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Abstract 
Web based services are becoming increasingly prevalent. These web services are accessed not only by end users 
but also by other web services. A stage has arrived at which availability and performance guarantees are 
expected of these web services. In many cases web services are hosted by web hosting or aggregator sites making 
it even more important for the businesses that build these web services to receive certain service level guarantees 
from the web hosting sites. Specifying, measuring and guaranteeing in real time such service level agreements is 
a non-trivial task. This paper describes an adaptive control mechanism based on real-time measurements for 
guaranteeing service level agreements. It will allow the service provider to establish specific performance 
guarantees for individual transaction of the service, thus letting him decide which of the transactions are most 
relevant for his business goals. It will also address dynamic activation of standby web server resources and will 
enable  smoth degradation of the overall service when the load can not be handled in time anymore. 
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1. Introduction 
A Web based service or e-Service can be described broadly as a service available via the Internet that 
allows the processing of certain business transactions. E-Services are set up for clients and other e-
Services to make use of the offered set of functionality. They have a Uniform Resource Locator at 
which they can be accessed and have a set of Interfaces that can be utilized to access them. E-services 
are web based applications that are created and hosted by the developing e-business itself or might be 
hosted frequently by web hosting enterprises or on aggregator sites.  

In either case, there is a need for specifying certain Service Level Agreements (SLA) and measuring 
whether the service is in compliance or not. The e-Service provider and its clients will agree upon the 
Service Level Objectives (SLO) that detail the SLA. In the hosting case the e-Service provider will use 
the SLOs as a measure against the hosting business, but the hosting organization will be ultimately 
responsible for fulfilling the agreed-upon conditions. In the other case the e-Service provider himself 
will be responsible for delivering the service according to the contracts.  

The work for Quality of Service (QoS) that has been done in the area or Web-based e-Services is 
centered around either providing the QoS at the  

• Web Server level, by making sure that the http requests/responses are prioritized and queued 
separately and handled by the web server according to their priority [4] 

• System level, by providing resource allocation at the system kernel level, along with web server 
request differentiation/prioritization[10][11] 
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• Network level, the IntServ [5][6] and DiffServ [8][9] approaches at the network level enable 
resource reservation and in performing service packet prioritization /differentiation 
respectively. 

E-service providers are interested in higher-level metrics, which measure transaction throughput, and 
ultimately on the number of products sold and the profit made. They are interested in maximizing their 
revenue while clients are interested in receiving a good or at least satisfactory service and measure a 
service using the perceived Quality of Experience.  

The most natural way to specify service level agreements for both the e-Service provider and its clients 
should be based on the underlying business transactions that are conducted between the two parties. 
This way, the e-Service provider can discriminate certain transactions over others, e.g. can establish 
faster execution times for buying transaction over browsing functions. The client can understand the 
behavior of the system and does not have to speculate on the service he will receive.  

We will describe our approach termed BizQoS based on guaranteeing transaction execution times for 
individual transactions that will allow the e-Service provider to establish his individual preferences for 
certain transactions of the offered service over others while complying to the established SLAs. 

Clients accessing the e-Service have expectations towards it in the areas of availability, performance and 
reliability. They want the e-Service to be accessible all the time, offering good response times in the 
execution of transactions and the presentation of the results. They are also expecting that transactions 
be executed consistently and that they do not have to reenter the same information over and over 
again. 

Client requirements 
Performance 
Availability 
Reliability 

 

An e-Service provider will be motivated by the service level considerations as well. It will strive to fulfill 
the established service level goals towards its consumers. Additionally it will try to utilize resources 
optimally, while not provisioning too many stand-by resources that are unused most of the time. It will 
try to optimize revenues, and thus depending on an analysis of the client behavior prefer certain 
transactions over others, e.g. revenue creating transactions over revenue-neutral ones. It will set up 
measures to adapt to changes in the load on the e-Service. Finally it will implement means to allow the 
e-Service to degrade gracefully when all the standby resources have been activated and the incoming 
load is still increasing. 

E-service requirements 
Client motivated Self motivated 

Performance 
Reliability 

Availability 

Transaction differentiation 
Throughput guarantees 

Resource allocation and load balancing 
Dynamic capacity allocation 

Smooth degradation on overload 
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3. Service level QoS 
The overall definition of the QoS of the e-Service will be determined by consolidating the compliance 
with the detailed SLA and ultimately with the derived Service Level Objectives (SLO). To allow a 
machine to compare the SLOs with the real world behavior the SLOs need to be mapped into 
measurements that can be taken from the running system. 

3.1.  Service level transactions 
Most e-Services offer a well-defined set of interactions. We will measure the execution times of 
individual instantiations of these interactions and compute aggregates to control the prioritization of 
subsequent requests.  

For example a book selling e-Service will implement all the interactions to enable customers to shop for 
books. These customers will be real people, but in some cases can also be other e-Services that include 
the shopping for books into their own service offering. The process of selling a book through this book 
seller’s web site is broken down in a series of sub-interactions like ‘login’, ‘browsing’, ‘searching’, 
‘adding a book to the shopping cart’, ‘entering the payment and delivery information’ and ultimately the 
‘buying of the selected books’. This list will be slightly different for other e-Services even in the same 
business. We will now assign individual service level objectives to all the transactions. 

3.1.1 Identifying transactions. 

To be able to measure the execution time of individual transactions that are implemented by the e-
Service they need to be identified or demarcated at the application level. This can be done either 
invasively or in a non-invasive manner. 

Non-invasive instrumentation can be used when the application was developed without manageability 
in mind or if changing the application code is not an option. 

This requires to discretely monitor the http requests and responses and to map them to service level 
transactions.  This could also involve studying http web server logs or in the most extreme case a 
person to establish a mapping between http requests and business transactions. 

Invasive instrumentation typically requires the insertion of certain function calls into the source code 
that establish beginning and the corresponding end of transactions. 

Software Development Kits (SDK) exist that provide APIs to enable invasive identification of 
transaction start and end time by inserting function calls into the normal application flow. They also 
enable the application developer to provide additional context information, e.g. ‘number of items 
bought’ for a ‘checkout’ transaction, to be passed to the management system. ARM[13] and XARM 
[12] can be used for doing transaction type, transaction instance and service instance level identification 
and allowing a receiving measurement system to do the necessary correlation. The raw data collected 
consists of start and stop time, failure and abort counts for transaction(s) and breakdown for its 
component transactions, at the type and instance level. 

3.1.2 Differentiating transactions 

An e-Service provides a well-defined set of transactions. A bookstore e-Service for example will 
structure its offer using transactions like ‘login’, ‘search’, ‘addToShoppingCart’, an ‘checkout’.  In order 
to maximize revenue, an e-Service may like to assign different priorities to these transactions. 
Transactions like ‘addToShoppingCart’ and ‘checkout’ transactions could be given higher priority over 
‘search’ requests so as to maximize revenue. There might be other cases where an analysis of the 
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customer behavior shows that preferring ‘search’ transactions over ‘checkout’ might be the appropriate 
approach, with the underlying logic, that the customer that has made up his mind and has already 
finished shopping will tolerate slight delays, while the shopper that is still looking for the most 
interesting offer might potentially abort his shopping and move to another site. 

3.2 QoS Management  
An infrastructure that is used often to implement e-Services is a J2EE compliant Application Server 
[1][3]. A typical J2EE compliant application server consists of a set of web servers with a network load 
balancer in front of them. These web servers receive all requests initially. They prioritize the requests 
and select the appropriate application server instance in the application server cluster to ultimately serve 
the request.  The user session state is typically stored in a state server maintained in a database.  
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                                Figure 1. J2EE Compliant e-Service Architecture 

We will initially establish our SLOs and define any prioritization that we want to implement for certain 
transactions. We will then compute some initial weights for the request queues based on expected 
average transaction times, the execution capacity of the different machines and the above preferences. 

We will measure the execution times of instantiations of all transactions and feed them with the service 
level agreements into a measurement engine. The measurement engine will keep track of individual 
transaction execution times and will also aggregate the times for all transaction types. This consolidated 
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information is continuously fed into the controller. The controller analyses the data and from time to 
time adjusts the parameters on the e-Service by changing the weights on the different queues.  
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                      Figure 2. Adaptive control using real time measurements 

The QoS management layer we propose, will be implemented between the load balanced web servers 
and the application servers. We will implement a set of logical queues representing the individual 
application servers. We will collect response time information in real time and aggregate them for the 
different transactions. We will compare the average response time for the individual transactions, the 
arrival density of new requests and the logic queue length to determine changes in the weights for 
sending different transactions to the queues. It will compare the calculated numbers with the specified 
QoS requirements. If necessary it will perform adaptations to the algorithm used to assign the requested 
transactions to the application servers. For example, there are two application servers in the architecture 
illustrated in figure 2. The upper server hosts transaction types 1T , 2T , 3T , 4T  while the lower one 

hosts 1T  and 3T . Suppose that the response time objectives on the upper server cannot be satisfied, 
and the measurement module finds out the problem was due to the higher-than-expected volumes of 

1T  and 2T . One the other hand, the transactions on the lower server perform well. Then the 
measurement engine sends the aggregated metrics to the QoS controller. Based on the metrics, the 
controller executes the real-time load-balancing algorithm (see details in next section) and re-adjusts the 
weights for 1T  on each server. The weights should be adjusted in such a way, if possible, that enough 
amount of transaction load of 1T  will be shifted from the upper server to the lower one so that, given 
the current transaction loads, there will be no response time violations. 
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                          Figure 3. J2EE Compliant e-Service with measurement infrastructure 

The possible control actions are:                              

• Sending transaction requests to different queues and thus to different application servers for 
processing based on their current capacities. Adjusting weights for particular transaction types 
on the queues controls this. By initially setting the weights in a specific fashion transaction 
differentiation becomes possible, e.g. it allows to send ‘important’ transactions to multiple 
servers while the ‘normal’ transactions might have to share a single server. 

• Adding new application (nodes) servers from a pool of standby/failover servers to take the 
increased load. Nodes (servers) can also be retired/removed for planned or unplanned 
shutdown. This will enable handling of situations when particular nodes are failing or are over-
saturated. 

• Graceful degradation in case of a load that cannot be handled even after activating all the 
standby resources. Prioritizing transactions and controlling the number of transactions of a 
particular type being executed on a particular node allows for discrimination of transactions to 
be delayed or to be dropped completely in case of overload. 
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Each of these control actions have to be motivated by certain decision-making algorithms based on real 
time measurements.  We describe an analytical model in the next section to make the above-mentioned 
control decisions.  

3.3 BizQoS Analytical Model 
We define a theoretical model on which the QoS management layer is built. The model is used for 
specifying, measuring, and guaranteeing quality of service in distributed systems. We assume the 
following characteristics in the distributed system. 

• The system consists of a number of homogeneous or heterogeneous computing nodes. 
• An application program can be replicated on one or more nodes, and the running of each replica 

will produce the same result. 
• Applications are running to service requests. Requests are either from the outside world or from 

within the distributed system1. 
• Each node logically has a queue to buffer the incoming requests for potentially different services. 
 
We define the nodes in the distributed system as {N0, N1, …, Nk-1} where k is the number of nodes. 
The queue associated with node Ni is defined as Qi (0 ≤ i ≤ k-1). Application programs hosted in the 
system are termed services, and we define the set of hosted services as {S0, S1, …, Sl-1} where l  is the 
number of services currently hosted in the system. For each service Si (0 ≤ i < l), it can be replicated on 
the multiple nodes, and a replica is defined as Sin where n is the index of the hosting node. A service 
may provide a number of functions, and each function may consist of one or more processing units. 
We term, a transaction, the processing units corresponding to a service request. For each service Si (0 ≤ 
i < l), its supported transactions are defined as {T0i, T1i, …, Tm-1i} where m is the number of transactions 
implemented in the service. For each transaction Tji (0 ≤ j < m), its incarnation on node Nn is defined as 
Tji,n where j identifies the type of the transaction (Tji), i represents the service implementing the 
transaction (Si), and n is the index of the node where the transaction/service is replicated. 

While node, service, and transaction represent three different levels of granularity for modeling quality 
of service in a distributed system, specification, measurement, and control are three interdependent 
phases for the QoS management. We describe in the following these sub modules. 

3.3.1 Specification 

Quality of service specification is a set of agreements between client and server or peer-to-peer, which 
can contain performance, scalability, availability, and reliability objectives. These specifications are used 
by servers for monitoring compliance. While monitoring compliance the servers take certain control 
actions to match up to the specifications agreed to with clients. Clients on the other hand use the 
specification to expect certain level of service from the servers. Failure to adhere to the specification 
should lead to some kind of compensation for the clients.  

The set of agreements as mentioned in the specification are negotiated at both service and transaction 
levels. The QoS specification for a service consists of the following parameters. 

Service priority. It is described by the equation: 
 

10,. ≤≤= P PpriorityS  

                                                 
1 In the architecture requests are from the outside world (e.g., clients, or other remote e-services). 
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More computing resources will be allocated for a service with a higher priority than that for a lower 
priority service. For instance, it could mean the service will have a higher degree of replication, or be 
hosted on more powerful nodes. 
 
Availability. It is described by the formula: 
 

=tyavailabiliS.  %100
I

U
                             

 
where I is a specific time interval, and U is the least amount of uptime expected from a service during 
an interval. This parameter specifies the agreement on the percentage of the uptime for a service. 
 
Reliability. It is described by the formula: 
 

=yreliabilitS.  %100Cc

tC
 

 
This definition means that, for every Ct number of transactions initiated by a service, it is expected that 
at least Cc number of transactions will successfully be finished. That is the rate of successfully finished 
transactions for a service. 
 
As described above, a service consists of a list of transactions it supports. The QoS specification for a 
transaction in a service contains the following parameters. 
 
Transaction priority. The priority of a transaction is defined as: 
 

10 . ≤≤= PP,priorityT  
 
T.priority has the same semantics with S.priority. The priorities for transactions should be set up to meet 
the following requirements: 1. The priority of any transaction in a service is no higher than the service’s 
priority. 2. The priority of any transaction in the first service is lower than that of any transaction in the 
second service if the first service has a lower priority. 
 

prioritySpriorityT i
i
j .. ≤  

and 
  priorityTpriorityTthenprioritySprioritySIf k

l
i
jki ..    ..   <<  

 
User priorities. For each type of transaction, there may be different types of users with different priorities. 
The user priorities for a type of transaction can be specified as: 
 

}1,,1,0|10 ,.{ . −⋅⋅⋅=≤≤= UuPPpriorityuserT u  
 
The priorities for user types should be set up to meet the following requirements: 1. The priority of any 
user type with a transaction type is no higher than the transaction’s priority. 2. The priority of any user 
type with the first transaction type is lower than that of any user type with the second transaction type if 
the first transaction type has a lower priority. 
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priorityTpriorityuserTu i
ju

i
j ..., ≤∀  

and 
priorityuserTpriorityuserTuthenpriorityTpriorityTIf u

k
lu

i
j

k
l

i
j ....,    ..  <∀<  

 
Transaction response time, transaction density, and compliance rate. For each type of transaction with a specific 
service and a user type, its performance requirement can be described using these three parameters. 
That is, under a certain transaction density on a node, there should be at least the percentage of 
transactions, specified by the compliance rate, which do not violate the response time requirement. The 
three parameters are related to each other, and are given by 
 

 ∞<<= RRresptimeT 0 ,.  
and 

 
I
CdensityT =.  

and 

10 ,. ≤<= µµcomplianceT  

where C is the number of T’s instances initiated during a measurement interval I. T.resptime specifies the 
average response time expected from a type of transaction. It is the waiting time in the queue plus the 
service time on the node. T.density specifies the maximum transaction density (i.e., the number of 
concurrent transactions per time unit) to be allowed on a specific node such that at least T.compliance 
percent of transactions whose response times are no greater than T.resptime. T.resptime, T.density, and 
T.compliance can usually be obtained through capacity planning on the computing nodes in the system. 
As the nodes may be heterogeneous, the values of T.density depend on the capacity of the hosting 
nodes each hosting node has its own agreement on transaction density. 
 
We will describe in next section how the density for a type of transaction can be calculated on a specific 
node hosting multiple types of transactions.  
 
Availability. It is described by the formula: 
 

%100.
I

UtyavailabiliT =  

 
where I is a specific time interval, and U is the least amount of uptime expected from a type of 
transaction during an interval. This parameter specifies the agreement on the percentage of the uptime 
for a type of transaction. We term that a service is not available if each of its hosted transactions is 
unavailable. 
 
Reliability. It is defined as: 
 

%100C. c

tC
yreliabilitT =  

 
This definition means that, for every Ct number of T’s instances being initiated, it is expected that at 
least Cc number of instances will successfully be finished. That is the rate of successfully finished 
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transactions for a transaction type. The reliability requirement of a service should be the lower bound of 
that of its hosted transactions. 
 
3.3.2 Measurement 

We describe in this section the set of metrics that need to be collected and calculated at transaction, 
service, and node levels. They are used to check if there are any violations on the QoS agreements or 
irregularities in the system. There are two types of metrics: raw and aggregate data. We formally present 
the metrics in the following, and will describe in next section how they can be used to provide better 
quality of service, or reinforce the QoS agreements in the event of violations. 

3.3.2.1 Raw metrics 

Transaction registration time. It is the time when a type of transaction is registered/initiated in a service. It is 
described by .., regtimeT ni

j  
 
Transaction failed time. It is the time when a type of transaction becomes unavailable in a service. It is 
described by .., failedtimeT ni

j  
 
Transaction start and stop times. Transaction start/stop time marks the start/stop time of a transaction 
instance. They are given by .. and . ,

,
,
, stoptimetstartimet ni

kj
ni
kj  After its start, the status of the instance 

is marked “in-progress” until it stops, either successfully (“committed”) or in failure (“failed”). 
 
Transaction duration. For a finished transaction instance, it is the duration between its start and its stop. 
For a transaction that is still in-progress at the end of a measurement interval, it is the duration between 
its start and the end of the interval. stimet ni

kj .,
, is described by: 

 

=stimet ni
kj .,

, .
 . ,.

or  . ,..
,
,

,
,

,
,

,
,

,
,







=−

=−

inprogressstatuststartimetintvl.end

failedcommittedstatuststartimetstoptimet
ni
kj

ni
kj

ni
kj

ni
kj

ni
kj

 

3.3.2.2 Aggregate metrics 

Aggregate metrics are derived from the basic raw metrics as described in the previous section. The 
aggregate metrics are used by the BizQoS controller to monitor the node, transaction, and service level 
details and to take certain control actions. The aggregate metrics calculated for this purpose are: 

Transaction down time. The down time of a type of transaction is given by: 

failedtimeT.regtimeT.dtimeT ni
j

ni
j

ni
j .,,, −=  

Tji,n.failedtime represents the time when the resource (i.e., the software implementing the transaction or 
the node hosting the transaction) fails. Tji,n.regtime is the time when the resource is back up (i.e., when 
the type of transaction is re-registered). 
 
Transaction residence count. It represents the number of transactions of a specific type existing during a 
measurement interval. It consists of the transactions starting before and within the interval. The 
residence count of a service transaction on a node is defined as:  



 - 11 - 

t.curr_starTt.prev_starT.residenceT ni
j

ni
j

ni
j

,,, +=  

Transaction residence time. It is the average time for which a type of transaction resides in a measurement 
interval. It is described by: 
 

residenceT
etimetSum

etimeT ni
j

ni
kjni

j .
).(

. ,

,
,, =  

 
ni
kjt ,

,  is a transaction instance that exists during the measurement interval. etimet ni
kj .,

, represents the 

amount of time that ni
kjt ,

,  spends in the interval, and is described by: 
 

=etimet ni
kj .,

, .

. and .

. and .,.

. ,.

].,.[ ,..

,
,

,
,

,
,

,
,

,
,

,
,

,
,














<=−

≥=−

<−

⊂−

tintvl.star startimetinprogressstatust t,intvl.starintvl.end

tintvl.starstartimetinprogressstatust startimetintvl.end

tintvl.starstartimettintvl.starstoptimet

intvlstoptimetstartimetstartimetstoptimet
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kj
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Transaction waiting time. The waiting time of a transaction indicates the amount of time for which the 
corresponding request waits in the queue before being serviced. The transaction waiting time on node 

nN  is calculated in the following where lengthQn .  represents the average length of nQ . 

)curr_startTSum
lengthQtintvl.starendintvl

wtimeT nl
k

nni
j .(

.).(
. ,

, ∗−
=  

 
Transaction commit count. commitT ni

j ., represents the number of transactions of a specific type that 
finished successfully during a measurement interval.  
 
Transaction violated commit count. violationT ni

j ., counts the number of transactions of a specific type that 
finished successfully, but violate the response time requirement, which is, 
 

resptimeTwtimeTstimet i
j

ni
j

ni
kj ... ,,

, >+  
 
Transaction in-progress count. inprogT ni

j ., counts the number of on-going transactions of a specific type 
by the end of a measurement interval. 
 
Transaction violated in-progress count. vinprogT ni

j ., counts the number of on-going transactions of a 
specific type whose durations, by the end of a measurement interval, violate the response time 
requirement, which is, 
 

resptimeTwtimeTstimet i
j

ni
j

ni
kj ... ,,

, >+  
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Transaction failed count. failedT ni
j ., counts the number of transactions of a specific type that failed 

during a measurement interval. 
 
Transaction service time. It is the average duration for the set of transaction instances with a specific type 
during a measurement interval. Each instance in the set meets the following condition: 

resptimeTwtimeTstimetinprogressstatustcommittedstatust kji i
j

ni
j

ni
kj

ni
kj

ni,
kj, ... and .or  ,.,,, ,,

,
,
, >+==∀  

ni
kjt ,

,  is a transaction instance that either finishes successfully within the interval, or is still in-progress at 
the end of the interval whereas it has violated the response time agreement. The average transaction 
service time is thus given by. 
 

vinprogTcommitT
stimetSum

stimeT ni
j

ni
j

ni
kjni

j ..
).(

. ,,

,
,,

+
=  

Transaction response time is the sum of transaction service time and transaction waiting time. That is the 
average time spent by a type of request on a node. It is defined as: 

.wtimeT.stimeT.rtimeT ni
j

ni
j

ni
j

,,, +=
 

Transaction violation rate. It represents the percentage for a type of transaction whose instances violate the 
response time agreement during a measurement interval. 

vinprogTcommitT
vinprogTviolationT

vrateT ni
j

ni
j

ni
j

ni
jni

j ..
..

. ,,

,,
,

+
+

=  

Absolute transaction density for a type of transaction is the average number of concurrent transaction per 
time unit. It is defined as: 

tintvl.starintvl.end
residenceT

adensityT
ni

jni
j −

=
.

.
,

,  

Absolute transaction load. The absolute transaction load of a type of transaction is the total residence time 
for such type of transaction during a time interval. It is described by: 

etimeTresidenceTaloadT ni
j

ni
j

ni
j ... ,,, ∗=  

Relative transaction load of a transaction type represents the ratio of its transaction load to all types of 
transaction load on the hosting node during the measurement interval. 

).(
.

. ,

,
,

aloadTSum
aloadT

rloadT nl
k

ni
jni

j =  
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Relative transaction density represents the density of a type of transaction with respect to its relative 
transaction load. It is described by: 

rloadT
adensityT

rdensityT ni
j

ni
jni

j .
.

. ,

,
, =  

Transaction saturation rate. This metrics indicates if and how much a specific type of transaction is 
overloaded on a node. It is the ratio of the relative transaction density to the transaction density 
specified in the QoS agreements. 

densityT
rdensityT

saturationT ni
j

ni
jni

j .
.

. ,

,
, =  

Node saturation rate. The metrics indicates if and how much a node is overloaded. That is the ratio of the 
sum of the density of each type of transaction on a node to the sum of the weighted density 
agreements, according to the measured transaction load distributions. The metrics is defined as: 

).*.(
).(

. ,,

,

rloadTdensityTSum
adensityTSum

saturationN ni
j

ni
j

ni
j

n =  

Transaction weight. It indicates how the workload for a type of transaction should be distributed among 
the hosting nodes. The initial value is the capacity of the hosting node. Next section will describe how 
this metrics can be changed and used by the control mechanism. 

10 ,., ≤≤= ϖϖweightT ni
j  

3.3.3 Control 

The BizQoS control module takes necessary actions, when performance, availability, and reliability 
issues arise, to guarantee quality of service. There are two types of actions: automated and non-
automated. If a performance, availability or reliability agreement for a service/transaction is violated on 
either a single node or the whole cluster, it usually means that some of the following problems 
occurred. 

• The workload on a node or the cluster is overloaded, thus load redistribution or adding new 
resources is needed. 

• The quality of the application software is not good enough, thus needs to be re-engineered.  
• The system is not configured or set up properly. 
• Some system components are malfunctioning, and need to be repaired or replaced. 
 
In this section we focus on what automated actions can be taken when potential performance or 
availability/reliability problems occur. In our model, transaction requests are dispatched to different 
hosting hosts in a weighted round-robin fashion. In implementation, some type of request mapping 
table can be built, where each type of transaction with a specific service and a user type has an entry. 
The entry contains a node index, and the transaction weight on each of the hosting nodes. The node 
index is computed using the transaction weights. It indicates the node to which the next request for this 
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type of transaction will be dispatched, unless the corresponding queue is full. When a performance 
bottleneck occurs or a QoS agreement is violated, the transaction loads are re-adjusted among the 
hosting nodes, or distributed to new nodes if necessary and possible. Then the corresponding 
transaction weights are re-calculated. The new weights will be used to rout transaction requests for the 
new time interval. In our model, there are several ways to detect potential performance or 
availability/reliability problems.  
 
• The average response time for a type of transaction measured on a node is greater than that 

specified in the agreement.  
• The transaction compliance rate is not satisfied, i.e., the transaction violation rate is higher than 

expected.  
• Transaction/node saturation rates are unbalanced in the system even if there are no QoS 

violations. 
 
There are basically three causes to the problems: transactions on a node are overloaded, transaction 
loads are unbalanced among the hosting nodes, or a node (or some of its components) is 
malfunctioning (e.g., system-hang, low-memory due to memory leaks, etc). In order to diagnose the 
cause to the problem, the transaction saturation rate for each type of transaction on each hosting node 
is checked, starting from higher priority transactions to lower priority ones. 
 
3.3.3.1 Transaction level guarantees 

If ,1., >saturationT ni
j it indicates that transactions with type i

jT  are overloaded on node nN . The 
overload, in terms of transaction density and transaction count, is calculated as: 
  

rdensityT
densityTrdensityT

ni
j

ni
j

ni
j

.
..

,

,, −
=∂  

and 
 

)..min( ,, residenceT  ,curr_startT ni
j

ni
j ∗∂=∆  

 
It indicates that the transaction density for ni

jT , should be reduced by ∂  for the new time interval so 

that the response time agreement could be satisfied. The absolute transaction load for ni
jT , should be 

modified as: 
 

θ∗= aloadTaloadT ni
j

ni
j .. ,,  

 
where 

 
.

1 , residenceT ni
j

∆−=θ  

 
As a result, the relative transaction load for each type of transaction hosted on nN needs to be 

adjusted, using the formula for relative transaction load. Further, ni
jT , ’s absolute density should be 

changed as: 
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tintvl.starintvl.end
residenceT

adensityT
ni

jni
j −

∆−
=

.
.

,
,  

 
Then the relative density and saturation rate for each type of transaction hosted on nN needs to be 

adjusted, using the density and saturation formulas respectively. Finally, saturationNn . is re-calculated 
using its formula. 
 
To reduce ni

jT , ’s load on ,nN  the transaction weight for ni
jT , must also be adjusted accordingly, and it 

is calculated as: 
 

)
.

1(.. ,
,,

curr_startT
weightTweightT ni

j

ni
j

ni
j

∆−=  

 
After quantifying the overload, we need to find out if any other nodes have extra capacity to handle the 
extra load while not compromising the QoS agreements of the existing transactions.  
 
There are three possible scenarios: 1. Other hosting nodes can absorb the load (load balancing); 2. 
Some nodes that did not previously host the type of transaction can absorb the load (or adding new 
nodes); 3. No other nodes can handle this overload without sacrificing the performance of their hosted 
transactions (graceful degradation).  
 
3.3.3.1.1 Redistribution among existing nodes 
 
In the first scenario, we assume there are m nodes each of which meets the following conditions: each 
of these nodes is not saturated, and i

jT  is not saturated on each of these nodes. 
 

1. and 1. ),( , <<Ω∈∀ saturationTsaturationNmk ki
jk  

 
The overload is distributed among the m nodes such that the resulting transaction and node saturation 
rates on each node would not be greater than 1 (one simple strategy would be to equally distribute the 
load if possible). Suppose that the quota kN receives is '∆  out of ∆ , the absolute transaction load for 

ki
jT , should be modified as: 

 
'.. ,, θ∗= aloadTaloadT ki

j
ki

j  
where  

residenceT ki
j .

'1' ,

∆+=θ . 

As a result, the relative transaction load for each type of transaction hosted on kN needs to be 

adjusted, using the formula for relative transaction load. Further, ki
jT , ’s absolute density should be 

changed as: 
 

tintvl.starintvl.end
residenceT

adensityT
ki

jki
j −

∆+
=

'.
.

,
,  
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Then the relative density and saturation rate for each type of transaction hosted on kN needs to be 

adjusted, using the density and saturation formulas respectively. Finally, saturationNk . is re-calculated 
using its formula. 
 
To increase ki

jT , ’s load on ,kN  the transaction weight for ki
jT , must also be adjusted accordingly, and 

it is calculated as: 
 

)
.

'1(.. ,
,,

curr_startT
weightTweightT ki

j

ki
j

ki
j

∆+=  

 
After re-distributing the overload, the transaction weight for i

jT  on each hosting node is normalized as 
follows. 
 

)).(max(
.

. , ,

,
,

weightT
weightT

weightTk ki
j

ki
jki

j Ω
=∀  

 
where ).( , weightT ki

jΩ is the set of transaction weights, and function max returns the maximum value. 
 
3.3.3.1.2 Adding new nodes  

In the second scenario, suppose that there are K nodes that did not previously host i
jT  and meet the 

following conditions: each node and its hosted transactions if any are not saturated (for a new node, its 
saturation rates are zero). 
 

1. ,, and 1.),( , <∀<Ω∈∀ saturationTmlsaturationNKk kl
mk  

 
The overload is distributed among the K nodes such that the resulting saturation rate of each node 
would not be greater than 1, and be as close as possible. Suppose that the quota kN  receives is '∆  out 

of ∆ , the absolute transaction load for ki
jT , on kN  would be: 

 

l
m

i
jni

j

ni
j

kl
m

i
jki

j TT
stimeT

etimeTwtimeTresptimeT
aloadT ≠

−
∗∆=  ,

.
.)..(

'. ,

,,
,  

 
For a new empty node, wtimeT kl

m .,  is not available, and wtimeT ni
j .,  is used instead. As a result, the 

relative transaction load for each type of transaction hosted on kN needs to be adjusted, using the 

formula for relative transaction load. Further, ki
jT , ’s density should be calculated as: 

tintvl.starintvl.end
adensityT ki

j −
∆= '.,  
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Then the relative density and saturation rate for each type of transaction hosted on kN needs to be 

adjusted, using the density and saturation formulas respectively. Finally, saturationNk . is re-calculated 
using its formula. 
 
As kN takes '∆  out of the total overload ∆ , the transaction weight for i

jT on kN should be set to: 
 

∆−
∆=

curr_startT
weightTweightT ni

j

ni
j

ki
j .

'.. ,
,,  

 
After re-distributing the overload, the transaction weight for i

jT  on each hosting node is normalized as 
described in the first scenario.  
 
3.3.3.1.3 Graceful degradation 

In the third scenario where each node in the system is saturated, the only thing that could be done is to 
squeeze the resources for the lower-priority transactions. Therefore, the performance of these low-
priority transactions will be degraded. The idea is to push an equivalent amount of load for some lower-
priority transactions to other hosting nodes, if each of these transactions, nl

mT , , meets the following 
conditions.  
 
1. It has a lower priority. 
2. There exists another hosting node kN  for l

mT where the priority of each hosted transaction is less 

than that of .i
jT  

 
To simplify the discussion, we suppose that nl

mT ,  is the only transaction satisfying the above conditions. 

We pull out the equivalent amount of load for nl
mT ,  from nN , and push it to kN . That is: 

 

etimeT
etimeT

nl
m

ni
j

.
.

' ,

,∗∆
=∆  

 
The same algorithms used in the first scenario can be used here to adjust the relevant metrics on nN  

and kN  accordingly. Note that the “push” strategy can also be used as an alternative to the algorithms 

described in the second scenario. The only difference is, each pushed nl
mT , should meet the condition: 

There exists at least another hosting node kN  for l
mT  where neither kN  nor kl

mT , is saturated, 

.1. and 1. , << saturationTsaturationN kl
mk  

 
Consider the time complexity of the above algorithms redistributing i

jT ’s load. Let n be the number of 

nodes where i
jT  is overloaded, and m be the number of nodes that can absorb extra load. Let k be the 

maximum number of transactions hosted on a node. As transaction load, density, and saturation rate, 
for each type of transaction on both source and destination nodes, need to be re-computed, the time 
complexity of redistributing i

jT ’s load among the n and m nodes is ).(nmkO  Let l be the number of 
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transaction types in the system whose loads need to be redistributed, the time complexity of the 
algorithms is ).(nmklO  Let N be the total number of nodes in the system, and T be the total number 
of transaction types in the system. As T,l T,k N,m Nn ≤≤≤≤  and,  the complexity of the 

algorithms is bounded by ).( 22TNO  
 
3.3.3.2 Dealing with failing nodes 

If ni
jT , ’s response time agreement is violated and ,1., <saturationT ni

j it indicates that the violation is 
not caused by the overload. Instead, there might be some related system and/or software components 
that are not performing normally (e.g., system-hang, low-memory due to memory leaks, etc). So when 
the above situation occurs, an alarm should be generated the problematic component, depending on 
if it is a temporary or permanent problem, may need to be repaired or replaced. Besides, ni

jT , ’s weight 
should be adjusted so that the situation will not deteriorate (at least not as fast). The adjustment may 
not be accurate because it is almost impossible to quantify the impact a fault imposes on the resources. 
 
If ,0., ≠inprogT ni

j it indicates that there are instances of ni
jT ,  which are still in-progress. ni

jT , ’s 

weight should temporarily be set to 0. If the in-progress transactions can finish successfully, ni
jT , ’s 

weight will be set to an empirical value lower than its previous weight (e.g., 
)2/.. ,, weightTweightT ni

j
ni

j = . Otherwise, the problem must be fixed before ni
jT ,  can service any 

new requests. 
 
If ,0. and0. ,, ≠= failedT inprogT ni

j
ni

j  it indicates that some instances of ni
jT , have failed during 

the current measurement interval. ni
jT , should not service any new request before the problem is fixed. 

Thus its weight is set to zero. 
 
If ,0. and,0. ,, == failedT inprogT ni

j
ni

j  it indicates that no failures have occurred during the 
current measurement interval. But the hosting node is not performing normally as indicated by the 
response time violation. Thus, before the problem is fixed, ni

jT , ’s weight should be reduced to a lower 
empirical value. 
 
After adjusting i

jT ’s weight, the transaction weight for i
jT  on each hosting node should be normalized 

as described before. 
 
Consider the time complexity of the above algorithm. Let m be the number of nodes where i

jT ’s 

response time agreement is violated, and n be the number of nodes hosting i
jT . The time complexity of 

adjusting and normalizing i
jT ’s weights on its hosting nodes is ).( nmO +  Let l be the number of 

troubled transaction types in the system, the complexity of the algorithm is ))(( lnmO + , and it is 
bounded by )(NTO where N  is the total number of nodes in the system, and T is the total number 
of transaction types in the system. 
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Conclusion 
BizQoS Management Layer is used to specify, measure, and guarantee quality of service at service level. 
The model is based on real-time measurement and historical metrics analysis, and it presents a 
quantitative method to identify and remedy performance, availability, and reliability problems in order 
to guarantee Quality of Service.  The approach is unique in the sense that it proposes a real-time close-
loop adaptive control mechanism based on service and transaction level data. 
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