

Composite Filter Pattern

Sherif M. Yacoub
Publishing Systems and Solutions Laboratory
HP Laboratories Palo Alto
HPL-2001-131
May 30th , 2001*

E-mail: sherif_yacoub@hp.com

design patterns,
00 design,
filters, document
understanding

The design of many software systems often involves the manipulation and
processing of digital media or digital content. For instance, the ability to
deliver e-services through internet-based delivery channels requires that
printed material such as books or articles be converted into forms suitable
for electronic distribution. This type of processing often includes
preprocessing of the digital media, transformation from one format to
another, extraction of metadata information, segmentation of content, and in
many cases verification and validation of the resulting data. These types of
systems among others could be thought of as the integration, composition,
and cascade of processing modules or units. We call these processing
modules filters. Each filter manipulates input data and delivers output data
to other filters after executing a specific data processing function.

The design of such filtering mechanism is often implemented in systems
that manipulate large volume of digital media such as images or streams of
data. Filtering systems should be designed in a way that enables the
integration of different types of filters whether simple, cascade, or
composites. A design that is not limited to specific mechanisms for data
filtering is itself usable in multiple applications. We call this design the
Composite Filter pattern, which integrates the design of several well-known
design patterns: Strategy pattern [Gamma+95], Filter pattern [Grand98],
and Composite pattern [Gamma+95]. Whereas the integration of several
patterns does not necessarily result in a new pattern, we find the design
developed by integrating these patterns useful in the implementation of
filtering subsystems. This integration provides a robust versatile design
solution, which is often used in applications that require various types of
data filtering. The Composite Filter pattern provides the designer with
flexible ways for configuring and integrating filters.

* Internal Accession Date Only Approved for External Publication
To be presented at and published in EuroPLoP 2001, 4-8 July 2001, Irsee, Germany
 Copyright Hewlett-Packard Company 2001

 1

Composite Filter Pattern

Sherif M. Yacoub
Hewlett-Packard Labs

1501 Page Mill Rd., MS 1L-15
Palo Alto, CA 94304

sherif_yacoub@hp.com

INTRODUCTION
The design of many software systems often involves the manipulation and processing of digital media or

digital content1. For instance, the ability to deliver e-services through internet-based delivery channels

requires that printed material such as books or articles be converted into forms suitable for electronic

distribution. This type of processing often includes preprocessing of the digital media, transformation

from one format to another, extraction of metadata information, segmentation of content, and in many

cases verification and validation of the resulting data. These types of systems among others could be

thought of as the integration, composition, and cascade of processing modules or units. We call these

processing modules filters. Each filter manipulates input data and delivers output data to other filters

after executing a specific data processing function.

The design of such filtering mechanism is often implemented in systems that manipulate large volume of

digital media such as images or streams of data. Filtering systems should be designed in a way that

enables the integration of different types of filters whether simple, cascade, or composites. A design that

is not limited to specific mechanisms for data filtering is itself usable in multiple applications. We call

this design the Composite Filter pattern, which integrates the design of several well-known design

patterns: Strategy pattern [Gamma+95], Filter pattern [Grand98], and Composite pattern [Gamma+95].

Whereas the integration of several patterns does not necessarily result in a new pattern, we find the design

developed by integrating these patterns useful in the implementation of filtering subsystems. This

integration provides a robust versatile design solution, which is often used in applications that require

various types of data filtering. The Composite Filter pattern provides the designer with flexible ways for

configuring and integrating filters.

1 We use the terms digital media, digital content, and data simultaneously.

 2

THE COMPOSITE FILTER PATTERN

Context

You are designing a system that processes digital media, streams of data, or digital content.

Problem

A part of the overall structure of a digital media processing system is a filtering subsystem that

transforms/manipulates streams of digital media. The functionality of that subsystem is achieved by

integrating several processing modules (filters) together. The way you integrate and connect these filters

together controls the format of output (processed) digital media. There are several ways of combining

these filters. A flexible design structure is required for modeling the complex combination of these filters.

The problem is how do you design your filtering subsystem to support the complex hierarchical

combination of filters?

Forces

There are several ways that you can use to combine filters. The composition of filters should be robust

enough to allow addition of new filters and replacement of existing ones. It should also be flexible

enough to support different ways of combining filters together. For example, assume that your system is

processing the digital content of a document page. You are using an OCR filter to extract text from that

page. The design of the system should enable you to add a new OCR filter and integrate it in the

workflow without having to change other client objects in the system. Another example is the integration

of a filter in a pipeline of filters, for instance adding an OCR engine in sequence with another filter that

checks the format of the document page. The design should also enable you to use complex filters, which

are hierarchical wholes of several parts, for example a complex OCR filter that is composed of several

OCR engines and an arbitration mechanism to vote among results.

Such a design should allow you to: plug in and take out filters without affecting other parts of the system

(simplify maintenance process); select which filters to use dynamically (simplify customization); and

configure the workflow of filtering activities. You should be able to easily arrange the integration and

cascading of filter with minimal impact on the system design.

To satisfy these system requirements, consider the following solutions and tradeoffs:

• An obvious choice is to design the filtering subsystem by plugging these filters together in a

pipeline using the Pipes and Filters pattern [Buschmann+96]. Pipes and Filters provides a

system design as a cascade of processing steps implemented as filters connected by pipes. This

design gives support for pipes and filters as first class elements and gives explicit support for

 3

sequential calls of filters but it does not support the integration and composition of those filters in

hierarchical fashion.

• The Filter pattern [Grand98] can be used to implement sequential calls of filters. It gives explicit

support for sources and sinks and simplifies the sequential combination of filters. However, this

design does not support hierarchical combination of filters, filters that are composition of other

filters.

Solution

Use a Composite pattern [Gamma+95] to design the filtering system and provide explicit support for filter

pipelines.

To implement the design of the Composite Filter, you will need to design the filtering subsystem such

that the filtering mechanism is encapsulated behind an interface and use the design structure of the

Composite pattern to provide support for complex hierarchical and pipelined filters. The Composite

pattern provides support for combining filters in a hierarchical fashion. Composite will allow you to

model complex multilevel tree structure of filters but the explicit representation of pipelines is not visible

in its design. Therefore, you will add first-class support for the pipeline roles in the design structure of

Composite.

Structure

To implement a structure for the Composite Filter pattern solution, you will use a combination of several

design patterns: the Strategy pattern, the Composite pattern, the Filters and Pipes, and the Filter patterns.

Each of these patterns provides one particular design aspect; the integration of these design solution

provides the design structure of the Composite Filter pattern. Lets first discuss how each solves one

particular design aspect of the problem and then find out how to combine them into the Composite Filter

design2

The Strategy pattern [Gamma+95] provides a unique interface to the filtering subsystem. Using this

pattern, the filtering strategy is flexible and hidden from any calls and invocations form any other

application component. This design provides encapsulation of a family of filters and making them

interchangeable. The Strategy pattern provides the solution structure for this problem as illustrated in

Figure 1. The Strategy class is the interface for all possible filtering strategies. The Context class

plays the role of the client (the application entity using the filtering subsystem). This pattern by itself does

not provide a solution of how the filters are composed, cascaded, nor the order by which the filters are

called.

2 If you are familiar with the design of the Strategy, Composite, and Filter patterns you can jump to Figure 4
directly.

 4

Figure 1 Structure of the Strategy pattern

The Composite pattern [Gamam+95] provides a solution structure for filters that could be composed of

other simple filters. The design of the Composite pattern represents part-whole hierarchies of filters. It

also provides a mechanism to attach and detach filters. However, it does not provide control over the

order in which various simple filters (components) are called from within a composite filter. The

following figure illustrated the solution structure for the Composite filter. The Component class plays

the role of the interface for filters in the composition and declares interfaces for accessing and managing

child filters. The Leaf class can be used to represent simple filters. The Composite class defines

behavior for components having children. The Client class plays the role of the client (the application

entity using the filtering subsystem).

Figure 2 Structure for the Composite pattern

When the order by which the filters process the data is important, you can use the Filter and Pipe

[Buschmann+96] and the Filter [Grand98] patterns. The two patterns have similar designs in which they

cascade operation of filters and provide data sources and data sinks. The Pipes and Filter pattern is more

architectural in the sense that it treats pipes and filters as first-class design constructs. The Filter pattern

assumes that pipes are established as method calls to the next filters. For simplicity, lets consider the

Filter pattern only in the following discussion. In these particular filters the order in which the filters are

Context

ContextInterface()

Strategy

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

Leaf

Operation()

Component

Operation()
AddComponent(Component)
RemoveComponent(Component)

Composite

Operation()
AddComponent(Component)
RemoveComponent(Component)

nn

 Client

 5

cascaded define the filtering solution. For instance take the following design structure for the Filter

pattern (Figure 3). The AbstractFilter class is the interface for the Filter pattern. The

SimpleFilter class is the type of filters that does not do cascading i.e. it is the sink of the cascade

operation. The AbstractCascadeFilter is an interface for a cascading filter. During the creation of

a ConcreteCascadeFilter the next filter to be called is passed as an argument, hence, the client

controls the cascading of the filters according to the order required.

Figure 3 Structure of the Filter pattern

Now, in order to design a filtering subsystem that supports the complex hierarchal and pipelined

combination of filters, we will need to combine the above three patterns in one versatile design pattern.

The core solution structure is the Composite pattern because it provides support for hierarchy of filters. In

summary, the Strategy design provides the encapsulation aspect, the Filter pattern provides a design in

which order of filter calls is important, and finally the Composite pattern provides a design of filters,

which are composition of other filters. The combination of these three patterns together in one design (as

illustrated in Figure 4) can be achieved as follows:3

• The Context class of the Strategy pattern, the Client class of the Filter pattern, and the

Client class of the Composite pattern all represent the same thing; other parts of the system that

call the filtering subsystem, lets choose the name TheClient as the name of the class

representing these classes in the Composite Filter pattern as shown in Figure 4.

3 Legend: A word in italic, for example Strategy, is used to represent a pattern name. A word in courier font, for

example Context, is used to represent the name of pattern class. A word in courier and with round brackets, for

example Apply(), is used to represent the name of a method.

Simple Filter

Apply()

ConcreteCasc
ade Filter

Apply()

AbstractCascade Filter

Apply()
AbstractCascade Filter(Abstract Filter)

Abstract Filter

Apply()
1

1

1

1

NextFilter
 Client

 6

• The interface for the filtering subsystem can be represented by one class integrating the following

three interfaces: Strategy class in the Strategy pattern, the Component class in the

Composite pattern, and the AbstractFilter class in the Filter pattern. We call this class

AbstractFilter in the Composite Filter design structure (Figure 4). This interface contains a

method to apply the filter, which corresponds to the AlgorithmInterface() method in the

Strategy class of the Strategy pattern, the operation() method in the Component class of

the Composite pattern, and the Apply() method in the AbstracFilter class of the Filter

pattern. We will use the method named Apply() to represent these methods. It also contains the

methods to add and remove components defined in the Component class of the Composite

pattern.

• Simple filters are the ConcreteStrategy classes of the Strategy pattern, the Leaf class of

the Composite pattern, and the SimpleFilter class of the Filter pattern. We call this the

SimpleFilter in the final design.

• The AbstractCascadeFilter and the concreteCascadeFilter classes are used

identically as used in the Filter pattern.

• The Composite class is used identically as used in the Composite pattern.

As a result of this integration, the design of the Composite Filter pattern is illustrated in Figure 4. To use

this pattern in your design you can directly use the design in Figure 4, the pervious diagrams are used for

illustration and for explaining how the design of the Composite Filter pattern evolved from other patterns.

Figure 4 The design of Composite Filter pattern

Simple Filter

Apply()

ConcreteCascadeFilter1

Apply()

ConcreteCascade
Filter2

Apply()

TheClient
aFilter : AbstractFilter

AbstractCascade Filter

Apply()
AbstractCascade Filter(AbstractFilter)

CompositeFilter
childFilter[] : AbstractFilter

Apply()
AddFilter(aFilter : AbstractFilter)
RemoveFilter(aFilter : AbstractFilter

AbstractFilter

Apply()
AddFilter(aFilter : AbstractFilter)
RemoveFilter(aFilter : AbstractFilter) 1

1

1

1

+NextFilter

n n

+childFilters

 7

Solution Behavior

Having the design of the Composite Filter pattern in place makes it easy to plug and configure various

types of filters. The behavior of the filtering subsystem will depend on the type of filters hooked into the

filtering subsystem. The following discussion gives examples of such behaviors.

• Assume you are using a Composite filter in you filtering subsystem. The following shows an

example of the interaction between the various components of the filter.

Figure 5 Behavior of the Composite Filter pattern consisting of a composite filter

• Assume that you are using a set of cascaded filters. The following shows the behavior of a

cascade filer system.

Figure 6 Behavior of a Composite Filter pattern consisting of a set cascaded filters

AClient :
TheClient

ACascadedFilter1 :
AbstractCascadeFilter

ACascadedFilter2 :
AbstractCascadeFilter

aFilter :
SimpleFilter

Apply()

Apply()

Apply()

AClient :
TheClient

aComposite :
CompositeFilter

Filter1 :
SimpleFilter

Filter2 :
SimpleFilter

Filter3 :
SimpleFilter

Apply()

Apply()

Apply()

Apply()

 8

• Assume that the filtering subsystem is a cascade of filters and one of these filters is a composition

of simple filters. The following figure illustrated the interaction between various components in

such a filter.

Figure 7 Behavior of a Composite Filter consisting of composite and cascade filters.

You can drive as many sequence diagrams as you might want because with the integration of the three

patterns Strategy, Composite, and Filter, the design becomes flexible enough to easily accommodate

many filter combinations.

If you are implementing filters that handle diversity of data formats then it might be difficult to unify the

interface and make filters comply to a common filter interface. One solution that is often used in systems

that handle volumes of data is to keep the data stored in a blackboard system (could simply be directory

structure) and use pointers to the location of the data as parameters in the filter calls.

Consequences

• The design provides a common interface to the various filtering mechanisms. By virtue of using the

Strategy pattern as part of the Composite Filter design pattern, the filtering subsystem provides a

common interface to any filter design or any combination of filters that you will use in your system.

This design facilitates the integration of the filtering subsystem in the application design. It also

minimizes the impact of choosing a different filtering technique or changing any filter. Such changes

have no effect on the rest of the application.

• The design supports various filtering mechanisms. By virtue of using the Composite pattern, the

design of the Composite Filter pattern support types of filters that are composition of simple filters.

AClient::
TheClient aCascadedFilter :

AbstractCascadeFilter
aComposite :

ACompositeFilter
AFilter1 :

SimpleFilter
AFilter2:

SimpleFilter

Apply()
Apply()

Apply()

Apply()

 9

By virtue of using the Filter pattern, the design of the Composite Filter pattern supports types of

filters that are sequence of application of simple filters. Hence, the design of the Composite Filter

pattern can accommodate many filtering mechanisms.

• The design is easily configurable. Choosing between various filtering techniques is easy and has no

change-impact on the application since the filtering subsystem provides a common interface. Using

dynamic binding, the rest of the application design uses this interface and is not tightly related to the

type of filter attached or detached.

Liabilities

By using Composite Filter you loose explicit support for pipes in your design. Pipes are data transfer

units from one filter to another. Composite Filter does not provide support for pipes and assumes that

you are able to transfer data between filters as parameters in method invocations, or filters store data on a

shared location and pass their references to other filters.

Another possible limitation in the Composite Filter is the issue of scale; i.e., using diversity of filter types

in your system. All filters have to comply to a common interface. By increasing the number and types of

filters used, there is a possibility that you will not be able to force the filters to comply with a unique

interface. For instance, some filters may require input of type text while others may require input of type

image. Using references to locations where intermediate data is stored can be used as a viable solution.

Known Uses

Filter designs are used in many applications that manipulate digital media, streams of data, and digital

content. The design of the Composite Filter pattern was abstracted from a prototype for a system that

manipulates digital content produced from scanned materials (books and journals). The filters include

processing of scanned images, text and image segmentation, transformation from one format to another,

quality control, etc. The Composite Filter pattern is also useful in the design of compilers in which

parsing of text and many other filtering operations are required. The pattern is also useful in image

processing applications in which many image-processing algorithms (considered as filters) are applied to

raw image data.

Related Patterns

The Pipes and Filters architecture pattern [Buschmann+96] provides a structure for systems that process

a stream of data in sequential steps. Each processing step is encapsulated in a filter component. Data is

passed through pipes between adjacent filters. Recombining filters in the Pipes and Filters pattern allows

the designer to build family of related systems. The Pipes and Filters pattern has one advantage; it models

pipes as first class design elements. However, it does not provide solution for composing filters in

 10

hierarchical fashion. The Filter pattern [Grand98] is similar to the Pipes and Filter pattern; it has support

for sources, sinks, and cascaded filters. However, it does not provide support for pipes as first class design

constructs. If you are looking into organizing layers of composite filters, the Cascade [Foster+97] pattern

can be used. Cascade helps making the layers of Composite explicit and more visible in the design.

Variations

• You might want to use pipes as first class design constructs in the Composite Filter pattern by

adding a class type that handles data delivery from on filter to the other. This is useful

architecturally if the delivery channel is not as simple as method invocation of the next filter. For

instance, you might want to transfer data in a pipe from one location (machine) to another or add

error correction control over the transmitted data. However, for cases where pipes are simple

method invocation, the use of pipes adds additional classes to the design that will have trivial

responsibility of forwarding messages.

• You might want to control the order in which simple filters are called from within a composite

filter inside the composite class itself rather than using a separate class for cascading. In this case,

you need not use the classes of the Filter pattern. The disadvantage of such design is that the

essence of cascading is lost and will not be clear at the design level unless you provided it in the

documentation.

• You might also consider using variations of the Composite pattern itself. For instance if you want

the child filters to know about their parent you will need to add a relationship from the

AbstractFilter class to the Composite class as described by Mark [Grand98]

ACKNOWLEDGEMENT
I would like to thank Michael Kircher, who was my EuroPLoP shepherd, for his valuable comments and

feedback, which helped me identify the exact forces behind this pattern and sharpen various sections of

the patterns including the problem definition and the solution sections.

REFERENCES
[Gamma+95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, “Design Patterns:

Elements of Reusable Object-Oriented Software” Addison-Wesley 1995.

[Buschmann+96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, "Pattern-Oriented

Software Architecture - A Pattern System", Addison-Wesley, 1996.

[Grand98] Mark Grand, “Patterns in Java, Volume 1, A Catalog of Reusable Design Patterns Illustrated

with UML” John Wiley & Sons, 1998.

 11

[Foster+97] Ted Foster and Liping Zhao, “Cascade”, 4th Annual Conference on the Pattern Languages of

Programs, PLoP’97.

