

Text-mining based journal splitting

Xiaofan Lin
Intelligent Enterprise Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-137 (R.1)
November 18th , 2002*

E-mail: xiaofan.lin@hp.com

table of
contents,
OCR, journal
splitting, text
mining, text
chunking,
document
understanding

This paper introduces a novel journal splitting algorithm. It takes
full advantage of various kinds of information such as text match,
layout and page numbers. The core procedure is a highly efficient
text-mining algorithm, which detects the matched phrases
between the content pages and the title pages of individual
articles. Experiments show that this algorithm is robust and able
to split a wide range of journals, magazines and books.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2002

Text-mining based journal splitting

Xiaofan Lin
Hewlett-Packard Laboratories

1501 Page Mill Road, MS 1126, Palo Alto, CA 94304
Email: xiaofan.lin@hp.com

Abstract
This paper introduces a novel journal splitting

algorithm. It takes full advantage of various kinds of
information such as text match, layout and page numbers.
The core procedure is a highly efficient text-mining
algorithm, which detects the matched phrases between the
content pages and the title pages of individual articles.
Experiments show that this algorithm is robust and able
to split a wide range of journals, magazines and books.

1. Introduction
Printing-on-demand (POD) is an emerging

commercial publishing field, which promises to lower the
cost of short-run publishing as well as to bring new
revenue streams to out-of-print publications. For
publications existing in paper rather than the electronic
form, the first step is re-mastering, in which the paper
media is scanned and converted to some widely electronic
formats such as PDF files. For periodicals people usually
are more interested in specific articles rather than the
whole journals or magazines, so it is desirable to have
separate PDF files for individual articles. Although
human operators can split a journal into separate articles,
the manual processing tends to be slow and expensive.
That is the motivation behind our research: Design an
algorithm that enables the computers to automatically
detect the title pages of journals and magazines.

In Section 2 we analyze the unique problems related
to journal splitting. Then we present a text-mining based
JS algorithm in Section 3. Section 4 is devoted to other
related issues such as the combination of other features
and the detection of content pages. Section 5 shows the
experimental results and Section 6 summarizes the
proposed method and gives directions for future research.

2. Problem Analysis
In this section we will define the problem more

clearly in terms of what information is available. Fig. 1 is
the workflow of the re-mastering process:

The first step is to scan the paper books, journals and
magazines and convert them into TIFF files. Color or
gray-scale images are kept to preserve all the significant
information. In order to reduce file size and more

importantly to enable full text search, image processing
and OCR (Optical Character Recognition) follow, in
which the original images are segmented into
homogenous regions and stored in a compact form. OCR
also generates the text information. In the last step, both
the processed image and the text are embedded into the
PDF files.

Fig 1: Workflow of th

It is apparent that t
available for journal splitt
result. Although numerous
on document analysis [9][1
on the topic of journal spl
the logical structure analy
analyzing the OCR results
[1][2]. Similarly, one str
extract the page numbers f
find the start page of each
drawbacks with this TOC-o

Scenario 1: OCR can
page numbers in the conten

In this situation, we g
miss some page number
journals in the wrong way.

Scenario 2: The pag
recognized but we will m

a

 1
Paper Medi

Scanning
s

Image Processing and OCR
s
Building PDF File
TIFF File
s
PDF File
e Re-mastering Process

wo kinds of information is
ing: image data and the OCR
 studies have been carried out
0], there is no published work
itting. The closest research is
sis of books or journals by

of the table of contents (TOC)
aightforward approach is to
rom the TOC and use them to
 article [11]. There are some
nly solution:

make errors in recognizing the
t pages.

et the wrong page numbers or
s and accordingly split the

e numbers are all correctly
ake false-negative or false-

positive errors in deciding whether a digit string is a page
number.

There are often other digits strings besides page
numbers on the TOCs. Although we can filter out most
irrelevant digit strings assuming that the distribution of
page numbers on the TOC will conform to some typical
patterns. For example, all the page numbers will form one
or several lines. However, our research along this
direction soon reveals that in real world there are so many
patterns that it is an endless pursuit to include all the
patterns. Worse still, it is quite common that the
introduction of an extra pattern to handle one particular
TOC will lead to mistakes on other TOCs.

Scenario 3: For some fancy magazines the page
numbers on the TOCs and/or individual articles are
printed in special formats so that the OCR engine cannot
recognize them at all.

3. Proposed solution

3.1 Basic idea and problems
The study of many periodicals reveals one intrinsic

characteristic common in most publications: The author
names and/or the title of an article will repeat on the title
page (the first page of one article). So we can detect the
start pages by matching them against the content pages.
On the other hand, there are several challenges along this
direction:

• How to get only the “desired” matches?

We are only looking for matches on article titles and
author names shown on the TOC and the title pages. In
reality, the same phrases can appear in context rather than
TOC or title pages. For example, they can also appear as
page headers.

• How to search effectively?

Unlike the keyword-based Web search engine [6][7],
we do not know in advance what phrases are the targets.
The only prior knowledge is that some phrases in the
TOC pages will repeat in the title pages. Without careful
design, the computation complexity can easily get out of
control.

• After detecting the matches, how to decide which
pages are title pages?

Although it is quite safe to say that some phrases in
the TOC pages will appear in the title pages, the reverse is
not necessarily true. Many common words such as “the”,
“and”, “of” will appear in almost all the pages. Even the
author names can appear as citations or references instead
of on title pages.

• Is text match alone sufficient for accurate decision?

In the following subsections we describe a text-
mining based JS algorithm, which can overcome the first
three challenges. The last challenge is addressed in the
next section.

 3.2 Dynamically built dictionary
A huge amount of text string matches will be

involved. In order to accelerate the matches, we build a
dynamic tree-structured dictionary for each content page
(Fig 2). Once the dictionary is constructed, the search is
conducted as nonlinear tree search instead of linear
matches across the string list. Our experiment shows the
speed is increased by three times in this way.

 Root

Fig 2: Tree Dictionary Structure Based on TOC

Pages (Nodes that can serve as ends of words are
in bold italic font.)

 3.3 Graph representation of content pages
The next question is how to describe the content

page. The most simple approach is to use a linked list to
string together all of the words. The drawback is that
repeated words will appear more than once in the list. So
we model the content page as a directional graph with
each node as a unique word.

Fig 3: Graph Description of TOC Pages

Fig 3 is the representation of the sentence “a student
is a person who studies in a school.” Each edge has both a

a t

n t
h

e

2

5 6 7

a

student

studies whoperson

is school

in

3
1 9

4
8

 2

direction and a state and can be described as a tuple (start
vertex, end vertex, state). The state component dictates
the traversal order by requiring that the state be always
incremented by one when traveling from one vertex to
another. The biggest advantage of graph representation is
the high efficiency. For example, in order to find all the
phrases starting with the word “a”, we first look up the
vertex in the tree dictionary. Then we can immediately
find out the phrases starting from that word (“a student”,
“a school” and “a person”) by traversing along all the
edges from that vertex. Besides, if both the start state and
the end state are given, one phrase can be uniquely
decided. We define such a pair (start state, end state) as a
Range. For example, as shown in Fig 3 Range (4,6)
corresponds to the phrase “person who studies”. We use
this concept in Section 3.5 when discussing text chunking.

3.4 Text match algorithm
In recent years, a lot of research is done in field of

text mining, whose goal is to automatically spot important
information from huge amount of text [6][7]. One
recurring problem is to group documents by identifying
similar phrases. In [7] the authors apply the pattern
detection idea from the famous LZW data compression
algorithm. In [6] a data structure called “suffix tree” is
used to locate common phrases among different
documents. However, these Web-related applications all
utilize the statistical qualities of common phrases, such as
the frequency of phrases. In journal splitting, we cannot
count on the multiple appearances of critical phrases.
They may only show up twice---one in the TOC and the
other in the title page. So we introduce a unique text
match algorithm suitable for JS. Fig 4 is the workflow of
the proposed algorithm:

Step 1:

Step 2:

Step 3:

Fig 4: Ma

3.5 Text chun
Phrases ar

for the text mat
in the TOC p
Chunking,” wh
processing (N

dividing sentences into nonoverlapping segments” [8] and
is done in unsupervised mode by directly dividing
sentences into phrases using linguistics or statistics. In the
context of JS we can guide the chunking with information
from body pages (non-TOC pages). Based on the
heuristics that a text segment in TOC should have a
corresponding maximal match in the body pages, we
design the following text chunking algorithm:

RangeList:= {}

foreach <Word>∈ BodyPages

Find the longest match starting with Word between
BodyPages and TOC. We put this match into a Range (s,e).

If (s,e) overlaps with any existing Range in RangeList, the
two Ranges are merged. Otherwise we insert it into the
RangeList.

endfor

Fig 5 is an example of text chunking. The words in
the same rectangle are put together after text chunking. It
can be seen that most article titles and author names are
properly grouped together. Some phrases cannot be
grouped together due to OCR errors. It should be
emphasized that no geometric layout information is used
in the text chunking stage. The grouping result comes
exclusively from text matches.
Build Tree Dictionary and Graph
Representation of TOC Pages
Do Text Chunking of TOC Pages
Based on Body Pages

jor Steps of Text Mining Based JS

king
e more meaningful than individual words
ch. So the first task is to locate key phrases
ages. We refer to this stage as “Text
ich is borrowed from natural language

LP). In NLP text chunking “involves

Score Each Body Page and Make
Decision

Fig 5: Text Chunking Result for a Journal

 3

3.6 Evaluation Phase
Although it is almost always safe to say that the title

pages will be reflected by some grouped phrases in the
TOC pages, the reverse is far from the truth. When there
is a match between a body page and the TOC page, we
cannot conclude that the body page must be a title page
largely due to two reasons:

• There will be some irrelevant matches.

• Even a significant match can appear non-title page.
For example, in some journals the author names or
article titles will be printed across the whole article as
headers/footers.

So we have to find some way to draw reliable
conclusion based on the detected evidence. The following
is the evaluation algorithm for that purpose:

• Assignment of each Range to only one body page.

In the case of multiple pages mapped to the same
Range, a disambiguation algorithm is applied:

foreach <Range>∈ RangeList
Build a PageArray P[1,2,…,n]consisting of all the n
pages that can be matched with Range.
foreach <P[i]>∈ P[1,2,…,n]

Give a match score S[i] based on a number of
factors:
1) Match length: the longer the overlapped
phrase, the higher S[i] is.
2) Page number: the first page that has a good
match with Range should get higher score. It is to
reduce the effect of “noise” matches such as
those from headers.

endfor
Assign the score based on winner-takes-all strategy:
1) Find the biggest score among S[1,2…n] and

get the associated page P[m].
2) Credit P[m] with a score S[m] and all the

other pages with just 0.
endfor

• Calculation of the total score T[i] for each page P[i] by
summing up all the credits from each Range.

• Select the title pages applying a given threshold.
TitlePageList:={}
foreach <P[i]>∈ P[1,2,…,n]

if (T[i]>THRESHOLD)
Insert P[i] into the TitlePageList

endif
endfor

4. Other Considerations
In fact, in order to put the idea into a complete

solution we still have to solve a few problems:

• Text match alone sometimes is insufficient to make
accurate decision.

It is not uncommon that some article titles consist of
one or two words, or due to OCR errors only part of the
title is matched. Under either condition the evidence from
text match may not be enough to reach a reliable decision.

Just as a typical pattern recognition problem, we can
improve the accuracy by employing multiple classifiers or
extracting more features [3][4][5]. Our strategy here is to
incorporate a variety of other heuristics into the score S[i]
of Section 3.6:

1) The phrases in large fonts are more likely to be titles.

2) Title phrases usually occupy the whole lines; namely,
include the first and the last word of a line.

3) The match of a long word is more significant than
that of a short word.

• How to decide which pages are TOC pages?

In the above discussion, we always assume that TOC
pages are known. In practice, the system should be able to
automatically detect the TOC pages. For that purpose, we
introduce another TOC detection phase:

1) Build a candidate set (CS) of all potential TOC pages
including he first N pages and also the/back cover
pages.

2) The hypothesis testing follows. For every page C[i]
in CS, we first assume it is a TOC page and go
through the text chunking and evaluation phase.
Based on T[1,2…,n] (see Section 3.6) we use some
heuristics to calculate how good C[i] is a TOC page.
The idea is that a correct hypothesis should be
reflected in more high scores in T. If the confidence
is higher than a threshold, C[i] will be accepted as a
TOC page.

5. Experimental results
We have tested the algorithms on twelve academic

journals published by MIT press. Table 1 shows the
result. False negative refers to errors in which the system
misses a title page and false positive refers to errors in
which it incorrectly adds an extra title page.

Table 1: Experimental Results

No. Title
Pages

Correctly
Detected

False
Negative

False
Positive

163 162 1 0

6. Conclusions
In this paper we analyze the unique problems around

journal splitting and propose a text-mining based
algorithm that combines different features to achieve
robustness and high accuracy. Experimental results prove
the effectiveness of this novel approach. The major

 4

characteristics of the proposed method are summarized as
follows:

• Problem Modeling
Although it is true that JS is a brand new problem on

which existing literature has almost no coverage, it can be
modeled as an object classification problem with its own
peculiarities:
1) Effective features used in classification are needed.

Here we use text mining combined with other
features.

2) It is a two-class problem: title page or non-title page.
3) The objective is to classify a sequence of objects, so

the context (neighboring pages) also provides extra
clues.

• Methodology
We employ a statistical rather than rule-based

approach. In intermediate steps we avoid hard decisions
by using quantitative scoring.

• Scope
Originally, the system is designed to handle the

splitting of specific academic journals. With the text
mining based approach we can easily expand the scope
both horizontally and vertically. First, a wide range of
generic publications such as journals, magazines and even
books can be processed because the basic assumption of
this method is easy to satisfy. Second, with all the
matches between the TOC and body pages, we can build
navigation information into the electronic documents such
as PDF files so that users can be guided to individual
articles when clicking on a title or author name in the
TOC.
• Future directions

One future research topic is to go beyond linear
logical structure extraction. Currently we just map all the
items appearing in the content pages to body pages.
Although this approach works pretty well for most
periodicals, it is insufficient for some applications. For
example, for books usually we are more interested in
splitting individual chapters than getting all the logical
components (chapters, sections, subsections and so on)
without any discrimination. So the analysis of
publications’ hierarchy structure and the proper mapping
to body pages is a topic of both research and practical
value.

7. References
[1] C. Lin, Y. Niwa and S. Narita, “Logical Structure
Analysis of Book Document Images Using Contents
Information”, Proceedings of 4th International Conference

on Document Analysis and Recognition, Ulm, Germany,
Aug 1997, pp. 1048-1054.

[2] S. Satoh, A. Takasu and E. Katsura, “An Automated
Generation of Electronic Library based on Document
Image Understanding”, Proceedings of 3rd International
Conference on Document Analysis and Recognition,
Tokyo, Japan, Aug 1995, pp. 163-166.

[3] L. Xu, A. Krzyzak and C.Y. Suen, “Methods of
Combining Multiple Classifiers and Their Applications to
Handwritten Recognition”, IEEE Trans. System, Man and
Cybernetics, 1992, vol 22, no 3, pp. 418-435.

[4] D.S. Lee, “A Theory of Classifier Combination: The
Neural Network Approach”, Ph.D. Thesis, SUNY at
Buffalo, Apr 1995.

[5] T.K. Ho, J. J. Hull, and S. N. Srihari, “Decision
Combination in Multiple Classifier Systems”, IEEE
Trans. on PAMI, 1994, vol 16, no 1, pp. 66-75.

[6] P. Hannappel, R. Klapsing, G. Neumann, “MSEEC-A
Multi Search Engine with Multiple Clustering”,
Proceedings of the ’99 Information Resources
Management Association International Conference,
Hershey, Pennsylvania, May 1999.

[7] O. Zamir, O. Etzioni, “Grouper: A Dynamic
Clustering Interface to Web Search Results”, Proceedings
of 8th International World Wide Web Conference,
Toronto, Canada, May 1999, pp. 11-16.

[8] L. A. Ramshaw, M. P. Marcus, “Text Chunking Using
Transformation-based Learning”, ACL 3rd Workshop on
Very Large Corpora, 1995, pp. 82-94.

[9] G. Nagy, S. Seth, and M. Viswanathan, “A Prototype
Document Image Analysis System for Technical
Journals”, Computer, 1992, vol 25, no 7, pp. 10-22.

[10] J. Schürmann, N. Bartneck, T. Bayer, et al,
“Document Analysis-From Pixels to Contents”,
Proceedings of IEEE, July 1992, pp. 1101-1119.

[11] A. Belaïd, “Recognition of Table of Contents for
Electronic Library Consulting”, International Journal on
Document Analysis and Recognition, 2001, vol 4, no 1,
pp. 35-45.

 5

	Text-mining based journal splitting
	Abstract
	1. Introduction
	2. Problem Analysis
	3. Proposed solution
	3.1 Basic idea and problems
	3.2 Dynamically built dictionary
	3.3 Graph representation of content pages
	3.4 Text match algorithm
	3.5 Text chunking
	3.6 Evaluation Phase

	4. Other Considerations
	5. Experimental results
	6. Conclusions
	Problem Modeling
	Methodology
	Scope

	7. References

