar 
charts which only show highly aggregated data and 
lose most of the detail information due to data 
aggregation. This paper discusses the integration of 
a recent pixel bar chart technique that does not lose 
information into a visual data mining system.  Our 
experiments show that the system allows the 
discovery of a wide range of patterns and trends. 
For example, it helps business analysts to identify 
the most profitable customers, the most frequent 
search key words, and the best sales timeline.  

1. Introduction 
Recently, the rapid increase of transactions on 
the Internet has led to the availability of large 
volumes of customer data. Business research 
efforts [2, 3] have focused on how to turn raw 
data into valuable information. For example, by 
exploring customer data, the business analysts 
are able to find and retain their most profitable 
customers and evolve their business strategies.  
 
To date, a number of visualization applications 
have shown the usefulness of pixel-oriented 
techniques [1, 6, 7, 8, 9, 10] for analyzing 
millions of data records. Individual data items, 
such as customers, can be represented by pixels 
on a screen. The number of customers can as 
large as 1080*1024 (over 1.1 million) pixels. For 
example, the VisDB [1] system uses each pixel 
to represent one data value. Each pixel is 
arranged and colored to indicate the item’s 
relevance to a user query. VisDB allows the user 
to explore multidimensional databases.  
Recently, pixel-oriented techniques have been 
used to build interactive decision tree classifiers 
for a multidimensional visualization of training 
data [7,8].  
 

To analyze large volumes of web datasets, a 
common method is to use bar charts. However, 
regular bar charts require a high degree of data 
aggregation. Usually, valuable information gets 
lost. Based on our practical usage and design 
experience, we have discovered that regular bar 
charts are too restrictive. As illustrated in Figure 
1A, regular bar charts usually only show 10 to 
100 (aggregated) data values. The regular bar 
chart loses a large portion of the screen due to 
the large bars of different heights.   

2. Visual Mining the Behavior Data 
Customer behavior often involves relationships 
that need to be linked to different attributes of a 
dataset. For example, the purchase amount is 
related to the timeline, number of visits, and 
quantity. The customer search criteria are related 
to the search types and number of keywords.  
  
This paper discusses the integration of a newly 
developed pixel bar chart technique [4] into a 
visual data mining system [5]. Pixel bar charts 
generalize regular bar charts but do not require 
data aggregation.  They combine the basic idea 
of X-Y Diagrams with bar charts to allow an 
overlap free, non-aggregated display of large 
amounts of multi-attribute data.  The color of 
each pixel represents an attribute value of a 
customer, e.g., search criteria, purchase amount, 
or number of keywords. The detailed information 
on each data item can be displayed by drilling 
down as needed.  
 
In Figure 1A, the bar chart shows only the total 
purchasing dollar by month. No other related 
information is shown. In Figure 1B, the pixel bar 
chart shows the customer purchasing activities in 
one year by month.  Analysts can easily discover 
the most profitable customers, the number of 
visits, and other purchase patterns, such as that 
the most profitable purchases occurred during 
the early months (the top area of the bars for 
months 2,3,4,5 have the most purple color).   
 
In addition, as illustrated in Figure 1B, the pixel 
bar chart uses all the available screen space to 
cluster related data together. The display will not 
be cluttered as the data items increase in number.  
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 Figure 1:  An Example of Mining 44,401 Sales Transactions By Months In A Year

 

Construction of Pixel Bar Charts 
general pixel bar chart integrates the idea of 
 charts with X-Y-diagrams. It is ordered in the 
 directions according to two attributes such 

months in a year and purchase $amount. In 
eral, a pixel bar chart can be specified as a 
 tuples:  

xel object,  
iding attribute,  
rdering attribute,   
rdering attribute, 

oring attribute> 
 

 example, the five tuple used for generating 
 pixel bar chart shown in Figure 1B is: 

<customer,  
month,        
dollar amount ,        
number of visits, 
dollar amount > 

te that the X-ordering within each bar 
ording to the number of visits is not visible in 
ure 1B but will be visible in the multi-pixel 
 chart shown later. 

 A Basic Pixel Bar Chart 
nstructing pixel bar charts consists of: (1) 
iding the x-axis space by grouping the pixels 
 rectangles according to the grouping 
ibute (e.g., months); (2) filling the rectangles 
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(B) A Pixel Bar Char
els from the bottom and placing them in 
side each rectangle according to the pixel 
 attribute (e.g., dollar amount for Y-
 and number of visits for the X-
); (3) coloring the pixels according to the 
loring attribute (e.g., dollar amount in 
B or the number of visits in Figure 2).   
2

: A Pixel Bar Chart Construction 

lti-Pixel Bar Charts 
 bar charts use the same arrangement of 
ut different attributes such as number of 
uantities, and locations are mapped to 

low      high 
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different colors (potentially with a non-linear 
scaling).  
  
Multi-pixel bar chart are linked. Each pixel (i.e., 
customer) resides at the same relative location 
across all pixel bar charts but shows different 
attributes, such as number of visits, quantities, 
and locations… The color of each pixel varies 
based on the value of the corresponding attribute.  
The user can click on a pixel to get the 
customer’s corresponding attribute values.  

4. A Visual Data Mining System 
To analyze large volumes of multi-attribute e-
customer data, we have integrated the pixel bar 
chart technique into a data mining visualization 
system. The system places similar customers 
close to each other on the display. The “location” 
of the customer pixels in the pixel bar chart 
represents the similarity of their behavior. 
 
The system uses a web browser with a Java 
activator. It provides a real-time, web-based 
interactive data mining and visualization 
environment.  The analyst can access the data 
warehouse and visually mine the data in an 
integrated way.  

4.1 Component Architecture 
As illustrated in Figure 3, the e-customer mining 
system follows a three step process: 
1. Placement 

The pixel bar chart is partitioned based on 
one or two customer attributes: e.g., timeline 
and search type. One pixel represents one 
data item, i.e., one customer. The ordering 
of pixels (y-axis) is based on attribute 
values, e.g., purchase amount or search type.  
 
The grouping algorithm consists of the 
sorting and pixel-filling mechanisms. The 
maximum and minimum values for each 
attribute are consistent across all groups. 

 
2. Coloring 

The system uses a range of distinct colors to 
link multiple attributes. Color is calculated 
from the value of a selected attribute (such 
as purchase $amount, number of search 
keywords). For correlation, the location of 
each data item remains the same across 
multiple bar charts.  
 

3. Exploration 

The system provides mechanisms for 
simultaneous browsing and navigating 
among multiple attributes. The user is 
allowed to select, link, and retrieve data 
from the warehouse as needed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 3: An Overview of E-Customer Visual 
Mining System 

The above three process steps can be repeated 
until the user discovers the desired information. 

4.2 Interaction and Pattern Discovery 
Interactivity is an important aspect of the pixel 
bar chart system. Figure 4 shows the user 
interaction window of the system. In Figure 4, 
the user has constructed a pixel bar chart 
showing the customer purchasing activities of 12 
months. The dividing attribute (x-axis) is 
“Month”. The ordering (vertical and horizontal) 
attributes are “price” and  “number of orders”. 
The coloring attribute is “quantity”. The 
attributes used for dividing, ordering, and 
coloring attributes can be selected and changed 
at execution time. There are four types of pull 
down menus for the user to select input data and 
to construct pixel bar charts. 
 
To mine large volumes of multi-attribute data, 
the user may want to try many different data 

Data Warehouse 

1 Placement 
- Selecting 
- Partitioning 
- Ordering 
- Grouping 

2 Coloring 
- Select colors 
- Link attributes 

 

3 Exploration 
- Drill-down 
- Analysis  
- To Step 1 (restart) 

Or exit 

many 
iterations 



 

arrangements. The system provides a “Recalc” 
button for the user to re-calculate, re-select, re-
group, and re-visualize the pixel bar charts. The 
detail information is displayed in the right lower 
corner of the window. 
 
Pixels reside at the same location across multiple 
pixel bar charts. The users can easily select a 
pixel to find the customer related information, 
i.e., number of visits, quantities, and locations.    
 

In our current search engine interface 
implementation, our customers use an average of 
1.7 keywords per search. This is not enough to 
return significant relevant results. Based on our 
current research we enlarged the search engine 
query box to increase the number of used 
keywords in the query. But the average number 
of used keywords per search was not raised 
significantly. Using pixel bar charts we could 
easily identify a set of searches with a much 
higher average number of keywords (nearly 6).  
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Figure 4: The User Interaction Window 

5.  E-Customer Behavior Experiments 
Our e-customer behavior experiments consist of: 
(1) analyzing searching behavior;  (2) finding 
shopping behavior.  

5.1 Searching Behavior Mining 
We applied pixel bar chart techniques to 
customer search behavior on HP’s electronic 
support site (http://itrc.hp.com). As illustrated in 
Figure 5, each pixel represents one customer’s 
search transactions. We mapped the used search 
criteria (Boolean, AllWords, AnyWord, Phrase, 
labeled 1-4 in Figure 5) together with the 
selected search type (Product Search, Solve/Fix 
Problem, Patch Search…) and the number of 
used keywords (i.e., printer, patch…) to generate 
the pixel bar chart.  This technique places 
customers with similar searching behaviors next 
to each other based on the above-described 
parameters.  Using this technique we were able 
to visualize the log entries from one month 
(several 100 thousands of search record entries) 
into one consolidated display. The visualization 
allowed us to detect certain customer behaviors 
as described in detail in the following 
paragraphs.  
 

 
In further analyzing the visualization we found a 
customer search cluster for the search type 
“Fix/Solve a problem” (marked area in Fig. 5C).  
Based on this data we can derive that the number 
of used keywords is also dependent on the search 
type used.  In the next product releases, this 
information will be used to enhance the UI to 
make the usage of more keywords in 
corresponding searches easier. 
 
In addition, we discovered that most of the 
searches had been applied without changing the 
search criteria value settings on the screen (the 
big green area in Figure. 5A). The defaults 
should represent the best choice for the 
customers’ specific searches.  
 
Most searches for a patch consisted of one 
keyword string, which probably represented the 
patch id number and not a real query string 
(marked area in Figure 5C).  
 
Currently we are using the pixel bar charts to 
analyze and compare the customer search 
behavior obtained from different HP search 
engines and customer segments. We expect to 
get a better understanding of important design 
issues to be able to further improve the interface.  
 
The pixel bar chart was the first visual data 
mining technique that allowed us to visualize 
huge sets of data in a limited space with a good 
overview and still retained the capability to drill 
down into details, because each pixel represents 
an individual search record.  
 
 
 
 
 
 
 
 



 

 
 

 
 
 
 
 
 
 
 
 
 
      
 
 
 
 
 
 
  Figure 5:  Pixel Bar Charts for Min
 

5.2 Shopping Behavior Mining 
To face today’s business chall
company analysts want to apply 
purchase behavior to product s
promotion. They want to know whic
the most sales, and who are their mo
customers. 
 
Figure 6 shows how to use a mu
chart to explore the data describing
behaviors and understand their need
pixel bar chart techniques, the busi
transfers massive amounts of raw sa
converts it into visualizations whi
understand customer behavior. 
companies to strategize their campaig
 
The four pixel bar charts of Fi
constructed as follows:  
 

- Time type is the dividing attribu
axis (12 months).    
- Purchase Dollar amount is the
attribute.           
-Month, Purchase dollar amount
visits, and quantity are the fo
attributes. 

Many important observations may be
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Figure 6: Pixel Bar Charts for mining o
 
Each customer is represented by p
reside at the same location across mu
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From Figure 6, we can observe the 
information: 
 

1. In September, customer 
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bought 200 items. 
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