

Specifying and Guaranteeing Quality of Service for Web Services

through Real Time Measurement and Adaptive Control

Abstract
Web based services are becoming increasingly prevalent. These web services are accessed not only by end users
but also by other web services. A stage has arrived at which availability and performance guarantees are
expected of these web services. In many cases web services are hosted by web hosting or aggregator sites making
it even more important for the businesses that build these web services to receive certain service level guarantees
from the web hosting sites. Specifying, measuring and guaranteeing in real time such service level agreements is
a non-trivial task. This paper describes an adaptive control mechanism based on real-time measurements for
guaranteeing service level agreements. It will allow the service provider to establish specific performance
guarantees for individual transaction of the service, thus letting him decide which of the transactions are most
relevant for his business goals. It will also address dynamic activation of standby web server resources and will
enable smoth degradation of the overall service when the load can not be handled in time anymore.

Keywords: End-to-End QoS, Web, e-Service management, service monitoring and control

1. Introduction
A Web based service or e-Service can be described broadly as a service available via the Internet that
allows the processing of certain business transactions. E-Services are set up for clients and other e-
Services to make use of the offered set of functionality. They have a Uniform Resource Locator at
which they can be accessed and have a set of Interfaces that can be utilized to access them. E-services
are web based applications that are created and hosted by the developing e-business itself or might be
hosted frequently by web hosting enterprises or on aggregator sites.

In either case, there is a need for specifying certain Service Level Agreements (SLA) and measuring
whether the service is in compliance or not. The e-Service provider and its clients will agree upon the
Service Level Objectives (SLO) that detail the SLA. In the hosting case the e-Service provider will use
the SLOs as a measure against the hosting business, but the hosting organization will be ultimately
responsible for fulfilling the agreed-upon conditions. In the other case the e-Service provider himself
will be responsible for delivering the service according to the contracts.

The work for Quality of Service (QoS) that has been done in the area or Web-based e-Services is
centered around either providing the QoS at the

• Web Server level, by making sure that the http requests/responses are prioritized and queued
separately and handled by the web server according to their priority [4]

• System level, by providing resource allocation at the system kernel level, along with web server
request differentiation/prioritization[10][11]

Akhil Sahai, Jinsong Ouyang, Vijay Machiraju, Klaus Wurster
 E-Service Management Project

E-Services Software Research Department
HP Laboratories, 1501 Page Mill Road, Palo-Alto, CA 94034

{asahai, jinsongo, vijaym, kwurster}@hpl.hp.com

 - 2 -

• Network level, the IntServ [5][6] and DiffServ [8][9] approaches at the network level enable
resource reservation and in performing service packet prioritization /differentiation
respectively.

E-service providers are interested in higher-level metrics, which measure transaction throughput, and
ultimately on the number of products sold and the profit made. They are interested in maximizing their
revenue while clients are interested in receiving a good or at least satisfactory service and measure a
service using the perceived Quality of Experience.

The most natural way to specify service level agreements for both the e-Service provider and its clients
should be based on the underlying business transactions that are conducted between the two parties.
This way, the e-Service provider can discriminate certain transactions over others, e.g. can establish
faster execution times for buying transaction over browsing functions. The client can understand the
behavior of the system and does not have to speculate on the service he will receive.

We will describe our approach termed BizQoS based on guaranteeing transaction execution times for
individual transactions that will allow the e-Service provider to establish his individual preferences for
certain transactions of the offered service over others while complying to the established SLAs.

Clients accessing the e-Service have expectations towards it in the areas of availability, performance and
reliability. They want the e-Service to be accessible all the time, offering good response times in the
execution of transactions and the presentation of the results. They are also expecting that transactions
be executed consistently and that they do not have to reenter the same information over and over
again.

Client requirements
Performance
Availability
Reliability

An e-Service provider will be motivated by the service level considerations as well. It will strive to fulfill
the established service level goals towards its consumers. Additionally it will try to utilize resources
optimally, while not provisioning too many stand-by resources that are unused most of the time. It will
try to optimize revenues, and thus depending on an analysis of the client behavior prefer certain
transactions over others, e.g. revenue creating transactions over revenue-neutral ones. It will set up
measures to adapt to changes in the load on the e-Service. Finally it will implement means to allow the
e-Service to degrade gracefully when all the standby resources have been activated and the incoming
load is still increasing.

E-service requirements
Client motivated Self motivated

Performance
Reliability

Availability

Transaction differentiation
Throughput guarantees

Resource allocation and load balancing
Dynamic capacity allocation

Smooth degradation on overload

 - 3 -

3. Service level QoS
The overall definition of the QoS of the e-Service will be determined by consolidating the compliance
with the detailed SLA and ultimately with the derived Service Level Objectives (SLO). To allow a
machine to compare the SLOs with the real world behavior the SLOs need to be mapped into
measurements that can be taken from the running system.

3.1. Service level transactions
Most e-Services offer a well-defined set of interactions. We will measure the execution times of
individual instantiations of these interactions and compute aggregates to control the prioritization of
subsequent requests.

For example a book selling e-Service will implement all the interactions to enable customers to shop for
books. These customers will be real people, but in some cases can also be other e-Services that include
the shopping for books into their own service offering. The process of selling a book through this book
seller’s web site is broken down in a series of sub-interactions like ‘login’, ‘browsing’, ‘searching’,
‘adding a book to the shopping cart’, ‘entering the payment and delivery information’ and ultimately the
‘buying of the selected books’. This list will be slightly different for other e-Services even in the same
business. We will now assign individual service level objectives to all the transactions.

3.1.1 Identifying transactions.

To be able to measure the execution time of individual transactions that are implemented by the e-
Service they need to be identified or demarcated at the application level. This can be done either
invasively or in a non-invasive manner.

Non-invasive instrumentation can be used when the application was developed without manageability
in mind or if changing the application code is not an option.

This requires to discretely monitor the http requests and responses and to map them to service level
transactions. This could also involve studying http web server logs or in the most extreme case a
person to establish a mapping between http requests and business transactions.

Invasive instrumentation typically requires the insertion of certain function calls into the source code
that establish beginning and the corresponding end of transactions.

Software Development Kits (SDK) exist that provide APIs to enable invasive identification of
transaction start and end time by inserting function calls into the normal application flow. They also
enable the application developer to provide additional context information, e.g. ‘number of items
bought’ for a ‘checkout’ transaction, to be passed to the management system. ARM[13] and XARM
[12] can be used for doing transaction type, transaction instance and service instance level identification
and allowing a receiving measurement system to do the necessary correlation. The raw data collected
consists of start and stop time, failure and abort counts for transaction(s) and breakdown for its
component transactions, at the type and instance level.

3.1.2 Differentiating transactions

An e-Service provides a well-defined set of transactions. A bookstore e-Service for example will
structure its offer using transactions like ‘login’, ‘search’, ‘addToShoppingCart’, an ‘checkout’. In order
to maximize revenue, an e-Service may like to assign different priorities to these transactions.
Transactions like ‘addToShoppingCart’ and ‘checkout’ transactions could be given higher priority over
‘search’ requests so as to maximize revenue. There might be other cases where an analysis of the

 - 4 -

customer behavior shows that preferring ‘search’ transactions over ‘checkout’ might be the appropriate
approach, with the underlying logic, that the customer that has made up his mind and has already
finished shopping will tolerate slight delays, while the shopper that is still looking for the most
interesting offer might potentially abort his shopping and move to another site.

3.2 QoS Management
An infrastructure that is used often to implement e-Services is a J2EE compliant Application Server
[1][3]. A typical J2EE compliant application server consists of a set of web servers with a network load
balancer in front of them. These web servers receive all requests initially. They prioritize the requests
and select the appropriate application server instance in the application server cluster to ultimately serve
the request. The user session state is typically stored in a state server maintained in a database.

Network
Load

Balancer
Firew

all

Web
Server

Web
Server

Web
Server Firew

all
App

Server

App
Server

App
Server

App
Server

Database

State
Server

 Figure 1. J2EE Compliant e-Service Architecture

We will initially establish our SLOs and define any prioritization that we want to implement for certain
transactions. We will then compute some initial weights for the request queues based on expected
average transaction times, the execution capacity of the different machines and the above preferences.

We will measure the execution times of instantiations of all transactions and feed them with the service
level agreements into a measurement engine. The measurement engine will keep track of individual
transaction execution times and will also aggregate the times for all transaction types. This consolidated

 - 5 -

information is continuously fed into the controller. The controller analyses the data and from time to
time adjusts the parameters on the e-Service by changing the weights on the different queues.

Measurement
Engine

Realtime
Adaptive

QoS Controller

App
Server

App
Server

-T1-
-T2-
-T3-
-T4-

-T1-

-T3-

Measurements

Measurements

Aggregated
Measurements

Control

 Figure 2. Adaptive control using real time measurements

The QoS management layer we propose, will be implemented between the load balanced web servers
and the application servers. We will implement a set of logical queues representing the individual
application servers. We will collect response time information in real time and aggregate them for the
different transactions. We will compare the average response time for the individual transactions, the
arrival density of new requests and the logic queue length to determine changes in the weights for
sending different transactions to the queues. It will compare the calculated numbers with the specified
QoS requirements. If necessary it will perform adaptations to the algorithm used to assign the requested
transactions to the application servers. For example, there are two application servers in the architecture
illustrated in figure 2. The upper server hosts transaction types 1T , 2T , 3T , 4T while the lower one

hosts 1T and 3T . Suppose that the response time objectives on the upper server cannot be satisfied,
and the measurement module finds out the problem was due to the higher-than-expected volumes of

1T and 2T . One the other hand, the transactions on the lower server perform well. Then the
measurement engine sends the aggregated metrics to the QoS controller. Based on the metrics, the
controller executes the real-time load-balancing algorithm (see details in next section) and re-adjusts the
weights for 1T on each server. The weights should be adjusted in such a way, if possible, that enough
amount of transaction load of 1T will be shifted from the upper server to the lower one so that, given
the current transaction loads, there will be no response time violations.

 - 6 -

Network
Load

Balancer

Firew
all

Firew
all

Database

State
Server

Our
Load

Balancer

App
Server

App
Server

App
Server

App
Server

Web
Server

Web
Server

Web
Server

 Figure 3. J2EE Compliant e-Service with measurement infrastructure

The possible control actions are:

• Sending transaction requests to different queues and thus to different application servers for
processing based on their current capacities. Adjusting weights for particular transaction types
on the queues controls this. By initially setting the weights in a specific fashion transaction
differentiation becomes possible, e.g. it allows to send ‘important’ transactions to multiple
servers while the ‘normal’ transactions might have to share a single server.

• Adding new application (nodes) servers from a pool of standby/failover servers to take the
increased load. Nodes (servers) can also be retired/removed for planned or unplanned
shutdown. This will enable handling of situations when particular nodes are failing or are over-
saturated.

• Graceful degradation in case of a load that cannot be handled even after activating all the
standby resources. Prioritizing transactions and controlling the number of transactions of a
particular type being executed on a particular node allows for discrimination of transactions to
be delayed or to be dropped completely in case of overload.

 - 7 -

Each of these control actions have to be motivated by certain decision-making algorithms based on real
time measurements. We describe an analytical model in the next section to make the above-mentioned
control decisions.

3.3 BizQoS Analytical Model
We define a theoretical model on which the QoS management layer is built. The model is used for
specifying, measuring, and guaranteeing quality of service in distributed systems. We assume the
following characteristics in the distributed system.

• The system consists of a number of homogeneous or heterogeneous computing nodes.
• An application program can be replicated on one or more nodes, and the running of each replica

will produce the same result.
• Applications are running to service requests. Requests are either from the outside world or from

within the distributed system1.
• Each node logically has a queue to buffer the incoming requests for potentially different services.

We define the nodes in the distributed system as {N0, N1, …, Nk-1} where k is the number of nodes.
The queue associated with node Ni is defined as Qi (0 ≤ i ≤ k-1). Application programs hosted in the
system are termed services, and we define the set of hosted services as {S0, S1, …, Sl-1} where l is the
number of services currently hosted in the system. For each service Si (0 ≤ i < l), it can be replicated on
the multiple nodes, and a replica is defined as Sin where n is the index of the hosting node. A service
may provide a number of functions, and each function may consist of one or more processing units.
We term, a transaction, the processing units corresponding to a service request. For each service Si (0 ≤
i < l), its supported transactions are defined as {T0i, T1i, …, Tm-1i} where m is the number of transactions
implemented in the service. For each transaction Tji (0 ≤ j < m), its incarnation on node Nn is defined as
Tji,n where j identifies the type of the transaction (Tji), i represents the service implementing the
transaction (Si), and n is the index of the node where the transaction/service is replicated.

While node, service, and transaction represent three different levels of granularity for modeling quality
of service in a distributed system, specification, measurement, and control are three interdependent
phases for the QoS management. We describe in the following these sub modules.

3.3.1 Specification

Quality of service specification is a set of agreements between client and server or peer-to-peer, which
can contain performance, scalability, availability, and reliability objectives. These specifications are used
by servers for monitoring compliance. While monitoring compliance the servers take certain control
actions to match up to the specifications agreed to with clients. Clients on the other hand use the
specification to expect certain level of service from the servers. Failure to adhere to the specification
should lead to some kind of compensation for the clients.

The set of agreements as mentioned in the specification are negotiated at both service and transaction
levels. The QoS specification for a service consists of the following parameters.

Service priority. It is described by the equation:

10,. ≤≤= P PpriorityS

1 In the architecture requests are from the outside world (e.g., clients, or other remote e-services).

 - 8 -

More computing resources will be allocated for a service with a higher priority than that for a lower
priority service. For instance, it could mean the service will have a higher degree of replication, or be
hosted on more powerful nodes.

Availability. It is described by the formula:

=tyavailabiliS. %100
I

U

where I is a specific time interval, and U is the least amount of uptime expected from a service during
an interval. This parameter specifies the agreement on the percentage of the uptime for a service.

Reliability. It is described by the formula:

=yreliabilitS. %100Cc

tC

This definition means that, for every Ct number of transactions initiated by a service, it is expected that
at least Cc number of transactions will successfully be finished. That is the rate of successfully finished
transactions for a service.

As described above, a service consists of a list of transactions it supports. The QoS specification for a
transaction in a service contains the following parameters.

Transaction priority. The priority of a transaction is defined as:

10 . ≤≤= PP,priorityT

T.priority has the same semantics with S.priority. The priorities for transactions should be set up to meet
the following requirements: 1. The priority of any transaction in a service is no higher than the service’s
priority. 2. The priority of any transaction in the first service is lower than that of any transaction in the
second service if the first service has a lower priority.

prioritySpriorityT i
i
j .. ≤

and
 priorityTpriorityTthenprioritySprioritySIf k

l
i
jki <<

User priorities. For each type of transaction, there may be different types of users with different priorities.
The user priorities for a type of transaction can be specified as:

}1,,1,0|10 ,.{ . −⋅⋅⋅=≤≤= UuPPpriorityuserT u

The priorities for user types should be set up to meet the following requirements: 1. The priority of any
user type with a transaction type is no higher than the transaction’s priority. 2. The priority of any user
type with the first transaction type is lower than that of any user type with the second transaction type if
the first transaction type has a lower priority.

 - 9 -

priorityTpriorityuserTu i
ju

i
j ..., ≤∀

and
priorityuserTpriorityuserTuthenpriorityTpriorityTIf u

k
lu

i
j

k
l

i
j, .. <∀<

Transaction response time, transaction density, and compliance rate. For each type of transaction with a specific
service and a user type, its performance requirement can be described using these three parameters.
That is, under a certain transaction density on a node, there should be at least the percentage of
transactions, specified by the compliance rate, which do not violate the response time requirement. The
three parameters are related to each other, and are given by

 ∞<<= RRresptimeT 0 ,.
and

I
CdensityT =.

and

10 ,. ≤<= µµcomplianceT

where C is the number of T’s instances initiated during a measurement interval I. T.resptime specifies the
average response time expected from a type of transaction. It is the waiting time in the queue plus the
service time on the node. T.density specifies the maximum transaction density (i.e., the number of
concurrent transactions per time unit) to be allowed on a specific node such that at least T.compliance
percent of transactions whose response times are no greater than T.resptime. T.resptime, T.density, and
T.compliance can usually be obtained through capacity planning on the computing nodes in the system.
As the nodes may be heterogeneous, the values of T.density depend on the capacity of the hosting
nodes each hosting node has its own agreement on transaction density.

We will describe in next section how the density for a type of transaction can be calculated on a specific
node hosting multiple types of transactions.

Availability. It is described by the formula:

%100.
I

UtyavailabiliT =

where I is a specific time interval, and U is the least amount of uptime expected from a type of
transaction during an interval. This parameter specifies the agreement on the percentage of the uptime
for a type of transaction. We term that a service is not available if each of its hosted transactions is
unavailable.

Reliability. It is defined as:

%100C. c

tC
yreliabilitT =

This definition means that, for every Ct number of T’s instances being initiated, it is expected that at
least Cc number of instances will successfully be finished. That is the rate of successfully finished

 - 10 -

transactions for a transaction type. The reliability requirement of a service should be the lower bound of
that of its hosted transactions.

3.3.2 Measurement

We describe in this section the set of metrics that need to be collected and calculated at transaction,
service, and node levels. They are used to check if there are any violations on the QoS agreements or
irregularities in the system. There are two types of metrics: raw and aggregate data. We formally present
the metrics in the following, and will describe in next section how they can be used to provide better
quality of service, or reinforce the QoS agreements in the event of violations.

3.3.2.1 Raw metrics

Transaction registration time. It is the time when a type of transaction is registered/initiated in a service. It is
described by .., regtimeT ni

j

Transaction failed time. It is the time when a type of transaction becomes unavailable in a service. It is
described by .., failedtimeT ni

j

Transaction start and stop times. Transaction start/stop time marks the start/stop time of a transaction
instance. They are given by .. and . ,

,
,
, stoptimetstartimet ni

kj
ni
kj After its start, the status of the instance

is marked “in-progress” until it stops, either successfully (“committed”) or in failure (“failed”).

Transaction duration. For a finished transaction instance, it is the duration between its start and its stop.
For a transaction that is still in-progress at the end of a measurement interval, it is the duration between
its start and the end of the interval. stimet ni

kj .,
, is described by:

=stimet ni
kj .,

, .
 . ,.

or . ,..
,
,

,
,

,
,

,
,

,
,

=−

=−

inprogressstatuststartimetintvl.end

failedcommittedstatuststartimetstoptimet
ni
kj

ni
kj

ni
kj

ni
kj

ni
kj

3.3.2.2 Aggregate metrics

Aggregate metrics are derived from the basic raw metrics as described in the previous section. The
aggregate metrics are used by the BizQoS controller to monitor the node, transaction, and service level
details and to take certain control actions. The aggregate metrics calculated for this purpose are:

Transaction down time. The down time of a type of transaction is given by:

failedtimeT.regtimeT.dtimeT ni
j

ni
j

ni
j .,,, −=

Tji,n.failedtime represents the time when the resource (i.e., the software implementing the transaction or
the node hosting the transaction) fails. Tji,n.regtime is the time when the resource is back up (i.e., when
the type of transaction is re-registered).

Transaction residence count. It represents the number of transactions of a specific type existing during a
measurement interval. It consists of the transactions starting before and within the interval. The
residence count of a service transaction on a node is defined as:

 - 11 -

t.curr_starTt.prev_starT.residenceT ni
j

ni
j

ni
j

,,, +=

Transaction residence time. It is the average time for which a type of transaction resides in a measurement
interval. It is described by:

residenceT
etimetSum

etimeT ni
j

ni
kjni

j .
).(

. ,

,
,, =

ni
kjt ,

, is a transaction instance that exists during the measurement interval. etimet ni
kj .,

, represents the

amount of time that ni
kjt ,

, spends in the interval, and is described by:

=etimet ni
kj .,

, .

. and .

. and .,.

. ,.

].,.[,..

,
,

,
,

,
,

,
,

,
,

,
,

,
,

<=−

≥=−

<−

⊂−

tintvl.star startimetinprogressstatust t,intvl.starintvl.end

tintvl.starstartimetinprogressstatust startimetintvl.end

tintvl.starstartimettintvl.starstoptimet

intvlstoptimetstartimetstartimetstoptimet

ni,
kj,

ni,
kj,

ni
kj

ni,
kj,

ni,
kj,

ni
kj

ni
kj

ni
kj

ni
kj

ni
kj

ni
kj

Transaction waiting time. The waiting time of a transaction indicates the amount of time for which the
corresponding request waits in the queue before being serviced. The transaction waiting time on node

nN is calculated in the following where lengthQn . represents the average length of nQ .

)curr_startTSum
lengthQtintvl.starendintvl

wtimeT nl
k

nni
j .(

.).(
. ,

, ∗−
=

Transaction commit count. commitT ni

j ., represents the number of transactions of a specific type that
finished successfully during a measurement interval.

Transaction violated commit count. violationT ni

j ., counts the number of transactions of a specific type that
finished successfully, but violate the response time requirement, which is,

resptimeTwtimeTstimet i
j

ni
j

ni
kj ... ,,

, >+

Transaction in-progress count. inprogT ni

j ., counts the number of on-going transactions of a specific type
by the end of a measurement interval.

Transaction violated in-progress count. vinprogT ni

j ., counts the number of on-going transactions of a
specific type whose durations, by the end of a measurement interval, violate the response time
requirement, which is,

resptimeTwtimeTstimet i
j

ni
j

ni
kj ... ,,

, >+

 - 12 -

Transaction failed count. failedT ni
j ., counts the number of transactions of a specific type that failed

during a measurement interval.

Transaction service time. It is the average duration for the set of transaction instances with a specific type
during a measurement interval. Each instance in the set meets the following condition:

resptimeTwtimeTstimetinprogressstatustcommittedstatust kji i
j

ni
j

ni
kj

ni
kj

ni,
kj, ... and .or ,.,,, ,,

,
,
, >+==∀

ni
kjt ,

, is a transaction instance that either finishes successfully within the interval, or is still in-progress at
the end of the interval whereas it has violated the response time agreement. The average transaction
service time is thus given by.

vinprogTcommitT
stimetSum

stimeT ni
j

ni
j

ni
kjni

j ..
).(

. ,,

,
,,

+
=

Transaction response time is the sum of transaction service time and transaction waiting time. That is the
average time spent by a type of request on a node. It is defined as:

.wtimeT.stimeT.rtimeT ni
j

ni
j

ni
j

,,, +=

Transaction violation rate. It represents the percentage for a type of transaction whose instances violate the
response time agreement during a measurement interval.

vinprogTcommitT
vinprogTviolationT

vrateT ni
j

ni
j

ni
j

ni
jni

j ..
..

. ,,

,,
,

+
+

=

Absolute transaction density for a type of transaction is the average number of concurrent transaction per
time unit. It is defined as:

tintvl.starintvl.end
residenceT

adensityT
ni

jni
j −

=
.

.
,

,

Absolute transaction load. The absolute transaction load of a type of transaction is the total residence time
for such type of transaction during a time interval. It is described by:

etimeTresidenceTaloadT ni
j

ni
j

ni
j ... ,,, ∗=

Relative transaction load of a transaction type represents the ratio of its transaction load to all types of
transaction load on the hosting node during the measurement interval.

).(
.

. ,

,
,

aloadTSum
aloadT

rloadT nl
k

ni
jni

j =

 - 13 -

Relative transaction density represents the density of a type of transaction with respect to its relative
transaction load. It is described by:

rloadT
adensityT

rdensityT ni
j

ni
jni

j .
.

. ,

,
, =

Transaction saturation rate. This metrics indicates if and how much a specific type of transaction is
overloaded on a node. It is the ratio of the relative transaction density to the transaction density
specified in the QoS agreements.

densityT
rdensityT

saturationT ni
j

ni
jni

j .
.

. ,

,
, =

Node saturation rate. The metrics indicates if and how much a node is overloaded. That is the ratio of the
sum of the density of each type of transaction on a node to the sum of the weighted density
agreements, according to the measured transaction load distributions. The metrics is defined as:

).*.(
).(

. ,,

,

rloadTdensityTSum
adensityTSum

saturationN ni
j

ni
j

ni
j

n =

Transaction weight. It indicates how the workload for a type of transaction should be distributed among
the hosting nodes. The initial value is the capacity of the hosting node. Next section will describe how
this metrics can be changed and used by the control mechanism.

10 ,., ≤≤= ϖϖweightT ni
j

3.3.3 Control

The BizQoS control module takes necessary actions, when performance, availability, and reliability
issues arise, to guarantee quality of service. There are two types of actions: automated and non-
automated. If a performance, availability or reliability agreement for a service/transaction is violated on
either a single node or the whole cluster, it usually means that some of the following problems
occurred.

• The workload on a node or the cluster is overloaded, thus load redistribution or adding new
resources is needed.

• The quality of the application software is not good enough, thus needs to be re-engineered.
• The system is not configured or set up properly.
• Some system components are malfunctioning, and need to be repaired or replaced.

In this section we focus on what automated actions can be taken when potential performance or
availability/reliability problems occur. In our model, transaction requests are dispatched to different
hosting hosts in a weighted round-robin fashion. In implementation, some type of request mapping
table can be built, where each type of transaction with a specific service and a user type has an entry.
The entry contains a node index, and the transaction weight on each of the hosting nodes. The node
index is computed using the transaction weights. It indicates the node to which the next request for this

 - 14 -

type of transaction will be dispatched, unless the corresponding queue is full. When a performance
bottleneck occurs or a QoS agreement is violated, the transaction loads are re-adjusted among the
hosting nodes, or distributed to new nodes if necessary and possible. Then the corresponding
transaction weights are re-calculated. The new weights will be used to rout transaction requests for the
new time interval. In our model, there are several ways to detect potential performance or
availability/reliability problems.

• The average response time for a type of transaction measured on a node is greater than that

specified in the agreement.
• The transaction compliance rate is not satisfied, i.e., the transaction violation rate is higher than

expected.
• Transaction/node saturation rates are unbalanced in the system even if there are no QoS

violations.

There are basically three causes to the problems: transactions on a node are overloaded, transaction
loads are unbalanced among the hosting nodes, or a node (or some of its components) is
malfunctioning (e.g., system-hang, low-memory due to memory leaks, etc). In order to diagnose the
cause to the problem, the transaction saturation rate for each type of transaction on each hosting node
is checked, starting from higher priority transactions to lower priority ones.

3.3.3.1 Transaction level guarantees

If ,1., >saturationT ni
j it indicates that transactions with type i

jT are overloaded on node nN . The
overload, in terms of transaction density and transaction count, is calculated as:

rdensityT
densityTrdensityT

ni
j

ni
j

ni
j

.
..

,

,, −
=∂

and

)..min(,, residenceT ,curr_startT ni
j

ni
j ∗∂=∆

It indicates that the transaction density for ni

jT , should be reduced by ∂ for the new time interval so

that the response time agreement could be satisfied. The absolute transaction load for ni
jT , should be

modified as:

θ∗= aloadTaloadT ni
j

ni
j .. ,,

where

.

1 , residenceT ni
j

∆−=θ

As a result, the relative transaction load for each type of transaction hosted on nN needs to be

adjusted, using the formula for relative transaction load. Further, ni
jT , ’s absolute density should be

changed as:

 - 15 -

tintvl.starintvl.end
residenceT

adensityT
ni

jni
j −

∆−
=

.
.

,
,

Then the relative density and saturation rate for each type of transaction hosted on nN needs to be

adjusted, using the density and saturation formulas respectively. Finally, saturationNn . is re-calculated
using its formula.

To reduce ni

jT , ’s load on ,nN the transaction weight for ni
jT , must also be adjusted accordingly, and it

is calculated as:

)
.

1(.. ,
,,

curr_startT
weightTweightT ni

j

ni
j

ni
j

∆−=

After quantifying the overload, we need to find out if any other nodes have extra capacity to handle the
extra load while not compromising the QoS agreements of the existing transactions.

There are three possible scenarios: 1. Other hosting nodes can absorb the load (load balancing); 2.
Some nodes that did not previously host the type of transaction can absorb the load (or adding new
nodes); 3. No other nodes can handle this overload without sacrificing the performance of their hosted
transactions (graceful degradation).

3.3.3.1.1 Redistribution among existing nodes

In the first scenario, we assume there are m nodes each of which meets the following conditions: each
of these nodes is not saturated, and i

jT is not saturated on each of these nodes.

1. and 1.),(, <<Ω∈∀ saturationTsaturationNmk ki
jk

The overload is distributed among the m nodes such that the resulting transaction and node saturation
rates on each node would not be greater than 1 (one simple strategy would be to equally distribute the
load if possible). Suppose that the quota kN receives is '∆ out of ∆ , the absolute transaction load for

ki
jT , should be modified as:

'.. ,, θ∗= aloadTaloadT ki

j
ki

j
where

residenceT ki
j .

'1' ,

∆+=θ .

As a result, the relative transaction load for each type of transaction hosted on kN needs to be

adjusted, using the formula for relative transaction load. Further, ki
jT , ’s absolute density should be

changed as:

tintvl.starintvl.end
residenceT

adensityT
ki

jki
j −

∆+
=

'.
.

,
,

 - 16 -

Then the relative density and saturation rate for each type of transaction hosted on kN needs to be

adjusted, using the density and saturation formulas respectively. Finally, saturationNk . is re-calculated
using its formula.

To increase ki

jT , ’s load on ,kN the transaction weight for ki
jT , must also be adjusted accordingly, and

it is calculated as:

)
.

'1(.. ,
,,

curr_startT
weightTweightT ki

j

ki
j

ki
j

∆+=

After re-distributing the overload, the transaction weight for i

jT on each hosting node is normalized as
follows.

)).(max(
.

. , ,

,
,

weightT
weightT

weightTk ki
j

ki
jki

j Ω
=∀

where).(, weightT ki

jΩ is the set of transaction weights, and function max returns the maximum value.

3.3.3.1.2 Adding new nodes

In the second scenario, suppose that there are K nodes that did not previously host i
jT and meet the

following conditions: each node and its hosted transactions if any are not saturated (for a new node, its
saturation rates are zero).

1. ,, and 1.),(, <∀<Ω∈∀ saturationTmlsaturationNKk kl
mk

The overload is distributed among the K nodes such that the resulting saturation rate of each node
would not be greater than 1, and be as close as possible. Suppose that the quota kN receives is '∆ out

of ∆ , the absolute transaction load for ki
jT , on kN would be:

l
m

i
jni

j

ni
j

kl
m

i
jki

j TT
stimeT

etimeTwtimeTresptimeT
aloadT ≠

−
∗∆= ,

.
.)..(

'. ,

,,
,

For a new empty node, wtimeT kl

m ., is not available, and wtimeT ni
j ., is used instead. As a result, the

relative transaction load for each type of transaction hosted on kN needs to be adjusted, using the

formula for relative transaction load. Further, ki
jT , ’s density should be calculated as:

tintvl.starintvl.end
adensityT ki

j −
∆= '.,

 - 17 -

Then the relative density and saturation rate for each type of transaction hosted on kN needs to be

adjusted, using the density and saturation formulas respectively. Finally, saturationNk . is re-calculated
using its formula.

As kN takes '∆ out of the total overload ∆ , the transaction weight for i

jT on kN should be set to:

∆−
∆=

curr_startT
weightTweightT ni

j

ni
j

ki
j .

'.. ,
,,

After re-distributing the overload, the transaction weight for i

jT on each hosting node is normalized as
described in the first scenario.

3.3.3.1.3 Graceful degradation

In the third scenario where each node in the system is saturated, the only thing that could be done is to
squeeze the resources for the lower-priority transactions. Therefore, the performance of these low-
priority transactions will be degraded. The idea is to push an equivalent amount of load for some lower-
priority transactions to other hosting nodes, if each of these transactions, nl

mT , , meets the following
conditions.

1. It has a lower priority.
2. There exists another hosting node kN for l

mT where the priority of each hosted transaction is less

than that of .i
jT

To simplify the discussion, we suppose that nl

mT , is the only transaction satisfying the above conditions.

We pull out the equivalent amount of load for nl
mT , from nN , and push it to kN . That is:

etimeT
etimeT

nl
m

ni
j

.
.

' ,

,∗∆
=∆

The same algorithms used in the first scenario can be used here to adjust the relevant metrics on nN

and kN accordingly. Note that the “push” strategy can also be used as an alternative to the algorithms

described in the second scenario. The only difference is, each pushed nl
mT , should meet the condition:

There exists at least another hosting node kN for l
mT where neither kN nor kl

mT , is saturated,

.1. and 1. , << saturationTsaturationN kl
mk

Consider the time complexity of the above algorithms redistributing i

jT ’s load. Let n be the number of

nodes where i
jT is overloaded, and m be the number of nodes that can absorb extra load. Let k be the

maximum number of transactions hosted on a node. As transaction load, density, and saturation rate,
for each type of transaction on both source and destination nodes, need to be re-computed, the time
complexity of redistributing i

jT ’s load among the n and m nodes is).(nmkO Let l be the number of

 - 18 -

transaction types in the system whose loads need to be redistributed, the time complexity of the
algorithms is).(nmklO Let N be the total number of nodes in the system, and T be the total number
of transaction types in the system. As T,l T,k N,m Nn ≤≤≤≤ and, the complexity of the

algorithms is bounded by).(22TNO

3.3.3.2 Dealing with failing nodes

If ni
jT , ’s response time agreement is violated and ,1., <saturationT ni

j it indicates that the violation is
not caused by the overload. Instead, there might be some related system and/or software components
that are not performing normally (e.g., system-hang, low-memory due to memory leaks, etc). So when
the above situation occurs, an alarm should be generated the problematic component, depending on
if it is a temporary or permanent problem, may need to be repaired or replaced. Besides, ni

jT , ’s weight
should be adjusted so that the situation will not deteriorate (at least not as fast). The adjustment may
not be accurate because it is almost impossible to quantify the impact a fault imposes on the resources.

If ,0., ≠inprogT ni

j it indicates that there are instances of ni
jT , which are still in-progress. ni

jT , ’s

weight should temporarily be set to 0. If the in-progress transactions can finish successfully, ni
jT , ’s

weight will be set to an empirical value lower than its previous weight (e.g.,
)2/.. ,, weightTweightT ni

j
ni

j = . Otherwise, the problem must be fixed before ni
jT , can service any

new requests.

If ,0. and0. ,, ≠= failedT inprogT ni

j
ni

j it indicates that some instances of ni
jT , have failed during

the current measurement interval. ni
jT , should not service any new request before the problem is fixed.

Thus its weight is set to zero.

If ,0. and,0. ,, == failedT inprogT ni

j
ni

j it indicates that no failures have occurred during the
current measurement interval. But the hosting node is not performing normally as indicated by the
response time violation. Thus, before the problem is fixed, ni

jT , ’s weight should be reduced to a lower
empirical value.

After adjusting i

jT ’s weight, the transaction weight for i
jT on each hosting node should be normalized

as described before.

Consider the time complexity of the above algorithm. Let m be the number of nodes where i

jT ’s

response time agreement is violated, and n be the number of nodes hosting i
jT . The time complexity of

adjusting and normalizing i
jT ’s weights on its hosting nodes is).(nmO + Let l be the number of

troubled transaction types in the system, the complexity of the algorithm is))((lnmO + , and it is
bounded by)(NTO where N is the total number of nodes in the system, and T is the total number
of transaction types in the system.

 - 19 -

Conclusion
BizQoS Management Layer is used to specify, measure, and guarantee quality of service at service level.
The model is based on real-time measurement and historical metrics analysis, and it presents a
quantitative method to identify and remedy performance, availability, and reliability problems in order
to guarantee Quality of Service. The approach is unique in the sense that it proposes a real-time close-
loop adaptive control mechanism based on service and transaction level data.

References
[1] HP Bluestone Total E-Server. http://www.bluestone.com

[2] J2EE specification. http://java.sun.com/j2ee/download.html

[3] BEA Web Logic http://www.bea.com

[4] T.F. Abdelzaher and N. Bhatti. Web Server QoS Management by Adaptive Content Delivery. In Seventh International Workshop
on Quality of Service (IWQoS’99), May 1999.

[5] R. Braden, L.Zhang, S. Berson, S. Herzog, and S. Jamin. Resource ReSerVation Protocol (RSVP). RFC 2205, IETF, September
1997

[6] D. Clark, S. Shenkar, and L. Zhang. Supporting Real-Time Applications in an Integrated Services Packet Network: Architecture
and Mechanism. IN SIGCOMM Symposium on Communications Architectures and Protocols, pages 14-26, August 1992.

[7]C. Dovrolis and P. Ramanathan. A Case for Relaqtive Differentiated Services and the Proportional Differentiation Model. IEEE
Network, October 1999.

[8] L. Eggert and J. Heidemann. Application-Level Differentiated Services for Web Servers, World Wide Web Journal, 2(3):133-142,
August 1999

[9] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for Differentiated Services. RFC 2475, IETF,
December 1998.

[10] J. Almeida, M.Dabu, A. manikutty, and P.Cao. Providing Differentiated Levels of Service in Web content Hosting. In
Proceedings of the 1998 SIGMETRICS Workshop on Internet Server Performance, March 1998.

[11] M. Aron, D. Sanders, P. Druschel, W. Zwaenepoel. Scalable Content-aware Request Distribution in Cluster-based Network
Servers. In Proceedings of USENIX 2000 Annual Technical Conference, San Diego, CA, June 2000.

[12] A. Sahai, J. Ouyang, V. Machiraju. End-to-End Transaction Management for Composite Web Services. In proceedings of Third
International Workshop on Advanced Issues of E-Commerce and Web based Information Systems. San Jose, CA, June 2001 (to
appear).

[13]. ARM Working group. Application Response Measurement API. http://www.opengroup.org/onlinepubs/009619299/

http://www.bluestone.com/
http://java.sun.com/j2ee/download.html
http://www.bea.com/
http://www.opengroup.org/onlinepubs/009619299/

	1. Introduction
	3. Service level QoS
	3.1. Service level transactions
	3.1.1 Identifying transactions.
	3.1.2 Differentiating transactions

	3.2 QoS Management
	3.3 BizQoS Analytical Model
	3.3.1 Specification
	3.3.2 Measurement
	3.3.2.1 Raw metrics
	3.3.2.2 Aggregate metrics

	3.3.3 Control
	3.3.3.1 Transaction level guarantees
	3.3.3.1.1 Redistribution among existing nodes
	3.3.3.1.2 Adding new nodes
	3.3.3.1.3 Graceful degradation
	3.3.3.2 Dealing with failing nodes

	Conclusion
	References

