

Corporate Source: Applying Open Source
Concepts to a Corporate Environment
(Position Paper)

Jamie Dinkelacker, Pankaj K. Garg
Software Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-135
May 31st , 2001*

E-mail: garg@hpl.hp.com

Open Source,
software
engineering,
software reuse,
software
process, library

Corporate Source harnesses the power of the Open Source (TM)
development method for HP. The basic idea is to make
available source code from various HPL projects to members of
the HP software engineering community. This is analogous to
the research library's current processes of making available
HPL technical reports within the company.

Using the Corporate Service, members of HPL can "publish"
their software such that it can be browsed and used by anyone
inside HP. Over time, in an Open Source (TM) manner,
submitted software will find use in other parts of the company
and be improved by not just the original authors, but also by
members of the HP software engineering community at large.

* Internal Accession Date Only Approved for External Publication
Presented at the 1st ICSE International Workshop on Open Source Software Engineering, May 15,
2001, Toronto, Canada
 Copyright Hewlett-Packard Company 2001

1

1 Introduction

Corporate Source is the application of Open Source concepts, perspectives, and methodologies
within the corporate environment { i.e., \open" to all developers behind the �rewall. The same
bene�ts of developing according an Open Source model are then available to internal projects,
although the participating community size is smaller than the Internet. Nevertheless, for a world
wide company open Corporate Source brings a unique set of advantages to enterprise developers,
albeit not without challenges of its own as described below.

Open Source software development process has proved itself with several industrial strength software
products: e.g., the Linux operating system, the Emacs text editor, and the Apache web server. In
each of these cases, Open Source has resulted in substantial bene�ts for software maintenance,
reusability, and quality [3]. Often, these Open Source products are preferred by the market than
their \Closed Source" counterparts. While the Open Source development method has various
reasons for its success, one of the main ingredients was best summed up by Eric Raymond: \given
enough eyeballs, all bugs are shallow."

From a software engineering perspective, this can be viewed as a natural progression of the code
inspections process [1]. Unlike code inspection, however, the Open Source process is much more
liberal and pervasive in that even the software user community gets involved in critiquing and
reviewing source code.

While attractive from a purely quality perspective, the Open Source mechanism creates a fun-
damental conict for software corporations: business practices dictate that software corporations
retain Intellectual Property (IP) rights in their software, hide such IP from their competitors, and
make pro�t on their investment in creating such IP. Realizing this business conict, several Open
Source derivatives have developed over the past few years. For example, Sun Microsystem uses a
software Community Source license that is di�erent from the Open Source license. Another ap-
proach is for corporations to expose some part of their products as Open Source while keeping the
critical ones as proprietary source. An extreme form of this, which is the norm in the software
industry, is to reveal only the user interface or application programming interface (API's) for soft-
ware. When software corporations go for such source-code development processes, they lose out
on the potential bene�ts of a possible Open Source counterpart. These bene�ts have the poten-
tial to be broad-ranging and cover the gamut not only of making bugs shallow , but speeding up
time-to-market, improved software reuse, and rapid redeployment of skilled developers.

2 Corporate Source

For corporations, these conicting requirements of Open Source and Closed Source can be addressed
by a middle ground using a Corporate Source model of software development. This model requires
a novel approach for large corporations to adopt for their software development: Instead of relying
on a single-product, project-focused development method, this advance calls for a corporation-

focused development method. With this method, each employee of the corporation can potentially
contribute to the development of any given software product. By restricting the openness of the
software development to within the corporation, the corporation does not incur the aforementioned

2

business costs of Open Source, nor incur any liabilities for having released untested software and
the like. If the corporation is large enough (with a few hundred employees), it can realize the main
bene�t of Open Source, i.e., \given enough eyeballs, all bugs are shallow."

Project 1

Un−shared, independently
developed software

Shared, Corporate−Source
Software

Project1

Project2

Projectn

ProjectnProject2

Figure 1: Transforming corporate Software Engineering

Corporate Source enables the following bene�ts for an organization:

� A readily available potpourri of software that can be built upon and used as starting point;

� Improved quality levels of shared software as authors' reputations are at stake;

� Shared, community debugging;

� Ability to easily integrate the corporate software development e�orts into the overall Open
Source movement, leverage the Open Source tools and methods, and ensure appropriate
cross-learnings;

� Rapid redeployment of key developers from one project to another who already are familiar
with the current Corporate Source code tree, tools, and coding standards; and,

� Faster development schedules with code leveraged among several products.

3 Challenges

Implementing corporate source within corporations has been { and will continue to be { challenging.
Some of these challenges are organizational: e.g., how do we develop code across project and

3

organizational boundaries, and how do we identify and retain module designers. Other challenges
are related to infrastructure technology. Both these aspects must be addressed in a satisfactory
manner to ensure a successful and continuing deployment of Corporate Source.

Organizational challenges of Corporate Source include:

� Virtual Organizations: Most corporations today operate on a hierarchical organizational
structure. When things work well, this can complicate the process of code sharing by hav-
ing di�ering product roadmaps and timelines, where some managers may just push to get
something delivered by a promised date, irrespective of code quality, which might then be
an embarrassment to post into the Corporate Source code tree. When things don't work
well, it's possible that some managers or even developers may be inimical to contributing any
resources to perceived resource competitors within the organization.

� Leadership: The Open Source model depends on at least one leader or owner of given software
modules. Such leaders are eÆcient designers and implementors for the kind of software module
they are leading. In the open market of the Internet, invisible hand sort of mechanisms (based
on visibility, ego, etc.) ensure that a good leader emerges for a given software module. In the
case of Corporate Source, two distinct challenges arise: (1) what happens when a leader of a
software module decides to leave the company, and several projects are critically depending
on that module for their projects; or, (2) worse yet, no particular leader emerges for any given
module?

� Task Assignments: The Open Source model depends on a willing and able force of capable
software engineers who work on any given software module. The pool of people to draw from
is the entire world population! (As programming is getting easier, the world of programmers
is increasing.) For Corporate Source, the pool of programmers to draw from is whatever is
available inside the corporation. Traditionally, project managers can determine their person-
nel skill requirements based on the requirements of their projects. In the Corporate Source
model, however, the entire company's pool of programmers can potentially help out in the
development of a given project's source code. How does one manage the appropriate skill set
at the corporate level?

� Developer Indoctrination: The fundamental aspect of software development is the skill set
of each individual developer. For Corporate Source, this necessitates that they be aware of
the Corporate Source tree and tools, that they adopt the coding standards set forth to be
consistent with the source tree, and that they develop a good judgment as to what consti-
tutes a reasonable contribution to the source tree. These are organizational and managerial
challenges to broad adoption and continued usage of Corporate Source within the enterprise.
While many corporations do in fact have established and clear coding standards, this model
can break down across divisions that serve distinctly di�erent markets. This creates the chal-
lenge of how to maintain coding standards, how are new developers trained into using the
Corporate Source.

The technology infrastructure requirements for Corporate Source include:

4

� Repository: An appropriate corporate-wide repository must be set up that can host the
development of a large number of users. Adding (and updating) software in this repository
must be easy and straightforward.

� Community Support: Open Source, and by hypothesis Corporate Source, thrives on active
\�re-side" communities of developers [2]. Appropriate tools must be provided for such com-
munities to develop around software projects in Corporate Source.

� Security: For aforementioned IP protection reasons, software developers and managers in
large corporation will feel insecure about putting software in the \open," even if its within
the con�nes of the �rewall. The insecurity varies with projects from very loose security
requirements to highly-sensitive company con�dential information. A security classi�cation
and control system, much as the corporate technical reports system must be developed. The
challenge is to assure the IP owners that indeed the security is enforceable.

� Search and Navigation: As with any other repository of such nature, eÆcient search and
navigation systems must be developed.

� IS/IT Support: Corporate Source, like any server-centric content, requires hosting and main-
tenance of the code tree, platform, tool version control and related software engineering tasks.
While often overlooked, the IS/IT support is absolutely crucial for maintaining uptime, run-
ning scheduled backups and recovery when necessary, and hardware maintenance as well.

4 Example: HP's Corporate Source

As a grassroots e�ort, Corporate Source began in HP Labs as a concerted e�ort to bring the bene�ts
of Open Source into the internal software development community. It's worth noting that HP has
many disparate software developers spanning the globe.

Figure 2 shows the main web page for accessing the Corporate Source service.

HP Corporate Source is currently hosted through the HP Labs Research Library. The library pages
are familiar to HP software engineers and thereby combines together in a known place where many
to seek information and tools. Appropriate IT functions provide for hosting, system maintenance,
and backup.

The Corporate Source website is searchable, and shows quick summaries, with active links, of the
most frequent downloads, and the most frequently viewed modules. It provides an easy mechanism
to upload modules. The HELP feature shows briey how to use the site, whom to contact, and
displays publishing guidelines (i.e., coding standards). Each submitted software has a unique, one
word software ID. Each software item lists one contact person, who is also the publisher of the
software, although a software item can have multiple authors. The source code is stored in a con-
�guration management system, called Concurrent Version System (CVS). The information about
source code is stored in XML �les. Both these reside on a Linux Corporate Source server. Also, a
mail-reector is used to keep developers apprised of Corporate Source topics and submissions.

5

Figure 2: Main page for Corporate Source

6

It's worth noting not all HP developers are focused on generating software products { the com-
pany uses advanced decision technologies and supply chain management software as well. Much
of this software is internally developed and won't necessarily be released into a product for ob-
vious reasons related to competitive corporate performance. Yet, Corporate Source is well-suited
for long-term evolution of these tools and capabilities. In other words, Corporate Source is ben-
e�cial for a broad array of software developers within the company: developers in the Labs, in
Infrastructure/Functions, as well as product generation groups.

5 Conclusion

We've de�ned the concept of Corporate Source and started a pilot project to understand the
applicability of such concepts to a corporation like HP. In the seven-eight months that the service
has been operational, about two dozen projects have been submitted with an active daily hit rate.
While this response is encouraging, we believe the full potential of Corporate Source is yet to be
achieved.

Some learnings from our early experiments are:

� Adoption of Corporate Source (or any Open Source initiative, for that matter) is at its heart
is more of a process of social { than technical { change. While it does require learning of new
tools (e.g., CVS) and coding according to speci�c standards that may be somewhat di�erent
than use in any particular division, the key elements are leadership to draw people into using
Corporate Source, and getting developers (and their management chain) comfortable with
sharing code broadly across the company.

� It's a challenge to �nd an e�ective starting point regarding which software domain should
be an initial focus from which to populate the repository. While this naturally should be an
area of value to a broad range of developers, if it gets too broad it won't have real value to
anyone's unique coding tasks.

� Using the word "module" somewhat generically, it's a challenge to strike the balance between
module simplicity and utility. This age-old problem resurfaces with Corporate Source because
there's a tradeo� between how complete a module might need to be for another developer
to consider adopting it into his or her code stream, yet not so complicated with irrelevant
features, APIs, or calling sequences that it would take more time to recon�gure the module
than write it from scratch. E�ective heuristics for this are developing in an evolutionary way.

� The authors hold the opinion that what's most important is that the methodologies of Open
Source are appropriate for many uses within the corporation: product development, certainly;
but in equal measure Open Source provides great value to developers who concentrate on the
corporate computing infrastructure itself, as well as those who design and build internal
decision support tools.

� We use only one version control system: Concurrent Version System (CVS) [2]. Some software
developers are already pro�cient in using other version control systems. We believe developers
have the inertia to learn and experiment with another version control system.

7

� Often projects already make available source code for their projects on their own web service.
Such projects don't see the need or bene�t of moving towards a Corporate Source repository.

We are working on systematically improving and learning the Corporate Source service using an
empirical research process.

Availability

The Corporate Source software is available for download from
ftp://src.hpl.external.hp.com/pub/open/hpcs-0.1.tar.gz

Acknowledgements

We thank Elsa Durante for writing the user interface for Corporate Source, and Chi Huang for
managing the service. In addition, we thank the following people for their contributions to the
ideas and implementation of Corporate Source: Je� Archie, Sharon Beach, Alison Chaiken, Dick
Cowan, Umesh Dayal, George Foreman, Martin Griss, Fred Luiz, Rajeev Pandey, Scott Peterson,
Eugenie Prime, Debbie Seys, and Carl Staelin.

6 References

[1] M. E. Fagan. Advances in software inspections. IEEE Transactions on Software Engineering,
12(7), July 1986.

[2] Fogel Karl. Open Source Development with CVS. CoriolisOpen Press, 1999.

[3] E. Raymond. The Cathedral and the Bazaar. See
http://www.tuxedo.org/~esr/writings/cathedral-bazaar.

