

Transparent peer to peer TCP/IP over IrDA

Jean Tourrilhes
Internet and Mobile Systems Laboratory
HP Laboratories Palo Alto
HPL-2001-141
June 12th , 2001*

E-mail: jt@hpl.hp.com

wireless, radio,
MAC, protocol,
802.11

This paper describes a novel approach to using TCP/IP
applications over IrDA. First, we look into why so few
applications are available over IrDA and what is necessary to
make the use of those applications attractive to end-users.
Then, we present a new scheme that enable the use of the IrDA
communication layer by those applications in a transparent
fashion with minimal overhead. We describe the various
components necessary to implement such a scheme, IrNET, the
name resolver and the discovery manager, and explain how we
have implemented those components under Linux. We finish by
showing a few examples of use of those components with real
applications.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

e

e
ser
e
s
us

k
ss.

e of
ss
e

ven
ess

e.

the
he
a
e
he
ur
ful
n
ge.

for
DAs
As

it
er-
e
r
o
A

d-
1 Introduction
Recent advances in technology have made it possible to

cram computing and networking technology into ever smaller
portable devices. As those devices incorporate more data and
services, enabling them to participate in ad-hoc networks can
be beneficial.

Traditionally, research in ad-hoc networking has focused
on the challenges of network autoconfiguration [14] and ad-
hoc routing [12]. The results of this work have been
implemented for several link layers, most notably Ethernet.
Unfortunately, the techniques developed can’t be applied to
TCP/IP over IrDA, due to the connection oriented nature of
IrDA (seesection 3.1).

There are at least three well-known methods used to
encapsulate TCP/IP over IrDA (seesection 4.1), all of them
require extensive setup or explicit user intervention to
establish a TCP/IP network link between nodes, and so can’t
truly be classified as ad-hoc.

This paper outlines a novel approach to using TCP/IP
applications over IrDA. We describe a transparent and
seamless method of establishing TCP/IP connections on the
fly and without user intervention, allowing the user to ignore
the presence of the IrDA layer and its mechanisms.

2 Motivations
While this paper presents results specific to networking

and ad-hoc TCP/IP over IrDA, it is part of a more general
research project called CoolTown, and therefore its roots lie
in research to support ubiquitous computing.

2.1 CoolTown : the user
HP’s CoolTown has a web-centric view of environments

and their components [1], and aims to bridge the gap between
the physical world where the user lives and the computing
world where vast amounts of information and services are
available.

In CoolTown, spaces, devices and people have web pages,
and can interact using HTTP. This intelligent use of web
technology allows users to interact with the environment and
devices once they have obtained the devices’ URLs. A
protocol, e-Squirt [25] disseminates these URLs to interested
users via infrared. The Web Presence Manager helps the user

communicate with various services available to him in th
current context and locality [2].

This project is part of CoolTown and is follows the sam
philosophy. In this case, we are concerned by how the u
interacts with wireless networking technology and how w
can make this technology useful to him. Usually, wireles
connections are used to support mobile hosts. In a ubiquito
computing environment it is desirable that networ
connectivity should be transparent to the user, if not seamle

2.2 The benchmark : compact flash
The measure of success of a user interface is its degre

transparency. The more intuitive the interface, the le
intrusive and user-friendly it will be. Of course, any interfac
can become “natural” if it is used sufficiently. Absolute
measurements of interface ergonomic are hard, and e
comparative measurements tend to be skewed by the proc
of evaluation and the differing expectations of each interfac

The basic benchmark we have defined to measure
degree of user-friendliness of our wireless interface is t
comparison with removable storage. If copying data to
compact flash or floppy and carrying it to the destination (th
so called “sneakernet”) is easier than sending it through t
network, then the design of the interface is flawed. It is o
firm belief that wireless ad-hoc networking can be success
only if it becomes easier to use and more friendly tha
removable storage. Unfortunately, we are not yet at that sta

2.3 IrDA : pervasive ad-hoc networking
Support for infrared communication has been present

a long time in laptops, and has seen increased usage as P
become more common. Jornadas, Palm Pilots and other PD
can “beam” information using OBEX over IrDA [8].

When HP started developing its CoolTown project,
made sense to use this widely available (although still und
used) link layer. Its main advantage over competitiv
technology is its directionality, which allows the use
interface to be greatly simplified (just point and shoot, n
need for messy on-screen selection). Other benefits of IrD
are its low price, widespread availability, high speed and a
hoc nature.

The problem with IrDA is that only a handful of
specialized applications are available for it.

Transparent peer to peer TCP/IP over IrDA

Jean Tourrilhes
jt@hpl.hp.com

Hewlett Packard Laboratories, 1501 Page Mill road, Palo Alto, CA 94304, USA.

This paper describes a novel approach to using TCP/IP applications over IrDA. First, we look into
why so few applications are available over IrDA and what is necessary to make the use of those
applications attractive to end-users. Then, we present a new scheme that enable the use of the IrDA
communication layer by those applications in a transparent fashion with minimal overhead. We describe
the various components necessary to implement such a scheme, IrNET, the name resolver and the
discovery manager, and explain how we have implemented those components under Linux. We finish by
showing a few examples of use of those components with real applications.
1

.
, a
IP
ew
d-
to
t a
ry

ts.
is

.

ad,
e
ct,
vice
in
he

et
hat
e
nd
's
rk

f
e

e
l

tive
e,

s
st
by
re

rk

d
to
e :
g)
n

).
ion

e
r
n’t
ife
e
nd
2.4 TCP/IP is ubiquitous
The IrDA stack offers a fully featured socket API,

enabling applications to make rich use of IrDA connectivity.
It is fairly trivial to modify and recompile existing TCP/IP
applications to make them work over IrDA, except for some
UI issues. However, this is not something an end-user can do,
and very few application developers have adapted their
applications to IrDA.

Our goal is to use any common network application totally
unmodified over IrDA, especially the applications the user is
familiar with. As the vast majority of existing applications use
TCP/IP, this means carrying TCP/IP traffic over the IrDA
protocol.

2.5 IrDA and BlueTooth
The current work is based on IrDA, and some parts of the

implementation are specific to IrDA. However, the concept is
not specific to IrDA, and we plan to extend this work to TCP/
IP over BlueTooth [10] when it becomes available.

One limitation of the IrDA stack is that the lower layer,
IrLAP, is strictly point-to-point when connected [4].
However, to ensure that our work can be applied to
BlueTooth, we use multiple IrDA dongles. Each dongle can
carry a single point-to-point link, but the Linux IrDA stack
supports multiple dongles simultaneously, enabling us to
form point-to-multipoint networks.

3 General overview
Our goal is to transparently relocate the user’s favorite

applications onto IrDA. As we have discussed, this requires
transporting TCP/IP over IrDA, but there are other important
issues to consider.

3.1 The main problem : connection setup
The IrDA link layer, like the BlueTooth link layer, is a

connection oriented medium [4]. In order for IP packets to
flow, we must explicitly create an IrDA connection between
two nodes.

All the existing schemes for carrying TCP/IP over IrDA
expect the user to explicitly trigger this connection setup. The
TCP/IP over IrDA connection will be closed down at the
user’s request or if the IrDA connection is broken. IrLAN
access points are the only exception to this rule, if a device
discover one IrLAN Access Point and is already configured
for it, the device can automatically connect to it when in
range, but this is not an truly ad-hoc scenario.

Since we aim for transparency, we want to eliminate the
necessity of user involvement in TCP/IP over IrDA
connection establishment.

3.2 Emulating a connectionless broadcast medium
Ethernet is the link layer technology people are most

familiar with, and doesn’t require this explicit setup. TCP/IP
and all the autoconfiguration and ad-hoc mechanism that we
want work perfectly on top of Ethernet.

So, we could just pretend that IrDA is just another
Ethernet link layer. The idea is to add mechanisms on top of
IrDA to make it as similar as possible to Ethernet and hide the

specificity of IrDA. In other words, to emulate a
connectionless broadcast medium over IrDA.

The techniques are fairly well known, but a bit complex
Whenever a new node is discovered on the IrDA medium
TCP/IP connection is established to it. Standard
autoconfiguration techniques are used to configure this n
node properly within the ad-hoc network. Optionally, an a
hoc routing algorithm can be used over this set of point
point links to reduce the number of redundant links so tha
device doesn’t need to connect at the link layer with eve
device in range.

The problem is that such techniques have significant cos
First, they are complex : extensive debugging and tuning
needed to make them work well and interoperate properly

Second, there is significant management overhe
especially if we want the system to react quickly to th
dynamic topology changes common to IrDA systems. In fa
even when the user doesn’t need network access, his de
will spend much of its energy trying to manage and mainta
this ad-hoc network with devices in range, which impacts t
CPU and battery life of the device.

Imagine a hypothetical user walking down a busy stre
with a BlueTooth capable mobile phone. Further assume t
his phone is establishing a TCP/IP connection with th
cellphone of every other person who passes within range a
exchanging various routing information. The mobile phone
battery would be flat in short order ; such an ad-hoc netwo
is just not practical on a busy city street.

Finally, there are strict limitations to the number o
simultaneous link layer connections. IrDA can have only on
active connection per physical port [4]. With BlueTooth, th
limit is 7 per radio [10]. Increasing the number of physica
ports increases the cost, and is therefore not an attrac
option. Since IrDA can connect to only one device at a tim
it is vital that we ensure it’s the right one.

3.3 On-demand TCP
The type of network traffic on ad-hoc wireless links i

usually different from that seen on a wired backbone. Mo
portable devices tend to be personal clients directly used
their owner, so traffic tends to be transaction oriented : the
is useful traffic only when the user performs a netwo
transaction, otherwise no connection is needed.

Also, the transaction are mostly two kinds, directe
(device to device) or toward the infrastructure. Device
device transactions are with people within physical rang
the user is physically interacting with someone (i.e. chattin
and wants to complement this with a digital transactio
(sending the picture of his new girlfriend or new car
Transactions to the infrastructure use the relevant informat
or service in the Internet (paying for coffee).

We believe that most ad-hoc interactions will therefore b
“one-hop” in nature, from our device directly to a peer o
directly to an infrastructure access point. We personally do
want other people to use our bandwidth, CPU and battery l
for their private interactions. Note that “our device” might b
a set of personal devices configured to work as a unit a
2

er
A
an
to

s
we

f

n

of
nd

ts
m
m
the

e

n’t
se

for
nd

P
a
ng
/

as
rk
3

el
e

linked together by BlueTooth or a similar personal area
network technology.

Based on these assumptions, we propose an on-demand
TCP/IP scheme, where TCP/IP connections are established
only when needed, directly to the intended target, and closed
when no longer needed. This slightly increases the
complexity of the system and the management overhead, but
offers various benefits.

3.4 Benefits and constraints
The main advantage to our approach is that the device

need not pay the price of setting up and keeping alive an IrDA
connection with any peers when it is not communicating. This
should result in a tremendous saving of power, since
resources are only used when needed.

However, the on-demand nature of our approach
precludes the use of the classical autoconfiguration
techniques. Those techniques assume a permanently
connected broadcast medium and work on top of IP, whereas
by default our approach has no IP connectivity. Therefore, we
must use novel autoconfiguration techniques integrating IrDA
and TCP/IP.

Also, our solution doesn’t solve all usage models and
network configurations. Some usages and configurations
require multi-hop routing and permanent TCP/IP
connectivity, and in those specific cases more traditional
solutions can be used.

3.5 Relation to PPP dial-on-demand
The TCP/IP on-demand scheme that we have described is

very similar to dial-on-demand that can be found in most PPP
implementations. This scheme deals with the same problem :
minimizing the use of a costly resource. When the TCP/IP
stack wants to reach the host or gateway on the other side of
the PPP link, PPP dials the modem and establishes the link.
When there is no traffic on the link, it is disconnected.

The two schemes are similar and use the same underlying
mechanisms, but there are significant differences. PPP deals
with a single link and single IP address which is
preconfigured, although some implementations can use a PPP
instance for each of several IP addresses to allow multiple
links. On the other hand, our scheme deal with IP addresses
with are not known in advance, their number is variable and
potentially large, and the number of active links also varies
and is usually much smaller than the number of IP addresses,
so we need a more scalable solution than what PPP offers.

3.6 Notes on IPv6 address autoconfiguration
Most wireless link layers have some notion of a globally

unique identifier used as a link address, such as IEEE 802s
48 bit MAC address [11]. However, the IrDA specification
doesn’t include such a feature, the IrDA stack uses a random
32 bit number as the station address. IrDA only guarantees
that stations within communication range of each other have
different addresses.

This problem has no impact on the IrDA stack itself or its
ability to carry TCP/IP traffic, but it precludes the use of IPv6

autoconfiguration [12], since it assumes that every link lay
has a globally unique identifier. For example, the IrD
address may change when a conflict is detected,
occurrence which IPv6 autoconfiguration is not equipped
handle.

3.7 The general design
The current design involves four different functional unit

that must be added to the operating system of the devices
are dealing with (seefig 3.7).

The first is IrNET, interfacing the TCP/IP stack on top o
the IrDA stack. We assume fully functional TCP/IP and IrDA
stacks. This module allows TCP/IP traffic to flow across a
IrDA connection.

The second is the IrNET Control Channel. This is a part
IrNET that exports IrDA events to the rest of the system a
allows fine control over IrNET (mapping of specific TCP/IP
flows to specific IrDA destinations).

The third is the Discovery Manager. It receives even
from IrNET and the TCP/IP stack and sets up the syste
appropriately in response. Intelligence to control the syste
and establishment of on-demand connections resides in
Discovery Manager.

Fourth is the IrDA name resolver, which performs nam
resolution over IrDA.

The network applications present on the system do
interact directly with these components, but continue to u
the standard system APIs (seefig. 3.7).

3.8 Implementation bits and pieces
We have implemented this autoconfiguration scheme

the Linux operating system. The system is operational a
has been demonstrated with real applications.

The Linux distribution used is GNU/Linux Debian 2.2
[21], upgraded with kernel 2.4.0 [22]. We tested on H
OmniBook 6000 laptops using the integrated IrDA port (
NSC 87338 FIR chipset) and HP Vectra workstations, usi
serial IrDA dongles (115 kb/s) or USB IrDA dongles (4 Mb
s).

We mostly reuse existing parts of the Linux OS, such
the TCP/IP stack, the IrDA stack, PPP and the netwo
applications (web browser, web server, streaming MP
player).

IrNET and its control channel are implemented in a kern
driver module. The IrDA resolver is a libc module. Th
Discovery Manager is a regular system daemon.

fig. 3.7
IrNET

IrDA

query

Application Application

Sockets

config
events

traffic

query

Discovery
Manager

IrDA
resolver

Name
resolver

TCP/IP

Control
Channel
3

sed

a
uch
h for
g

ET
et.
the
e

le
er

PP,
user
her
he

it
ll
o

on,
n is
he
he
as
g

lly

ed

een
we
n

4 TCP/IP over IrDA : IrNET
The first part of the work is to interface the TCP/IP stack

and the IrDA stack. The goal is to encapsulate TCP/IP packets
on IrDA connections, and to be able to manage those
connections.

4.1 The contenders
There are three ways to carry TCP/IP over IrDA (seefig.

4.1).

The most common uses PPP over IrCOMM [7]. This is the
method used to communicate with data-enabled mobile
phones (those which support IrDA).

IrCOMM is the IrDA stack's simple serial emulation layer,
so it's quite straightforward to setup PPP over this pseudo
serial port. Unfortunately, this introduces inefficiency due to
PPP framing and serial emulation.

The second option is to use IrLAN [6], which is the
official IrDA standard for transporting TCP/IP over IrDA, and
is implemented in IrDA LAN Access Points. IrLAN is
basically an Ethernet emulation over an IrDA socket.

The third option is to use IrNET [9], which is used by
Windows 2000 to connect two PCs together (Direct Cable
Connection over IrDA). IrNET is synchronous PPP over an
IrDA socket, using only the protocol part of PPP and
removing both the serial emulation and the PPP framing for
greater performance.

4.2 Why we picked IrNET
The PPP protocol has some very nice features, features

which are desirable for our project. The main benefit is that
PPP can deal automatically with IP addresses, IP routing and
IP configuration through the IPCP negociation, obviating the
necessity of other mechanisms to perform those functions.

PPP is also more efficient than Ethernet emulation, as it
removes the Ethernet header and can perform IP header
compression [16] and IP payload compression [17]. PPP also
has built-in security (authentication [18] and encryption [19]).

The main difference with PPP over IrComm is
performance, because no PPP framing is done. The other
advantage is control, because IrComm doesn’t allow to
specify the IrDA destination address of the serial connection.

Finally, PPP is usually associated with long term static
configuration (dial-up connections). Using PPP in an ad-hoc
and dynamic fashion is a challenge that we could not ignore...

4.3 IP autoconfiguration
One of the nicest features of PPP is that it deals with IP

configuration for us. The IPCP protocol [15] can negotiate IP
addresses for each end of the link and PPP will then perform
all necessary network layer setup.

A lot of devices connected to the Internet already have an
IP address configured (static or via DHCP on a WAN
interface). If no IP address is explicitly given, PPP will use
this default IP address of the device for the IrNET connection.
This IP address may already be in use by another network
interface of the device, but that not a problem. In fact, it’s a

benefit, because all interfaces of the device will be addres
in the same way.

If the device doesn’t have any IP address, PPP will pick
random IP address in one of the non-routable IP subnet (s
as 10.0.0.0/24). Those addresses are usually good enoug
the kind of short lived directed transactions we are talkin
about.

PPP assigns two IP addresses at each end of the IrN
connection which may or may not be in the same subn
However, PPP sets the appropriate host-specific route in
IP routing table, so in practice IP traffic always gets to th
correct destination.

PPP can also automatically setup proxy ARP, to enab
packet forwarding between the IrNET connection and oth
network interfaces. Our work does not use this feature of P
since we assume that devices are personal and the
doesn’t want his resources and battery to be used by ot
people. On the other hand, proxy ARP could be used in t
future to implement an IrNET access point.

4.4 The Linux Implementation
IrNET was not available for Linux, so we implemented

[26]. As Linux offers both a full featured PPP stack and a fu
featured IrDA stack, it was simply a matter of gluing the tw
together properly.

The Linux PPP stack is composed of a user space daem
pppd, and a set of kernel modules. The user space daemo
in charge of the protocol part of PPP. One kernel module is t
PPP multiplexer, which interfaces the TCP/IP stack and t
PPP daemon, and deals with common code (such
compression). A second module is one of the framin
modules, which performs the link adaptation and usua
interfaces with a TTY.

The IrDA stack is a set of kernel modules and compos
of the IrLAP, IrLMP and IrTTP protocols. IrSock (the
infrared socket API) is built on top of IrTTP.

Although it would be possible to implement IrNET using
the standard external APIs as a user space module betw
the socket and the TTY APIs, for performance reasons,
interfaced IrNET directly to the PPP multiplexer and IrTTP i

fig. 4.1

Application

IP Routing

802.3PPP mux

PPP
daemon

PPP framer

TTY layer

IrComm IrLANIrNETIrSock

Application

Ethernet
driver

Ethernet
card

Application

IrDA stack (IrTTP, IrLMP, IrLAP)

IrDA dongle IrDA dongle

TCP/IP
4

IP
ice,
re
ter
ls
s)

d
TP
the
me

ch
for
hic
the

c
le
ion
we
nd

r
d
ork,
f

a
e
is
A

ss
he
IP

he
P
eir
t,
the kernel. This allows zero-copy communication between
TCP/IP and IrDA (if PPP doesn’t perform compression), to
minimizing latency and reducing the code size of the IrNET
module.

The resulting implementation is quite efficient. With a
NSC FIR chipset (4 Mb/s link), the TCP throughput
measured by netperf [24] is 3.19 Mb/s (uncompressed). The
time to setup the IrNET link is less than 800 ms on a 115 Kb/
s link (including full IrDA and PPP setup).

4.5 The control channel
Our main contribution to IrNET is the control channel.

The control channel is a very simple API (a pseudo file called
/dev/irnet) enabling user space applications to interact with
the IrNET module in the kernel.

The first function of the control channel is to bind a
specific IrNET instance to a specific IrDA destination. When
PPP creates a new connection, the IrNET module has no way
of determining to which IrDA device the PPP channel should
connect. All current TCP/IP over IrDA solutions simply
connect to the first device they find. With the control channel,
it is possible to specify on the pppd command line the desired
destination address, enabling IrNET to properly support
multiple devices in range and point-to-multipoint
configurations.

The mechanism is simple. The pppd daemon has a
command line option (connect) to pass some arbitrary data
directly to the input of the PPP driver used. With a regular
modem, this is usually the set of AT command to dial the
relevant phone number. For IrNET, we have defined a simple
set of commands to specify the IrDA address of the
connection and a few other parameters.

The second function of the control channel is to export
events related to the IrNET connections as well as IrDA
discovery events. By reading the /dev/irnet pseudo file,
applications are informed when the connection is broken and
when new nodes are discovered.

An example event log is :

Discovered 8c3478c8 (bougret)
Request from 8c3478c8 (bougret)
Connected to 8c3478c8 (bougret) on ppp0
Disconnected with 8c3478c8 (bougret) on ppp0
Discovered 8c3478c8 (bougret)
Expired 8c3478c8 (bougret)

5 The Ad-Hoc Name Resolver
We have chosen IrNET because PPP handles most of the

problems related to autoconfiguration. The only thing that
PPP doesn’t do for us is name resolution.

5.1 The need for name resolution
The TCP/IP protocols provide connectivity, but the only

addressing that it knows about is IP addresses. Most people
don’t want to deal with IP addresses, especially IPv6
addresses, and want to use familiar names.

Various protocols can be used to associate names to
addresses. The most common is the Dynamic Name Serv
DNS [20], designed to work on the connected Internet, whe
names are organized in a well known hierarchy (my compu
is ‘bougret.hpl.hp.com’). Other common naming protoco
are Network Information Service, NIS (a.k.a. YellowPage
and the use of the static /etc/hosts file.

The user interface of most applications is built aroun
human-readable names. The most common example is HT
that embeds the DNS name inside the URL. To preserve
user's ability to use names, our system needs to perform na
resolution over IrDA.

It may seem a bit paradoxical that we spend so mu
energy on names when most user interfaces, especially
IrDA, are graphic. But names are present under the grap
skin, and are used between the various component of
system.

5.2 The basic protocol
The classic DNS protocol is too heavy for ad-ho

networking, requires configuration, doesn’t hand
dynamism, is not peer-to-peer and requires an IP connect
(i.e., infrastructure support). To avoid these shortcomings,
implemented a lightweight protocol that is peer-to-peer a
doesn’t require IP connectivity to resolve names.

The basic idea is to use the underlying link laye
discovery. The IrDA stack itself performs discovery an
maintains a local database of devices present on the netw
including their IrDA address, IrDA nickname and a set o
attributes.

When the user wants want to resolve a destination with
specific IrDA nickname, we can pick the relevant entry in th
IrDA discovery database and extract its IrDA address. This
instantaneous and doesn’t generate any additional IrD
traffic.

The second step is to convert the IrDA link layer addre
into an IP address. We use the IrIAP protocol to query t
node associated with the target IrDA address for its
address.

IrIAP [5] is a basic IrDA protocol that allows IrDA
devices to query the IAS database of their peer devices. T
IAS is a local database of attributes in the IrDA stack. IrIA
can query attributes on an IrDA node by name and obtain th
values. The advantage of IrIAP is that it is very efficien

fig. 5.4

IrDA resolver

Application Application

NSS (name resolver)

IrDA stack

DNS resolver

TCP/IP stack

C Library (glibc)

gethostbyname(“bougret.irda”)

nss_irda_gethostbyname(“bougret.irda”)

IRLMP_ENUMDEVICES(“bougret”)

=> 10.0.0.1

=> 10.0.0.1

=> 0x8c3478c8
IRLMP_IAS_QUERY(0x8c3478c8,
 “IPv4Addresses”)
=> “10.0.0.1”
5

ry
e.
call
s.
e

on
a

es
S

s to

en
nt
e

nt

ger
this

to
er
it

IP
DA
.

el
T

nel.
on
his
n,
se

ry
f.
of

ress

he
ft
ses
in

c
All
nd
being a link-layer protocol (one request is half the cost of
setting up an IrDA socket) and doesn’t require server software
on the target device.

Our use of IrIAP is straightforward. The Discovery
Manager just add two new entries in the IAS database, one for
the DNS name of the device, and one for its IP address. Then,
we can use IrIAP to query those two attributes.

To convert from IrDA address to IP address, the resolver
sends an IrIAP query for the attribute named
“IPv4Addresses” to the target IrDA device. The result of this
query will be the IP address needed.

5.3 The naming convention
In the absence of an infrastructure and a central organizing

authority, we can't have a proper name hierarchy. Moreover,
we want to resolve IrDA nicknames, so we use a flat name
space.

We reuse the “dot” notation of DNS, since most users are
familiar with it. Each device on the IrDA link will have a
name composed of its IrDA nickname and the suffix “.irda”.
For example, my computer has the name “bougret.irda”.

The name space is not managed, so there may be name
collisions, although such occurrences will hopefully be rare
on such small networks. One way to resolve collisions is to
add an instance number prefix to the name to distinguish
different devices (for example “1.bougret.irda” and
“2.bougret.irda”).

Another option is to use the IrDA attributes found during
the operation of the discovery protocol: we can prefix the
name with the IrDA class of the device (for example
“pda.bougret.irda” and “printer.bougret.irda”). IrDA has only
10 classes of devices and they are used loosely, but this
technique will be more useful with BlueTooth, whose
discovery protocol SDP is richer and more strict.

We have also introduced an IrDA specific wildcard name,
“any.irda”, that is not a real device name but resolves to the
first device discovered on the IrDA link. This is useful for a
line-of-sight link like IrDA because the user can connect to a
device without knowing its name by just pointing at it. Of
course, the name “any” can be combined with a class prefix
(for example “printer.any.irda”).

Finally, we can optionally resolve standard DNS names
when the hostname part of the DNS name matches the IrDA
nickname (as is usually the case). We use the DNS IAS entry
of the remote host to make sure we match the proper node.

5.4 The Linux implementation
The name resolver client code is implemented in the C

library, as a set of modules with a well defined interface (NSS
- Name Service Switch). Those modules include name
resolvers for DNS, NIS, host file, and other mechanisms, all
configured in the file /etc/nsswitch.conf.

The IrDA resolver is just another resolver module added
to NSS (seefig. 5.4). It exports to the C library a name
resolution handler. It receives name resolution requests, try to
perform the resolution and return the result or an error.

Any user space application can query the discove
database of the Linux-IrDA stack through its socket interfac
This is done via a getsockopt call. We have added another
to allow user space applications to also perform IAP querie
The IrDA resolver is not specially privileged, it just uses thos
two calls appropriately.

The current resolver has a few interesting configurati
options. We can choose to resolve “any.irda” only if there is
single device in range, or also if there are multiple discoveri
(in this case we pick the first one). The resolution of DN
names is optional.

The resolver can also be used to resolve IrDA addresse
IP addresses through the gethostbyaddr() call.

6 The Discovery Manager
IrNET provides the basic method to pass TCP/IP betwe

IrDA nodes, however it doesn’t deal with the manageme
and setup of IrNET connections. This is the role of th
Discovery Manager.

6.1 On demand TCP/IP
The main goal of the Discovery Manager is to impleme

on-demand TCP/IP (seesection 3.3), to create IrNET
connections when needed and tear them down when no lon
in use. It implements the state machines necessary for
task.

The Discovery Manager needs two types of information
perform its function : it needs to know what are the other pe
devices that it can reach through the IrDA link, and when
should establish a link with them.

The whole system is based around TCP/IP and
addresses, so the first task is to collect IP addresses of Ir
peers, and the second to monitor IP traffic to those nodes

6.2 Collecting IP addresses
The Discovery Manager uses the IrNET control chann

to get discovery events. When a new node supporting IrNE
is discovered, an event is generated on the control chan
This event carries the IrDA address of the new node. Up
receiving such an event, the Discovery Manager extracts t
IrDA address and, if this IrDA address is not already know
it then uses the IrDA resolver to query its IP address. The u
of the IrDA resolver is just a convenience, the Discove
Manager could easily implement the IrIAP protocol itsel
The IP address is added to the Discovery Manager's list
active IP addresses, and the binding between the IP add
and the IrDA address is stored.

The Discovery Manager also reads Expiry events from t
control channel, informing it when nodes have le
communication range so that it may remove their IP addres
from the active list (the address binding is kept a bit longer
case the node comes back).

6.3 Monitoring IP traffic
The Discovery Manager must monitor outgoing IP traffi

towards nodes present in its list of active IP addresses.
well-designed TCP/IP stacks include some monitoring a
6

g
e

that
e
the

e
s

ic
et
ves
on

e
a

re
he

er
P/
g

he
ser

f
at
ion

of
y
her

-
pe
e
is
ous

er,
filtering facilities, the Discovery Manager use these
appropriately.

The Discovery Manager creates a filter rule in the IP stack
matching each of the IP addresses in its active list. The TCP/
IP stack then generates event for each IP packet matching the
filter.

When the Discovery Manager receives such an event, it
first checks the state of the IrDA link associated with this IP
address. If the link is unconnected, the Discovery Manager
sets up a connection with PPP and IrNET. When the IrNET
link is up, all packets with this IP address automatically reach
their destination. While the link is up, the Discovery Manager
removes this IP address from the filter list to minimize the
overhead of monitoring, and re-enables it when the link is
closed.

The Discovery Manager also needs to close unused links.
This is done by setting the idle timeout of PPP to 10s so that
PPP itself closes the link if inactive. PPP also automatically
tears down the PPP connection and the associated IrNET link
if the IrDA link is blocked for more than 5s (usually implying
that the destination moved out of range). These timeouts may
need to be tuned to a specific device or application.

The current system creates a link in response to any packet
matching the IP address of the link. This strategy is borrowed
from the regular PPP demand mechanism and works well in
practice ; unidirectional IP packets are almost always part of
a connection and carrying useful information.

We do not, however, support broadcast and multicast
traffic. Broadcast packets are typically periodic management
packets, and do not normally indicate user demand for link
connection. Establishing a link with any device in range to
exchange such management packets would contradict our
goal of preserving power. Multicast packets can be
management or multimedia applications ; dealing efficiently
with them in such ad-hoc point-to-point environment is still
an open research issue and well beyond the scope of this
paper.

6.4 The Linux implementation
The Discovery Manager is implemented in Linux as a

regular user space daemon and use the various facilities
offered by the system.

It reads events on the IrNET control channel by opening
the pseudo file exported by the IrNET module (/dev/irnet). It
uses the IrDA resolver to translate IrDA to IP addresses.

It performs IrNET connection establishment by launchin
pppd, the PPP daemon, with the right command lin
arguments. One of these arguments is the IrDA address
pppd write on the IrNET control channel. The command lin
can also contain the PPP idle timeout and the IP address of
interface.

The Discovery Manager monitors TCP/IP traffic using th
Linux NetFilter framework [23] and its associated IPtable
library. NetFilter allows an application to place parametr
probes at various points in the Linux networking stack and g
related events. The Discovery Manager just adds and remo
IP addresses from its filter using iptables and reads packets
a pipe.

Our current use of NetFilter is not optimal, because th
TCP/IP stack is required to have a valid route (for example
connection to the Internet) for our setup to work. We a
investigating the use of a kernel loopback (for example t
Universal TAP driver) to work around this limitation.

The current implementation of the Discovery Manag
can only manage one IrDA link, one IP address and one TC
IP connection. We are working on fixing that and extendin
our current implementation.

7 Putting all together
Now that we have described the various parts of t

system, let’s see how they can be used to improve the u
experience in a few simple examples.

Of course, it’s impossible to list all the potential use o
such technology, as it is only an enabling technology th
many applications and developers can use for communicat
over IrDA, and not and end-user application in itself.

7.1 Simple IrDA Web browsing
The HTTP browser has become the user interface

choice for many tasks involving networking, and man
appliances contain embedded web servers allowing ot
devices to browse their content or user interface [1].

If the user wants to browse the content of another IrDA
capable device, he must only point his device toward it, ty
“any.irda” in the URL field of the browser, and magically th
default web page of the other device will appear in h
browser. The user can then transparently browse the vari
web pages of the device.

This is possible using a standard web browser and serv
unmodified, on a system that implements our technique.

fig. 6.2 : Discovery state machine

iptables -A OUTPUT -d 10.0.0.1

Discovered 0x8c3478c8

IrDA
resolver

NetFilter
(TCP/IP)

IrNET
Control

Channel

gethostbyaddr(0x8c3478c8)

=> 10.0.0.1

fig. 6.3 : Connection state machine

iptables -D OUTPUT -d 10.0.0.1

IP_PACKET dest=10.0.0.1

NetFilter
(TCP/IP)

pppd /dev/irnet noauth idle 10

Connected to 0x8c3478c8

NetFilter
(TCP/IP)

 connect addr 0x8c3478c8IrNET
Control

Channel
7

er

r
nd
ry

e

l
,

,

nt

sen

).

s
.

d

d

l

This is how it works under the hood. As soon as the user's
device discovers the other IrDA device, the Discovery
Manager puts its IP address in the active list. When the user
type “any.irda” in the browser, the browser resolves it and the
IrDA resolver returns the target IP address. Then, the browser
establishes a connection to the IP address. The Discovery
Manager intercepts those IP packets and establishes the
IrNET link. After that, the IP packets flow over IrDA and the
HTTP server on the other device handle the incoming request.

7.2 Self referenced Squirt
Squirt is a protocol designed as part of the CoolTown

project [25], allowing users to remotely control appliances.
Squirt push URLs over IrDA. When the remote appliance
receives such an URL, it uses its wired internet connection to
fetch the content of URLs and do the appropriate thing with it
(display, play or print it for example).

However, this protocol currently applies only for
documents available on the Internet. By using our technique,
the remote appliance can also transparently fetch documents
on the squirt sender. The squirt sender just needs to pass a
URL referencing itself (its DNS name) and the local
document.

An example is an Internet radio [3] developed as part of
the CoolTown project. The user can squirt a URL referencing
a local MP3 file, the Internet radio will query and stream the
file from the user device over IrDA and play it.

7.3 Network neighborhood
The usual user interface for IrDA is a graphical window

showing icons associated with each of the devices discovered
on the link. The user can communicate and perform actions
on these devices by manipulating their icons.

Using our setup, any network application can be
integrated easily into this interface, without changes.

For example, if the user want to add telnet support to this
GUI, he can add an item in the contextual menu associated
with each device containing “telnet %n.irda” (assuming that
%n resolve to the IrDA name of the device).

8 Conclusions
The IrDA link layer has some unique characteristics that

make it different from usual networking technology : IrDA is
peer-to-peer, connection oriented, dynamic, and the link is
directional.

These characteristics make the deployment of common
network applications based on TCP/IP not transparent to the
user : the user must explicitly explicitly connect the IrDA
stack before using the application. Also, due to the ad-hoc
nature of the medium, any network solution must be ad-hoc.

In this paper, we have presented a set of components that
connect the IrDA stack on demand and deal with various
details of TCP/IP configuration on such an ad-hoc link. This
allows the IrDA link layer to be totally transparent to the
application and the user.

The components have been implemented in a real
operating system and have been used with various real
applications successfully.

9 Acknowledgements
I would like to thank Luiz Magalhaes (from UIUC) for the

hard work he did on implementing the Discovery Manag
and commenting on my vagues ideas in their early stage.

I would also like to thank Casey Carter (from UIUC) fo
his exhaustive review of the paper on a very short notice a
all the suggestions he offered to improve the Discove
Manager.

10 References

[1] CoolTown team.People, Places, Things: Web Presenc
for the Real World. www.cooltown.com

[2] D. Caswell and P. Debaty. Creating web
representations for places. Proc. Second Internationa
Handheld and Ubiquitous Computing Symposium
HUC’2000, Bristol, England, 2000.

[3] V. Krishnan, and G. Chang.Customized Internet radio.
Proc. Ninth International World Wide Web Conference
Amsterdam, 2000.

[4] IrDA. Serial Infrared Link Access Protocol (IrLAP).
www.irda.com

[5] IrDA. Link Management Protocol. www.irda.com.

[6] IrDA. LAN Access Extensions for Link Manageme
Protocol - IrLAN. www.irda.org

[7] IrDA. ‘IrCOMM’: Serial and Parallel Port Emulation
over IR (Wire Replacement). www.irda.org.

[8] IrDA. IrDA Object Exchange Protocol - IrOBEX.
www.irda.org.

[9] Microsoft. IrTran-P, IrLPT, and IrDA Networking
Support under Windows 2000. www.microsoft.com.

[10] J. Haartsen, M. Naghshineh, J. Inouye, O. J. Joeres
and W. Allen. BlueTooth: Vision, Goals, and
Architecture. ACM Mobile Computing and
Communications review, Vol. 2, No. 4, (October 1998

[11] IEEE. IEEE 802.11 : Wireless LAN medium acces
control (MAC) and physical layer (PHY) specifications

[12] S. Corson, J. Macker.Mobile Ad hoc Networking
(MANET): Routing Protocol Performance Issues an
Evaluation Considerations. RFC 2501.

[13] C. Perkins and E. Royer.Ad-Hoc On-Demand Distance
Vector (AODV) Routing. In Proceedings of the Second
IEEE Workshop on Mobile Computing Systems an
Applications (WMCSA ’99), pages 90--100, 1999.

[14] S. Thomson and T. Narten.IPv6 Stateless Address
Autoconfiguration. RFC 1971.

[15] G. McGregor and Merit.The PPP Internet Protocol
Control Protocol (IPCP). RFC 1332.

[16] M. Engan, S. Casner and C. Bormann.IP Header
Compression over PPP. RFC 2509.

[17] D. Rand. The PPP Compression Control Protoco
(CCP). RFC 1962.

[18] W. Simpson. PPP Challenge Handshake
Authentication Protocol (CHAP). RFC 1994.
8

[19] G. Meyer. The PPP Encryption Control Protocol
(ECP). RFC 1968.

[20] P.V. Mockapetris.Domain names - implementation and
specification. RFC 1035.

[21] The Debian project. GNU/Linux Debian 2.2.
www.debian.org.

[22] Linus Torvalds and others. linux-2.4.0.tar.bz2.
www.kernel.org

[23] Rusty Russell.Linux 2.4 Packet Filtering HOWTO.
http://netfilter.samba.org/unreliable-guides/

[24] Rick Jones. NetPerf : a network performance
benchmark. http://www.netperf.org/.

[25] Jean Tourrilhes. e-Squirt for Linux-IrDA. http://
www.hpl.hp.com/personal/Jean_Tourrilhes/IrDA/
squirt.html

[26] Jean Tourrilhes. IrNET for Linux-IrDA. http://
www.hpl.hp.com/personal/Jean_Tourrilhes/IrDA/
IrNET.html
9

	1 Introduction
	2 Motivations
	2.1 CoolTown�: the user
	2.2 The benchmark�: compact flash
	2.3 IrDA�: pervasive ad-hoc networking
	2.4 TCP/IP is ubiquitous
	2.5 IrDA and BlueTooth

	3 General overview
	3.1 The main problem�: connection setup
	3.2 Emulating a connectionless broadcast medium
	3.3 On-demand TCP
	3.4 Benefits and constraints
	3.5 Relation to PPP dial-on-demand
	3.6 Notes on IPv6 address autoconfiguration
	3.7 The general design
	3.8 Implementation bits and pieces

	4 TCP/IP over IrDA�: IrNET
	4.1 The contenders
	4.2 Why we picked IrNET
	4.3 IP autoconfiguration
	4.4 The Linux Implementation
	4.5 The control channel

	5 The Ad-Hoc Name Resolver
	5.1 The need for name resolution
	5.2 The basic protocol
	5.3 The naming convention
	5.4 The Linux implementation

	6 The Discovery Manager
	6.1 On demand TCP/IP
	6.2 Collecting IP addresses
	6.3 Monitoring IP traffic
	6.4 The Linux implementation

	7 Putting all together
	7.1 Simple IrDA Web browsing
	7.2 Self referenced Squirt
	7.3 Network neighborhood

	8 Conclusions
	9 Acknowledgements
	10 References
	Transparent peer to peer TCP/IP over IrDA

