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1 Introduction

An information hiding system consists of three ingredients - an encoder, an attack channel,
and a decoder (see Figure 1). The encoder receives a \message" to be embedded in a source
data sequence named the \covertext" sequence. It encodes the message in an encoding
sequence named the \stegotext" sequence, under a distortion constraint that restricts it to
be close to the original covertext sequence. The stegotext sequence is the input to an attack
channel which is a stationary and memoryless communication channel. The attack channel
output sequence is the input to the decoder which produces an estimate for the original
encoded message. We assume that the covertext sequence is not available at the decoder.
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Figure 1: Information hiding system: m - the message, s - the covertext sequence, x - the stegotext
sequence, y - the attack channel output sequence, m� - estimate message, d(x;y) < D - the
distortion constraint.

Information hiding systems are modeled in either one of the following two scenarios:

1. An information game between the encoder, who needs to copyright-protect an original
source sequence (the covertext) by embedding in it a signature (the message), and the
attacker that attempts to remove this signature. In this scenario, both the encoder and
the attacker are subjected to distortion constraints that prevent them from obscuring
the content of the original sequence. The value of the game is the highest information
rate that can reliably be decoded by a decoder which has no access to the original
covertext sequence and for every attack channel that satis�es the distortion constraint
[MO99, CL99].

2. A communication system where a message is to be embedded in a covertext sequence,
with the restriction that the resulting stegotext sequence is subject to a distortion
constraint. The stegotext sequence is subsequently being sent through a noisy commu-
nication channel that constitutes a non-malicious attack on the embedded message. By
"non-malicious attack channel" we mean that the channel is not intentionally designed
at removing the hidden information. The decoder decodes the embedded message
from observing the attack channel output without resorting to the original covertext
sequence [BCW00].

In this work, we adopt the second scenario and assume that the statistical properties of the
attack channel are known both to the encoder and the decoder. This communication system
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model is useful for information hiding scenarios where the attacks on the stegotext signal
are inicted by non-malicious signal processing operations, such as �ltering or compression.

Recently, the theoretical relationship between information hiding and channel coding with
side information has been investigated [CMM99, MO99, Che00, SEG00]. Furthermore, it was
shown that there exists a theoretical duality between information embedding and source cod-
ing with side information [BCW00, SEG00]. These relationships set the basis for information-
theoretic analysis of information hiding systems and allow the derivation of explicit formulas
for information hiding rates. In Section 2 of this report, we briey present the theoretical
results derived for information hiding systems in [MO99, Che00]. We note, however, that
some of these results relate to the mean quadratic distortion measure, both for the encoder
and for the attacker. This type of distortion measure has a great theoretical value and allows
employing standard information-theoretic techniques. However, it does not model correctly
some of the common applications of information hiding. As an example, under the mean
quadratic distortion measure, the encoder and the attacker may severely damage the visual
content of a covertext image by concentrating all the allowed distortion quota in a small re-
gion of its spatial or frequency domain representation. Standard models of the human visual
system imply that a maximum distortion measure is more adequate for image watermarking
applications [PZ98]. Motivated by this observation, we add to Section 2 some theoretical
results pertaining to information hiding systems with the maximum distortion measure.

The theoretical results, presented in Section 2, provide insight into the nature of the informa-
tion hiding problem. However, they do not provide practical means to calculate the capacity
or to propose coding schemes for real information hiding systems (an important exception
to this statement will be mentioned later). For this reason, we propose, in Section 3, a
theoretical and computational framework named Binary Modulation Schemes (BMS's) for
implementing eÆcient information hiding procedures. By limiting the scope to this class of
schemes, we sacri�ce optimality, to a certain extent, at the bene�t of simplicity. We present
computable expressions and bounds for the highest information embedding rate of a BMS
and are able to construct a fast maximum likelihood decoder. The BMS framework allows
for eÆcient implementations of common watermarking schemes such as those presented in
[CKLS96, CW99] as well as the implementation of a new proposed scheme named Scaled
Bin Encoding (SBE). This scheme is based on theoretical work of Costa [Cos83], where
a capacity-achieving random coding scheme is proposed for the additive Gaussian channel
with side information. The BMS implementation of the SBE scheme provides superior per-
formance when applied to additive Gaussian information hiding systems and DCT domain
image watermarking.

EÆcient implementation of a BMS for image watermarking requires a stable statistical model
for the covertext signal and the attack channel. The design parameters of the encoding and
decoding procedures should be optimized to the statistical model in order to achieve a high
information embedding rate and reliable decoding. In Section 4 we �rst describe a general
framework for image watermarking statistical models, and then present a procedure for BMS
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transform domain watermarking. At the end of this section we provide a detailed description
of a DCT domain statistical model.

In Section 5, we describe the implementations and compare the information embedding
rates of three BMSs for the additive Gaussian channel. Then, we present the details of
implementation and the results of SBE image watermarking in the DCT domain. Section 6
contains conclusions and discussion of future work.

2 Theoretical preliminaries

In this section of the report, we de�ne an information hiding system with a non-malicious
attack channel. We cite information-theoretic results pertaining to the related problem
of coding for a communication channel with side information, and describe the equivalent
results for information hiding systems with mean distortion constraint, established lately in
the literature. Similar and somewhat stronger results for information hiding systems with
distortion constraints based on maximum distortion measures, are then presented, while
their proofs are deferred to the appendices. This body of theoretical results provides the
foundation for the more practical analysis in the subsequent sections.

Throughout this report we use the following notation: Random variables are denoted by
upper case letters (e.g., Z), and their realizations are denoted by lower case letters (e.g., z).
Boldface letters denote sequences of length n (e.g., Z = (Z1; :::; Zn) is a random n-vector
and z = (z1; ::; zn) is a speci�c n-vector). Alphabets are denoted by caligraphic letters (e.g.
Z), the size of an alphabet is denoted by its absolute value (e.g. j Z j) and the n-fold
Cartesian product of these sets is denoted by the superscript n (e.g. Zn). The symbol
m denotes the message to be transmitted in the information hiding system, s denotes the
covertext sequence where the message is to be embedded, x denotes the encoder output -
the stegotext sequence, y denotes the attack channel output sequence, and m� denotes the
estimated message at the decoder. A Gaussian probability distribution with mean � and
variance V is denoted N (�; V ).

2.1 De�nition of Information Hiding System (IHS)

In the de�nition of IHS, we make the following assumptions:

1. The message m is a sample from a uniformly distributed random variableM that takes
values in the �nite alphabet M .

2. The covertext sequence s consists of n independent samples from a random variable S.
The alphabet of S may be �nite or continuous, and accordingly, its probability distri-
bution or probability density is denoted by pS(s). This probability distribution/density
is known to the encoder and the decoder, but the speci�c covertext sequence s is not
available to the decoder.

4



3. The statistical characterization of the attack channel is �xed and known to both the
encoder and the decoder.

An IHS consists of the following ingredients:

Constrained Encoder The encoder is a measurable mapping: fe :M�Sn ! X n, which is
subject to a distortion constraint. A distortion constraint is a pair (d;D) of a distortion
measure d : S � X ! R+ and a distortion level D � 0. The encoding mapping should
satisfy:

E[
1

n

nX
i=1

d(Si; fe(m;S)i)] � D;

where fe(m;S)i is the i-th coordinate of fe(m;S).

Blind Attack Channel A stationary and memoryless communication channel with input
variable X, output r.v. Y , and a transition probability matrix pY jX(yjx).

Decoder The decoder is a measurable mapping fd : Yn !M. The output of the decoder,
denoted m�, is an estimate of the message m.

An Encoding-decoding scheme for an IHS is an ordered quadruple (M; fe; fd; n) of a message
alphabet, an encoding mapping, a decoder and covertext sequence length. The rate of
an encoding-decoding scheme E = (M; fe; fd; n) is de�ned as R(E) = 1

n
log2(j M j): An

encoding-decoding scheme E de�nes a conditional probability distribution pYjM(yjm) on the
random sequence Y given a message m:

pYjM(yjm) =
X
s2Sn

Y
i

pY jX(yijfe(s; m)i)pS(si):

Based on the assumption that M is distributed uniformly, the average error probability of E
is de�ned as:

pe(E) = 1

j M j
X
m2M

Prffd(Y) 6= mjM = mg:

A number R > 0 is called an achievable rate if for evey � > 0 and all suÆciently large n,
there exists an encoding-decoding scheme E s.t. R(E) > R � � and pe(E) < �. The capacity
is de�ned as the supremum of all the achievable rates and is denoted by C.

A remark on distortion constraints is due at this point: The distortion constraint de�ned
above is a mean distortion constraint, since it is de�ned by the expected value of an average
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scalar distortion measure. A special case of the mean distortion constraint is the maximum
distortion constraint: maxi d(si; fe(m; s)i) � D a.s.. In order to see that this is indeed a
special case, one can observe that

max
i

d(si; xi) � D a:s:, E[
1

n

nX
i=1

1fd(si;xi)�Dg] = 0;

where 1A denotes the indicator of an event A. Since the maximum distortion constraint is
more adequate to certain information hiding application, as explained in the Introduction,
we refer speci�cally to this constraint by the notation dS, while the general mean distortion
constraint is denoted dM

2.2 Information Hiding Systems and Communication Channels
with Side information

In this subsection, we show that the information hiding problem with mean distortion con-
straint is intimately related to the problem of Channel coding with Side Information - (SIC).
The covertext sequence in the IHS plays a similar roll to the side information sequence in
the SIC. The SIC problem, depicted at Figure (2), was introduced by Shannon [Sha58], for
causal side information, and was later investigated in its general form, i.e. non-causal side
information, by many authors (e.g. [GP80]). This relationship enables the derivation of a
formula for the capacity of an information hiding problem, based on the analogous formula
available for SIC.

Channel
m*

DecoderEncoder

s

p(y|x,s)

x ym

Figure 2: Channel with side informatio: m - the message, s - the side information sequence, x -
the input sequence, y - the channel output sequence, m� - estimate message, p(yjx; s) - transition
probaility

De�nition 2.1 (A Channel with Side Information - SIC) A channel with side infor-
mation is a memoryless channel with input variable X and output random variable Y , whose
transition probability matrix fpY jXS(yjx; s)g, depends on a side information variable S, which
is distributed according to a p.d.f. pS(s).

In this section, we assume that the side information sequence s, consisting of independent
samples from the r.v. S, is known to the encoder but is not available to the decoder.
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The de�nition of encoding and decoding schemes, rate, average decoding error probability
and channel capacity for a SIC can be found in [GP80]. These de�nitions are essentially
similar to the de�nitions given in Section 2.1, except for the fact that the channel transition
probabilities are dependent on the state r.v. S and the absence of a distortion constraint at
the encoder.

The following theorem, by Gelfand and Pinsker, provides a formula for the capacity of a
channel with side information.

Theorem 2.1 [GP80] Let K denote a channel with side information with transition proba-
bility matrix fpY jXS(yjx; s)g. Denote by A the set of all triplets (U; S;X) of random variables
taking values in U � S � X respectively, where (U is any arbitrarily large �nite set) s.t.

X
u;x

pUSX(u; s; x) = pS(s):

For every A 2 A, the joint distribution of (U; S;X; Y ) is de�ned by:

pUSXY (u; s; x; y) = pUSX(u; s; x)pY jXS(yjx; s):

For every A 2 A de�ne R(A) = I(U ;Y ) � I(U ;S): Then, the capacity of K is given by
maxA2AR(A).

Remark: As explained in [GP80], it turns out that the capacity-achieving conditional p.d.f.
pUXjS(uxjs) = pU jS(ujs)pXjUS(xju; s) is such that pXjUS(xju; s) puts all its mass on one letter
x = f(u; s) for some deterministic function f .

The following theorem provides a formula for the capacity of an information hiding system
with a maximum distortion constraint. It's similarity to Theorem (2.1) is apparent and its
proof is omitted since it is identical in essence to the proof given in [GP80]. A similar theorem
for the more general case of IHS, with mean distortion constraint is proved in [BCW00].

Theorem 2.2 Let H be an information hiding system, with a maximum distortion con-
straint dS and and distortion level D. Denote by A the set of all triplets (U; S;X) of random
variables taking values in U � S � X (U is an arbitrarily large �nite set) s.t.

X
u;x

pUSX(u; s; x) = pS(s) and dS < D a:s::
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For every A 2 A, the joint distribution of (U; S;X; Y ) is de�ned by:

pUSXY (u; s; x; y) = pUSX(u; s; x)pY jX(yjx):

For every A 2 A de�ne the rate R(A) = I(U ;Y ) � I(U ;S). Then the capacity of the
information hiding system H is equal to maxA2AR(A).

The remark that follows Theorem 2.1 continues to be applicable here.

We show now that the information hiding problem with the maximum distortion constraint
is, in fact, a special case of the channel coding with side information problem. This is
evident from the next lemma in which we construct, for each information hiding problem,
an equivalent problem of channel coding with side information. The proof of the lemma is
given in Appendix A.

Lemma 2.3 Let H be an IHS with a maximum distortion constraint, dS, based on a distor-
tion measure d(x; s), and distortion level D. Denote by pY jX(yjx) the transition probability
matrix of its attack channel. De�ne a channel with side information K in the following way:
The input, output and side information alphabet sets denoted respectively - X ;Y;S, are iden-
tical to those of H. The p.d.f. pS(s) of the side information r.v. S is equal to the p.d.f of the
covertext r.v. of the information hiding system H. De�ne the transition probability matrix
of K as:

pY jXS(yjx; s) =
(
pY jX(yjx) for d(x; s) < D
~pY jS(yjs) for d(x; s) � D

(1)

where ~pY jS(yjs) = 1
N(s)

P
x2Xs

pY jX(yjx), Xs = fx j d(x; s) < Dg, N(s) =
P

y

P
x2Xs

pY jX(yjx).
Then, CH = CK.

The formula, provided by Theorems 2.1 and 2.2, for the capacity of a SIC and an IHS is ,in
general, very diÆcult to compute. However, there are certain cases where this computation
becomes simpler. These are the cases where the capacity of the system with the side infor-
mation unknown to the decoder is equal to the capacity of the same system but with the
side information available to the decoder.

We cite here a result due to Costa, showing that such an equality exists in the case of additive
Gaussian SIC, and then provide a related example of an IHS with maximum distortion
constraint.
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Theorem 2.4 [Cos83] Let K be a memoryless, stationary channel with side information,
whose output r.v. Y is given by: Y = X + S + Z. The side information sequence is a
realization of n i.i.d. r.v. , distributed N (0; Q), and is known only to the encoder. The noise
r.v. Z � N (0; N) is independent of S and X. The input alphabet is X = R1 and the input
sequence x is constrained by 1

n

Pn
i=1 x

2
i � P . Then the capacity of K is equal to 1

2
log2(1+

P
N
).

This theorem implies that the additive Gaussian SIC capacity is independent of Q and is
equal to the capacity of the additive Gaussian channel with signal to noise ratio P

N
. The

next corollary to this theorem implies that the same capacity equality holds for the additive
Gaussian IHS with quadratic mean distortion constraint.

Corollary 2.5 De�ne an IHS in the following way: The covertext sequence is a realization
of n i.i.d. r.v. distributed N (0; Q) . The mean distortion constraint is based on the quadratic
distortion measure: d(x; y) = (x � s)2. The attack channel is memoryless and stationary,
with output Y = X + Z, where Z � N (0; N) is independent of S and of X. Then, the
capacity of this IHS is equal to the capacity of the additive Gaussian channel with signal to
noise ratio of P

N
(without distortion constraint), i.e. 1

2
log2(1 +

P
N
).

The next theorem provides an example of an IHS with a maximum distortion constraint,
where the capacity of the system with the covertext signal known to the encoder and the
decoder is equal to the capacity of the system where it is known to the encoder only. The
proof of the theorem can be found in Appendix B.

Theorem 2.6 De�ne an IHS, denoted H, in the following way: The covertext sequence
is a realization of n i.i.d. r.v. taking values in f0; : : : ; Q� 1g, and the stegotext variable X
takes values in the same set. H is subject to a maximum distortion constraint dS(x; s) =
maxi j xi � si j mod(P ), where P is a positive integer that divides Q. The memoryless and
stationary attack channel has output Y = (X + Z)mod(Q), where the noise Z, independent
of S and of X, is distributed uniformly in f0; : : : ; Q� 1g. Then, the capacity of H is equal
to the capacity of a memoryless and stationary channel with input r.v. X that takes values
in f0; : : : ; P � 1g, and output r.v. Y = (X +Z)mod(P ), where the noise r.v. Z, independent
of X, is distributed uniformly in f0; : : : ; Q� 1g.

Theorem 2.4 is the basis for the scaled bin encoding scheme developed in Section 3.3. It is
applicable to image transform-domain watermarking since transform domain coeÆcient dis-
tributions are continuous and can be approximated in some important cases by the Gaussian
distribution - see Section 5 for more details. Theorem 2.6 can serve equivalently as a basis
for spatial domain image watermarking schemes, where the pixel gray level values are in the
set f0; : : : ; 255g, and the change in pixel values can stretch only for few gray levels. The
spatial domain based watermark approach was not developed in this research.
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3 Binary Modulation Schemes

In this section, we investigate a family of block encoding schemes for information hiding
applications, named Binary Modulation Schemes (BMSs). In restricting our attention to
this family, we ignore more general encoding schemes that may provide higher embedding
rates. However, we gain simplicity and we are able to construct an eÆcient maximum
likelihood decoding algorithm, without signi�cant loss of capacity. Using the notation of
Section 2, a BMS can be described as two-stage procedure:

1. The message m is encoded as a binary sequence b, using a binary error correcting code.

2. The sequence b is modulated, using a scalar binary modulating mapping f , in a stego-
text sequence: x = (f(b1; s1); :::; f(bn; sn)). The modulating mapping f : f0; 1g� S !
X satis�es the distortion constraint: d(s; f(b; s)) < D for every b 2 f0; 1g and s 2 S.

The advantage of the BMSs stems from the fact that they transform the complicated in-
formation hiding problem, into a simpler problem of binary channel coding. Indeed, upon
selecting a speci�c modulating mapping f the information hiding problem is reduced to the
coding problem of a communication channel Kf with a binary input variable B, an output
Y and a transition probability:

P f
Y jB(yjb) =

X
s2S

PS(s)PY jX(yjf(b; s)): (2)

The capacity of this channel is given by Cf = maxPB If(B; Y ) where the maximum is taken
over all distributions PB of the binary input variable B, and If denotes mutual information
induced by f . One can appreciate that this formula is much simpler than the one provided
by Theorem (2.2), although there is no guarantee that it achieves the same optimal value.
It follows that given an information hiding problem one can construct a suitable BMS by:

1. Selecting an modulating mapping f opt that maximizes, or nearly maximizes, the ca-
pacity Cf .

2. Choosing a binary error correcting code for the channel Kfopt.

We derive now a numerically computable expression for the capacity Cf . For the sake of

brevity, we denote P f
b (y) = P f

Y jB(yjB = b), and p = PB(0), q = 1� p = PB(1). The explicit

dependence of P f
b on the mapping f is given by equation (2). The mutual information of B

and Y is given by:

If(B; Y ) =
X
b;y

P f
BY (b; y) log

P f
BY (b; y)

P f
B(b)P

f
Y (y)

;
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where logarithm here and throughout the sequel are taken to the base 2. Substituting
P f
BY (b; y) = P f

B(b)P
f
Y jB(yjb), the mutual information can be written as:

If(B; Y ) =
X
y

pP f
0 (y)(logP

f
0 (y)� log(P f

Y (y))) + qP f
1 (y)(logP

f
1 (y)� log(P f

Y (y))):

Substituting P f
Y (y) = pP f

0 (y) + qP f
1 (y) and performing some algebraic manipulations one

obtains:

If(B; Y ) = H(p)� p
X
y

P f
0 (y) log

 
1 +

qP f
1 (y)

pP f
0 (y)

!
� q

X
y

P f
1 (y) log

 
1 +

pP f
0 (y)

qP f
1 (y)

!
; (3)

Using this expression for the mutual information, the capacity Cf = maxp If(B; Y ) can be
calculated numerically. In cases where an analytic approach is required, the following upper
and lower bounds, derived in Appendix C, are easier to compute:

1

8 ln 2
k P f

0 � P f
1 k2� Cf � Df

0D
f
1

Df
0 +Df

1

; (4)

where k � k is the Euclidean norm, Df
0 = D(P f

0 k P f
1 ) and Df

1 = D(P f
1 k P f

0 ). Formula
(3) and the bounds in (4) provide the computational means for comparing the theoretical
performance of di�erent modulating functions. See Appendix D for an example of such a
comparison for a certain type of BMSs.

3.1 Modulating mappings for BMS

A modulating mapping f(b; s) can be represented as a pair of modulating functions f0(s) =
f(0; s) and f1(s) = f(1; s). In designing such a pair of modulating functions, one should
take into account the following two (conicting) considerations:

1. Both f0 and f1 should satisfy the maximum distortion constraint d(fb(s); s) � D for
every b 2 f0; 1g and s 2 S.

2. For each value of s, the encoding values f0(s) and f1(s) should be as separated as
possible, in order to minimize the probability of decoding error.

Two types of modulating mappings can be derived from information hiding schemes sug-
gested in the literature:
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1. Cox et. al. [CKLS96] suggested a pair of skewed perturbation functions (PF's) such
as

fb(x) = x+ (�1)b� or fb(x) = x[1 + (�1)b�];

where � is a small constant. Other versions of perturbation functions were proposed
later, see for example [PBBC97].

2. Chen and Wornel [CW99] suggested a scheme named Dither Modulation (DM) that
utilizes a pair of skewed quantizers q0 and q1, e.g.

qb(s) = q(s+ db)� db;

where q(s) is a scalar quantizer and d0; d1 are constants. The quantizers are constructed
in such a way that the distortion constraint is satis�ed.

The main drawback of PF and DM schemes is that they do not explicitly use the knowledge
of the attack channel statistics. Hence they are not adaptive to the features of the noise
introduced to the stegotext signal. We will show, in section 5, that the DM scheme performs
well, as long as the ratio of noise power to allowed distortion level is low, but collapses
otherwise. The PF schemes are more stable but have inferior performance in the low noise
case. In Section 3.3, we propose a novel BMS named scaled bin encoding which is adaptive
to the statistics of the attack channel and is superior to both the DM and PF schemes. In
spite of the performance de�ciency of the PF schemes, when compared to the SBE scheme,
they are simpler to implement, and are more robust to inaccuracies of the statistical models.
Hence, we investigated few variants of Cox's original schemes, using the theoretical tools
developed at the beginning of Section 3. A short account of this investigation is available at
Appendix D.

Regardless the choice of the speci�c modulating functions f0 and f1 a BMS can be decoded
using a Maximum Likelihood (ML) decoder. The ML decoding has theoretical and practi-
cal advantages over the correlation decoding procedures previously suggested in [CKLS96,
PBBC97]. In the next section, we show, based on familiar properties of the Hadamard trans-
form [Lem79], that when the set of error correcting codewords constitute a linear space, a
ML decoding procedure can be eÆciently computed, using the Hadamard transform.

3.2 Maximum Likelihood Computations with Fast Hadamard Trans-
form

In this section, we exploit the fact that the Hadamard transform can be utilized for fast
calculations over linear spaces [Lem79]. We comment that the computational procedure
described in this section does not uses the stationarity of the covertext sequence and the
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attack channel. Following the ML paradigm, we write the probability of observing the output
sequence y assuming that the encoded message b has been transmitted as:

P (yjb) =
nY
i=1

Pi(yijbi): (5)

Hence, for a �xed output sequence y, a ML decoding procedure amounts to computing an
expression of the form:

b� = argmax
b2B

nY
i=1

Pi(yijbi); (6)

where B is the set of codewords. Note that Pi(yijbi) depends only on bi, yi, and on the
statistical model of the IHS. We show now that if the code is linear, namely the set B is
a linear subspace of f0; 1gn, then one can use the fast Hadamard transform in order to
eÆciently compute b�.

It is clear that in expression (6) the product over Pi(yijbi) can be replaced by a sum over
logPi(yijbi). Writing logPi(yijbi) = 1

2
(logPi(yij0) + logPi(yij1)) + (�1)bi 1

2
(logPi(yij0) �

logPi(yij1)) and noticing that the �rst expression on the right hand side does not depend
on the sequence b, one concludes that:

b� = argmax
b2B

nX
i=1

(�1)biwi; (7)

where wi =
1
2
(logPi(yij0)� logPi(yij1)).

Since B is a linear subspace, each sequence b 2 B can be written as a linear combination of
some basis vectors fejgmj=1, where m = dim(B). Using this basis, B can be represented as
the set of all linear combinations of its basis vectors: B = fPm

j=1 cje
jgc2f0;1gm . Substituting

this representation in (7) one obtains:

c� = arg max
c2f0;1gm

nX
i=1

(�1)
Pm

j=1
cje

j
iwi;

where c� is the representation of b� in the basis fejgmj=1. The sum over the index i

can be re-organized in such a way that indices with common fejigmj=1 con�guration are
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grouped together, yielding: argmaxc2f0;1gm
P
a2f0;1gm

P
fi:fej

i
gm
j=1

=ag(�1)acwi: Denoting �wa =P
fi:fej

i
gm
j=1

=agwi the previous expression can be written as:

c� = arg max
c2f0;1gm

(
X

a2f0;1gm
(�1)ac �wa): (8)

It is easily veri�ed that the expression
P
a2f0;1gm(�1)ac �wa is the m-order Hadamard trans-

form of the vector v 2 R2m de�ned by vi(a) = �wa, where i(a) is the integer whose binary
representation is a. The optimal sequence c� of (8) is found by computing the fast Hadamard
transform of the vector v, de�ned above, and then choosing the entry that yields the max-
imum value. The optimal sequence b� of the original ML expression is now obtained by
substituting c� in the expansion of b� which yields: b� =

Pm
j=1 c

�
je

j. Utilizing the fast
Hadamard transform reduces the complexity of the ML decoding to O((2m + n)m), while
direct calculation has an O((2m)2 + nm) complexity.

3.3 Scaled Bin Encoding

In this section, we propose a BMS, named Scaled Bin Encoding (SBE), which is adap-
tive to the statistics of the attack channel. This scheme is motivated by [Cos83], where a
capacity-achieving random coding scheme for the additive Gaussian side information chan-
nel is suggested. The SBE scheme, though provably optimal only for the additive Gaussian
information hiding channel with mean quadratic distortion constraint, yields superior re-
sults when applied to synthetic data and real imagery. Independently of our work [LM00],
a modi�ed version of the DM scheme named \distortion compensation", which has some
resemblance to the SBE scheme, was suggested in [Che00].

The additive Gaussian SIC, investigated in [Cos83], has output Y = X + S +Z, where S; Z
are independent r.v.'s, distributed according to N (0; Q) and N (0; N), respectively. The
input sequences, in this case, are subjected to the power constraint:

Pn
i=1 x

2
i � P . It is

shown in [Cos83] that the capacity of this SIC is: C = 1
2
log(1 + P

N
). The proof is based

on a random coding scheme where codewords are chosen as typical sequences corresponding
to a normal r.v. U = �S +W , where W � N (0; P ) is independent of S and the optimal
value of the parameter � is shown to be P

P+N
. The codewords are then equally distributed

into approximately 2nC bins s.t. each bin represents a message. Given a side information
sequence s and a message m, the corresponding codeword u(m; s) is chosen from the m
related bin in such a way that the sequence u(m; s)� �s is approximately orthogonal to s.
The sequence transmitted through the channel is x = u(m; s)� �s.

Consider now the additive Gaussian IHS with output r.v. Y = X+Z, where S; Z are de�ned
as above. We assume a mean square distortion constraint dm = E( 1

n

Pn
i=1(si � xi)

2) � P .
Note that the input variable X in the IHS case is equivalent to the sum X + S in the
SIC case. Therefore, a capacity-achieving coding scheme is derived from the SIC scheme
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described above by choosing a similar set of codewords. Choosing the codeword u(m; s) is
done as above, but the transmitted sequence in this case is x = u(m; s) + (1� �)s.

A deterministic version of this random coding scheme can be constructed by choosing a well
designed set of j M j vector-quantizers q(m; s), where q :M�Sn ! X n, and then setting
u(m; s) = q(m;�s). This type of scheme is named Scaled Bin Encoding (SBE). Given a
covertext sequence s and a message m the SBE scheme is de�ned by the stegotext sequence:

x = s + (q((m;�s)� �s); (9)

where � is the scaling parameter.

A BMS implementation of this SBE scheme is de�ned in the following way:

xi = si + (qbi(�si)� �si);

where (q0; q1) is a pair of scalar quantizers and b = (b1; : : : ; bn) is the binary encoding
sequence of the message m. The scalar quantizers are chosen according to the considerations
mentioned in the beginning of this section, e.g. a pair of shifted scalar quantizers. If all
the assumptions made in [Cos83] were satis�ed, the scaling parameter should be taken as
� = P

P+N
. However, certain independence assumptions may not be valid and hence a more

careful examination, presented in Appendix E, yields the corrected formula:

� =
P � M(M+N)

Q

P +N + M2

Q

; (10)

where M = E(S(X � S)). Note that for M = 0, equation (10) reduces to � = P
P+N

.

As mentioned in Section 3.2 the BMS implementation of the SBE information hiding scheme
can be decoded by an eÆcient decoder. To this end, the probabilities P (yjb) for the SBE
modulating mapping should be computed. These probabilities can be approximated by:

P (yjb) =
nY
i=1

P (yijbi) =
nY
i=1

X
u2Qbi

PU(u)PY jU(yju); (11)

where Qb is the set of representation levels that the quantizer qb admits. By substituting the
probabilities PU(u) and PY jU(yju), computed in Appendix E (see Equations (21) and (20)),
in (11) the following explicit expression for P (yjb) is obtained:

P (yjb) =
nY
i=1

X
u2Qbi

PN (0;VU )(u)PN (0;VT )(yi � u); (12)
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where, PN (0;V )(�) denotes the Gaussian probability density function with zero mean and
variance V . The parameters ; VU ; VT appearing in (12) are calculated in Appendix E:
 = Q+N+P

�Q+N+P
, VT = Q+P+N

�Q+P+N
N and VU = �2Q + P , see (19), (20), (21) respectively.

4 Application of BMS to Image Watermarking

The BMS information hiding schemes described in Section 3 can be applied to transform
domain image watermarking, where a selected subset of transform coeÆcients constitutes
the covertext sequence. The main burden of such an application is due to the fact that
the features of the transform domain coeÆcient statistics and the features of the noise are
not fully known. Furthermore, these features vary in the image transform domain and may
di�er from one image to another. Hence, an image watermarking implementation of BMS
requires the construction of a reliable statistical model, whose parameters are either stable
across a wide range of images or can be estimated from the image data. In this section,
we present a general framework for the required statistical model, general procedures for
encoding and decoding, and a statistical model for a BMS watermarking implementation in
the DCT domain.

A statistical model for a BMS watermarking application in a transform domain should include
the following ingredients:

1. A statistical model for the transform coeÆcients, that is, a probability law of the
covertext sequence.

2. A model for the human visual system sensitivity, from which the distortion measure
d(x; s) and the distortion level D are derived.

3. A statistical model of the noise, namely, a conditional probability distribution PY jX of
the attack channel.

4.1 A Procedure for BMS Watermarking

Based on a statistical model with the previously described ingredients, a BMS encoding and
decoding procedures can be described in the following way:

Encoding - The encoder, depicted in Figure 3, receives the covertext image i and the mes-
sage m and outputs the watermarked image i0. The watermarking encoding procedure
comprises the following stages:

1. Compute an invertible transform domain representation of the image (e.g. DCT,
FFT, DWT) denoted by t = F (i). Choose a subset of n transform coeÆcients to
be watermarked. This coeÆcient sequence is denoted s = (s1; : : : ; sn).
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2. Encode the message m as a sequence of n bits denoted b = (b1; : : : ; bn), using an
error correcting code that maps each block of l message bits into a block of k bits
where k > l. For the sake of simplicity we assume that k divides n.

3. Modulate the binary sequence b within the coeÆcient sequence s using the BMS
procedure described below and obtain the watermarked coeÆcients sequence x.
The BMS procedure is performed repeatedly for each block of k coeÆcients until
the sequence s is exhausted.

4. Replace the coeÆcient sequence s in the transformed image t with the water-
marked coeÆcient sequence x and denote the resulting watermarked transform
representation t0.

5. Invert the watermarked transform domain representation and obtain the water-
marked image i0 = F�1(t0).

Figure 3: Block diagram of the encoder

Binary Modulation Scheme procedure - The procedure receives a sequence b = (b1; : : : ; bk)
of k bits and a covertext sequence s = (s1; : : : ; sk) of k transform coeÆcients. The pro-
cedure constructs, for each coeÆcient si, a pair of SBE functions:

f bi (si) = si(1� �) + (qbi (�si));

where b 2 f0; 1g. The quantizers qbi and the parameter � are determined, as in Ap-
pendices E and F, based on estimations of the relevant statistical model parameters.
The index i indicates that these estimations may depend on the index of the coeÆ-
cient si. (In Section 4.2 we demonstrate an estimation technique for these parame-
ters, applicable to DCT coeÆcients). The procedure outputs the stagotext sequence
x = (f b11 (s1); : : : ; f

bn
n (sn)).

Decoding - The decoder, depicted in Figure 4, receives the attacked version of the image,
denoted i�, and estimates the encoded message using the following procedure:
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Figure 4: Block diagram of the decoder

1. Compute the same transform domain representation of the image i� and choose
the same subset of transform coeÆcients used in the encoding scheme. This subset
is denoted y = (y1; : : : ; yn).

2. Extract the binary sequence b� from y using the ML decoding procedure described
below. The ML decoding procedure is performed repeatedly for each block of k
coeÆcients until the sequence y is exhausted.

3. Decode the binary sequence b� and obtain the estimate message m�.

ML decoding procedure - The ML decoding procedure receives a coeÆcient sequence
y = (y1; : : : ; yk) and outputs the decoded bit sequence b� = (b�1; : : : ; b

�
k) using the

procedures described in Sections 3.3 and 3.2. For each possible codeword b (where b
ranges over the 2l possible codewords) the procedure computes the ML score:

Sc(b) = Pfyjbg =
kY
i=1

Pi(yijbi)

and chooses the code word b, that maximizes it, as the estimate sequence b�. The
probability Pi(yijbi) are computed according to Formula (12) in Section 3.3. The
parameters of the ML formula are derived in the same way described in the BMS
procedure above, except for the variance Qi which is estimated from the variance of yi
and the given statistical model. See Section 4.2 for an example of such an estimation
for DCT coeÆcients.

4.2 A Statistical Model for DCT Domain Image Watermarking

In this section, we describe a statistical model of a DCT domain watermarking which is
used in the implementation of the SBE scheme described in Section 5.2. We have chosen to
work with the DCT, since the distribution of the DCT coeÆcients can be approximated by
the Gaussian p.d.f.. However, the same techniques can be applied to other transforms such
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as the DFT or the DWT with appropriate statistical models. We start with the statistical
model for the DCT domain, outlined according to the framework detailed in the beginning
of Section 4.

Figure 5: DCT domain diagram

DCT coeÆcients statistical model Given a K�K gray-level image, its DCT transform
is a coeÆcient array of dimension K�K, as well. The DCT coeÆcients are indexed by
their spatial frequency indices (�x; �y), where �x is the horizontal index and �y is the
vertical index, both taking on values from 0 to K� 1. In the DCT domain, the upper-
left corner constitutes the lowest frequency (0; 0) and the lower-right corner constitute
the highest frequency (K�1; K�1). We approximate the DCT coeÆcients distribution
by a Gaussian distribution with zero mean and variance that depends on the radial
frequency �r =

q
�2x + �2y . For the sake of simplicity we substitute the non integer

radial frequencies indices with corresponding o�-diagonal indices in the DCT domain
and hence the frequency index � will actually denote an o�-diagonal index. Note that
the o�-diagonal indices ranges from 1 - the upper-left corner, through K - the main
diagonal, to 2K � 1 - the lower-right corner (see Figure (5) for graphical illustration).
The DCT coeÆcients, denoted ci, are ordered according to their frequency, in such
a way that coeÆcients which correspond to the same o�-diagonal have consecutive
indices. The set of coeÆcients corresponding to the o�-diagonal indexed � are denoted
S� and their number denoted j s� j. Their variance is estimated by:

Q� =
1

j s� j
X
ci2s�

c2i :

Sensitivity of the human visual system A simple model for the sensitivity of the hu-
man visual system assumes an absolute di�erence distortion measure in the frequency
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domain du(s; x) =j s � x j. However, the allowed distortion level may change with
the frequency, so that for a DCT coeÆcient of frequency �, the absolute di�erence
distortion measure is given by:

du(c; ~c) < �
q
Q�;

where � is a constant with value between 0:1 and 0:2 for the middle and high frequency
coeÆcients. For low frequency coeÆcients � is smaller, since the visual system is more
sensitive to those frequencies.

In a more accurate model (see e.g. [PZ98]), the distortion measure is the absolute
di�erence measure only for small coeÆcient values, but for larger values it is inversely
scaled by the absolute value of the coeÆcient. This "adaptive" distortion measure can
be described by:

da(s; x) =
j s� x j

max(j s j; Æ)

where the parameter Æ, as well as the distortion level, may depend on the frequency.

The statistical model of the noise We have measured the e�ect of standard image pro-
cessing operations, such as �ltering, scaling and compression on the statistical proper-
ties of the DCT coeÆcients. We have found out that the most complicated statistical
e�ect is generated by compression and that a statistical model for the distortion due
to compression in the DCT domain is general enough to describe also the other forms
of noise. We have, therefore, concentrated on developing a noise model for JPEG
compression. Denoting y� the set of coeÆcients of the JPEG-compressed image corre-
sponding to the set s� of the uncompressed image, we assumed a linear model:

y� = a(�)s� + Z�;

where a(�) is a deterministic coeÆcient, and Z�, is a zero-mean noise r.v., independent
of s�. The coeÆcients a(�) and the noise variances V ar(Z�) = N� were estimated, for
certain values of the JPEG quality parameter, using a linear regression procedure. A
typical example is presented in Figure 6. It turns out that for each JPEG quality level
parameter, there is a range of medium frequencies for which a(�) is close to 1, and
hence the corresponding coeÆcients are the preferred candidates for watermarking, as
explained below.

The above described statistical model suggests that only medium frequency coeÆcients
should be watermarked. The reason is the following: The number of low frequency coef-
�cients is relatively small and the human visual system is very sensitive to perturbation
therein, hence they hardly contribute to the overall capacity. The high frequency coeÆcients
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Figure 6: Statistical model of JPEG compression noise in the DCT domain. The blue graph de-
scribes the energy of the original signal (s�), the red graph describes the energy of the attenuated
signal (a(�)s�) and the green graph describes energy of the noise signal (z�).

are practically �ltered out by the JPEG compression and therefore, a watermark signal in-
troduced into these coeÆcients is sharply attenuated. In other words, the signal to noise
ratio for this coeÆcients is so small that they have only negligible contribution to the overall
capacity. Consequently, the medium frequency DCT coeÆcients, for which the factor a(�)
is close to one are the only candidates for watermarking. Note that the average power of
this set of coeÆcients is signi�cantly higher than the power of the JPEG compression noise
and the power of the allowed watermarking signal. Therefore, the decoder can estimate
the statistical parameters of the original image DCT coeÆcients from the statistics of the
watermarked and compressed image.

5 Experimental Results

The BMS information hiding technique has been tested on synthetic data and on real im-
agery data. In Section 5.1, we describe the experimental results for the additive Gaussian
information hiding system. Applications to DCT domain image watermarking are described
in Section 5.2.
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5.1 Additive Gaussian Information Hiding Channel

In these experiments, the random covertext sequences were generated from i.i.d. samples of a
Gaussian r.v. with zero mean and unit variance. The absolute di�erence distortion measure
with distortion level D = 0:1 was used for the distortion constraint. The following three
BMS information hiding schemes were tested:

SBE - Scaled Bin Encoding scheme: The SBE scheme, described in Section 3.3, was
implemented using a pair of uniform scalar quantizers (see Appendix F) and the pa-
rameter � calculated according to Formulas (16) in Appendix E.

DM - Dither Modulation scheme: The DM scheme, described in Section 3, was imple-
mented using the same pair of uniform scalar quantizers used for the SBE scheme.

PF - Perturbation Function scheme: The Perturbation Function scheme with modulat-
ing functions, described by the item denoted "PF4" in Appendix D, was implemented.

Table 1: Decoding error probabilities of the Gaussian IHS with low signal to noise ratio S/N=0.5
and capacity: 0.29 bits per channel use. (A '�' denotes a very high error probability.)

Method/Rate 7/64 8/128 9/256 10/512 11/1024 13/4096
SBE 0.18232 0.0216 0 0 0 0
DM * * * * * 0.69512
PF * * 0.046429 0.0005102 0 0

Table 2: Decoding error probabilities of the Gaussian IHS with medium signal to noise ratio
S/N=1.0 and capacity: 0.5 bits per channel use. (A '�' denotes a very high error probability.)

Method/Rate 6/32 7/64 8/128 9/256 10/512 11/1024
SBE 0.070968 0.0036426 0 0 0 0
DM * * * * 0.0015337 0
PF * * * 0.025255 0 0

Table 3: Decoding error probabilities of the Gaussian IHS with high signal to noise ratio S/N=2.0
and capacity: 0.79 bits per channel use. (A '�' denotes a very high error probability.)

Method/Rate 6/32 7/64 8/128 9/256 10/512
SBE 0.00063906 0 0 0 0
DM * 0.0023006 0 0 0
PF * * * 0.0005102 0

The performance of each information hiding scheme was tested under three levels of noise
power (variance). Random noise sequences were generated from i.i.d. samples of a Gaussian
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r.v. with zero-mean and variance: 0:2; 0:1; 0:05, corresponding to signal to noise ratios of
0:5; 1; 2 respectively. For each noise level, 103 binary random sequences, comprising of 103

bits each, where embedded using the appropriate BMS and subsequently decoded using the
fast ML procedure described in Section 3.2. The resulting error probabilities are summarized
in Tables 1, 2 and 3.

The speci�c values of information embedding rates appearing in these tables are due to the
ECC used in these tests. The error correcting codewords we have used were the rows of the
Hadamard matrices of varoius orders, together with their binary complementary sequences.
The rate - R - of the code is determined from the order - h - of the Hadamard matrix by the
relation: R = h+1

2h
, where in our experiments h = 5; : : : ; 12.

It is evident that the SCE scheme outperforms the DM and PF schemes at all signal to
noise (S/N) categories. The PF method is compatible only at low S/N ratios and the DM
method performs well at high S/N ratios but collapses at low S/N ratios. Notice also, that
the practical embedding rates (the rates where the measured error probability is 0) are far
below the theoretical rates which are speci�ed in the relevant tables.

5.2 DCT Domain Image Watermarking

In this section, we present the results of applying the BMS procedure described in Section
4.1, based on the statistical model presented in Section 4.2. The experiments consist of
embedding 100 randomly generated sequences of 103 bits, in each one of a 10 gray scale
images, using the SBE scheme. We used the encoding and decoding procedures described in
Section 4.1 with the Hadamard ECC described in Section 5.1. The attack channel consists
of 1 : 10 rate JPEG compression. The decoding error probabilities were measured for
various information embedding rates up to the rate that yields zero probability. The results
are summarized in Table 4, where one can observe that the SBE scheme performance are
slightly lower than its performance when applied to the additive Gaussian IHS with equal
signal to noise ratios. The DM and PF schemes performs poorly on the same gray scale
images, achieving zero error probability only at the rate of 11=1024 bits per channel use,
which is less than 1

3
of the equivalent SBE rate.

In these experiments, the modulating functions for the SBE scheme were based on a pair of
adaptive quantizers. These quantizers preserve the visual quality of the image better than
the uniform quantizers, and hence are preferable for image watermarking applications. The
exact de�nitions of these quantizers appear in Appendix F. The parameters of the adaptive
quantizers and other encoding and decoding parameters depends on the allowed distortion
level and on the distortion level to noise power ratio. In order to determine these factors,
we measured, for each image, the average power of the noise introduced to the selected set
of coeÆcients, by the 1 : 10 rate JPEG compression procedure. The allowed distortion
level of the watermark signals was set to this measured noise power, so that in average the
S=N ratio was equal to 1. For all the test images, this watermark signal power produced a
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Table 4: Decoding error probabilities for real imagery watermarking with signal to noise power
S/N=1.0 and capacity 0.5 bits per channel use.

Image/Rate 7/64 8/128 9/256
Bridge 0.023 0.0001 0
Flower1 0.0012 0 0
Flower2 0.001 0 0
Gondola 0.0048 0.0003 0
House 0.0077 0.0006 0
Lena 0.0006 0 0
Leopard 0.0049 0.0003 0
Ti�any 0.0012 0.0011 0
Tiger 0.0014 0.0004 0
Zebras 0.0088 0 0

watermarked image that was perceptually identical to the original image. We comment that
this parameter tuning strategy is applicable to a broad range of watermarking applications,
where the noise features are unknown, but one can expect a "worst case" noise level. The
features of the "worst case" noise can be measured and the watermarking scheme parameters
are tuned accordingly.

6 Discussion and Conclusion

We have presented the theoretical foundation for information hiding and its connection to
channel coding with side information. Based on this foundation, a theoretical result by
Costa, pertaining to the additive Gaussian channel with side information, inspired an infor-
mation hiding scheme which has superior performance in comparison to previously proposed
information hiding techniques.

We proposed the binary modulation schemes as an information hiding framework where
error correcting codes are combined with scalar modulation. This framework allows for an
easy application of the spread spectrum methods suggested by Cox at. al. [CKLS96] as
well as more sophisticated watermarking schemes such as the dither modulation scheme
suggested by Chen and Wornel [CW99] and the scaled bin encoding proposed in this work.
We developed a computable expression together with upper and lower bounds for the binary
modulation schemes information capacity. We showed that a binary modulation scheme can
be decoded with eÆcient maximum likelihood procedure, based on the Hadamard transform.

We proposed the scaled bin encoding scheme, which is based on [Cos83], where a capacity-
achieving random coding scheme, for the additive Gaussian side information channel, is
presented. The scaled bin encoding scheme is adaptive to the features of the expected
noise in the attack channel, and has lower decoding error probability at higher information
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embedding rates in comparison to previously proposed information hiding schemes.

We presented experimental results that compare binary modulation scheme implementations
of three watermarking methods: perturbation function, dither modulation and scaled bin
encoding. These approaches were tested for the additive Gaussian information hiding channel
with various signal to noise parameters. In all cases the scaled bin encoding out performs the
other techniques. On real imagery data we applied the scaled bin encoding scheme to medium
frequency DCT coeÆcients and found its information embedding capacity. To achieve best
results we tuned the parameters of the scaled bin encoding scheme to a statistical model of
JPEG compression and to an analysis of the human visual system sensitivity.

We propose the following directions in which this work can be further developed:

1. Searching for a technique that, given the parameters of the information hiding problem,
�nds the binary modulating mapping that maximizes the information hiding capacity.
This goal can be achieved by solving the optimization problem de�ned by equation (3).

2. Developing statistical models for image transform domains other than the DCT, e.g.
DWT, FFT, sub-images DCT etc. The goal is to �nd the transform that provides
robust statistical features and is less a�ected by common image processing operations.

7 Apendices

A Proof of Lemma 2.3

Proof: We show that for each encoding and decoding scheme for H there is a corresponding
scheme of K with the same rate and the same (or smaller) decoding error probability and
vice versa. Hence the capacities of these two channels are equal.

It is clear that every encoding and decoding scheme for H is an encoding and decoding
scheme for K with the same average decoding error probability. To prove the converse,
let E(M; F; ~F; n) be an encoding and decoding scheme for K . If there exist code words
F (m; s) that do not satisfy the constraint dS(F (m; s); s), then they are not acceptable for
an encoding and decoding scheme for H. We show, however, that if this is the case, then
these code words can be modi�ed in such a way that they do satisfy the constraint and the
resulting encoding and decoding scheme has a lower average error probability and the same
rate. The modi�ed scheme is an acceptable encoding and decoding scheme for H and thus
the lemma is proved.

Let m 2 M be a message encoded by the sequences F (m; s). Let Am = fy j ~F (y) = mg
be the decoding region of the message m. Assume that the sequence F (m; s) is unique for
the variable s i.e., F (m; s) 6= F (m; s0) for every s0 6= s. We will show that if there exists an
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index j s.t. d(sj; F (m; s)j) � D, then F (m; s)j can be replaced by another symbol � s.t.
d(sj; �) < D and the resulting code word has smaller decoding error probability.

We now compute the probability that an output sequence y of the channel K belongs to the
decoding region Am given that the input is the encoding sequence x = F (m; s):

Pfy 2 Amjxg = X
y2Am

nY
i=1

pY jXS(yijxi; si)

Collecting the terms of the form pY jXS(yjxj; sj) this probability can be written as:

Pfy 2 Amjxg = X
y2Y

�ypY jXS(yjxj; sj)

where �y =
P
y2Am;yj=y

Qn
i=1;i6=j pY jXS(yijxi; si) are nonnegative constants. We de�ne �y = 0,

when there is no y 2 Am with yj = y.

Substituting the de�nition of pY jXS from (1) and recalling that d(xj; sj) � D one gets:

Pfy 2 Amjxg =
X
y2Y

�y
1

N(sj)

X
x2Xsj

pY jX(yjx)

=
1

N(sj)

X
x2Xsj

X
y2Y

�ypY jX(yjx)

The last expression is an average over the set Xsj . Therefore, there exists a symbol � 2 Xsj

such that
P

y2Y �ypY jX(yj�) � 1
N(sj)

P
x2Xsj

P
y2Y �ypY jX(yjx).

It follows that by replacing the jth entry of the sequence x = F (m; s) with � the probability
of decoding error can only decrease. Applying the same procedure for all the entries in
F (m; s) s.t. d(si; F (m; s)i) � D produces a new codeword F 0(m; s) with smaller decoding
error probability. This new code word is acceptable as a code word for the channel H.

This argument proves the lemma for the case where for each message m the codewords
fF (m; s)g and fF (m; s0)g are distinct when s 6= s0. Consider now the case where for some
message m there are k side information sequences s1; : : : ; sk which are encoded by the same
codeword. We have showed, that for any codeword F (m; s), there is a procedure that pro-
duces a di�erent codeword F 0(m; s) which is acceptable for an encoding and decoding scheme
for H and has lower decoding error probability. Note that this procedure depends on the
sequence s, and hence even if one starts with the same codeword F (m; sl) for l = 1; : : : ; k,
the procedure may produce di�erent outputs. Hence, if one replaces the unique codeword,
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corresponding to all the k sequences s1; : : : ; sk, with the k (not necessarily distinct) output
codewords of this procedure, the new encoding and decoding scheme has the same rate and
has a smaller average probability of decoding error. 2

B Proof of Theorem 2.6

We prove a theorem on the capacity of a SIC from which theorem 2.6 is easily derived.

Theorem B.1 Let K be a memoryless communication channel with side information whose
output Y is de�ned by: Y = (X + S + Z)modQ. The side information S and the noise
Z are independent random variables taking values in f0; : : : ; Q � 1g where Q is a positive
integer. The input variable X takes values in f0; : : : ; P � 1g where P is a positive integers
that divides Q. If Z is distributed uniformly (with no restriction on the distribution of S)
then K has the same capacity as the communication channel C whose output is de�ned by
Y = (X + Z)modP , where the input variable X and the noise Z are de�ned as above.

Proof: To show that the two capacities are equal we start by proving that the capacity CC

of C is greater or equal to the capacity CK of K. Denote by K 0 the modi�cation of the
channel K, where the side information sequence s is made available to the decoder. It is
clear that CK0 � CK. In the channel K 0 the decoder, observes Y 0 = (X + Z)modQ and in
the channel C the decoder observes Y = (X + Z)modP . However, since Z is distributed
uniformly H(XjY 0) = H(XjY ) and hence the capacity of these two channels are equal. It
follows that CC = CK0 � CK.

To prove the converse, let EC = (M; fCe ; f
C
d ; n) be an encoding and decoding scheme for

C. We show that there exists an encoding and decoding scheme EK = (M; fKe ; f
K
d ; n)

for K with the same rate and the same average decoding error probability . De�ne the
modulating function fKe using the modulating function fCe in the following way: fKe (m; s) =
(fCe (m)� s)modP and de�ne the decoding function fKd (y) = fCd ((y)modP ). Since Q = �P ,
it follows that for every integer a, ((a)mod(Q))mod(P ) = (a)mod(P ). Therefore, for every
noise sequence z, the following equalities are satis�ed:

fKd (fKe (m; s) + s + z) = fCd ((((f
C
e (m)� s)modP + s + z)modQ)modP )

= fCd (((f
C
e (m)� s)modP + s + z)modP )

= fCd ((f
C
e (m) + z)modP )

It turns out that for each message m and each noise sequence z the decoded message m� of
the scheme EK is equal, regardless the side information sequence s to the decoded message
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of the scheme EC given the same message and noise sequence. Since the distribution of the
noise sequences is identical for both channels it follows that for each message m:

PK(f
K
d (y) 6= mjm) = PC(f

C
d (y) 6= mjm)

Therefore, both the rate and the decoding error probability of the encoding and decoding
schemes EK and EC are equal. 2

C Deriving Upper and Lower Bounds for BMS Chan-

nel Capacity

In this appendix, we use the notation and formulas introduced in Section 3. By di�erentiating
(3) with respect to p one receives:

@I(B; Y )

@p
=
X
y

P1(y) log(q + p
P0(y)

P1(y)
)�X

y

P0(y) log(p+ q
P1(y)

P0(y)
): (13)

At the point pm where (13) equals zero, the function I(B; Y ) achieves a maximum, since the

mutual information is a concave function of p. By substituting the condition @I(B;Y )
@p

= 0 in

(3), one �nds the maximal value of I(B; Y ) to be:

Imax(B; Y ) = �X
y

P0(y) log(pm + qm
P1(y)

P0(y)
) = �X

y

P1(y) log(qm + pm
P0(y)

P1(y)
):

De�ne two functions of the variable p:

I0(p) = �X
y

P0(y) log(p+ q
P1(y)

P0(y)
) I1(p) = �X

y

P1(y) log(q + p
P0(y)

P1(y)
):

and then according to the previous equality, Imax(B; Y ) = I0(pm) = I1(pm). Note that
I0(0) = D(P0jjP1), I0(1) = 0, I1(0) = 0, I1(1) = D(P1jjP0) and both I0(p) and I1(p) are con-

vex functions since @2I0(p)
@p2

=
P

y P0(y)
(P0(y)�P1(y))2

(pP0(y)+qP1(y))2
� 0 and @2I1(p)

@p2
=
P

y P1(y)
(P0(y)�P1(y))2

(pP0(y)+qP1(y))2
�

0.

In the (I; p) plane the curves de�ned by I0(p) and I1(p) intersect at (I
max; pm). From the

convexity of I0(p) and I1(p) it follows that this point lies strictly below the intersection point
(I 0; pa) of the lines I(p) = pD(P1 k P0) and I(p) = �pD(P0 k P1) + D(P0 k P1). Direct
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calculation shows that I 0 = D0D1

D0+D1

, where D0 = D(P0 k P1) and D1 = D(P1 k P0). Hence,
an upper bound for Imax is given by:

Imax(B; Y ) � D0D1

D0 +D1
:

To derive a lower bound for Imax(B; Y ) we use the inequality D(P0 k P1) � 1
2 ln 2

k P0�P1 k2
[CT91]. From the equality Imax(B; Y ) = D(P0 k pP0 + qP1), it follows that:

Imax(B; Y ) � q2m
2 ln 2

k P0 � P1 k2 :

Similarly Imax(B; Y ) = D(P1 k pP0 + qP1) implies that:

Imax(B; Y ) � p2m
2 ln 2

k P0 � P1 k2 :

Combining the two inequalities yields:

Imax(B; Y ) � 1

8 ln 2
k P0 � P1 k2 :

D Investigating the Perturbation Function BMS

Perturbation Functions (PF's) encoding schemes have the general formula:

fb(x) = x+ (�1)bg(x)Æ;

where the coeÆcient Æ and the function g(x) are chosen in accordance with the distortion
constraint and the attack channel statistics. Due to their simplicity and robustness to
statistical instability, the PF encoding schemes are an important subclass of BMS. Using
Formula (3) for the capacity Cf and Formula (4) for the upper bound, developed at Section
3, the theoretical performance of few PF's encoding schemes were investigated in the context
of the additive Gaussian IHS.

the following PF encoding schemes were compared:

1. PF1: X = S + (�1)bÆstd(S)
2. PF2: X = S(1 + (�1)bÆ)
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3. PF3: X = S(1 + (�1)bÆ) + (�1)bÆstd(S)
4. PF4: X = S + (�1)bÆ j S j +(�1)bÆstd(S)

Where std(S) stands for the standard deviation of the r.v. S. The results of these compar-
isons are presented in Figures 7 and 8, where S � N (0; 1) and Z � N (0; 0:01). One can
observe that the upper bounds are not tight, however, they preserve the relative performance
order of the PF schemes. Scheme PF4 above, that has the best theoretical performance, was
used in the experimental tests described at Section 5.
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Figure 7: A diagram of the capacity (in bits per channel use), as a function of the parameter Æ, for
perturbation function BMS: PF1 - blue, PF2 - green, PF3 - black, PF4 - red.

E Deriving Sub-optimal Values for the SBE Scheme

Parameters

Using the notation of Section 3.3, we recall that the codewords of an SBE scheme are typical
sequences of the r.v. U = �S +W . We assume that these codewords, when considered as
random samples u(M;S) (u is the modulating mapping of the SBE scheme), can be well
approximated by n i.i.d. realizations of U . Such an approximation will be faithful, in cases
where the allowed distortion level P and the noise power N are signi�cantly smaller than
the covertext signal power Q. This situation is typical to certain transform domain image
watermarking schemes where P

Q
�= N

Q
� 1.

To decode the binary message b from the channel output one needs to estimate the encoding
sequence u from the output sequence y. As a basis for this estimation we consider a linear
dependence U = �Y +V , where V is a Gaussian r.v. with zero mean, and the constant � has
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Figure 8: A diagram of the upper bounds (in bits per channel use), as a function of the parameter
Æ, for perturbation function BMS: PF1 - blue, PF2 - green, PF3 - black, PF4 - red.

the value that minimizes V ar(V ). Such linear dependence exists in the additive Gaussian
IHS, where U and Y are jointly Gaussian. We look now for the values of �; � that minimize
V ar(U � �Y ) and hence produce the best estimation in the mean quadratic distance sense.
We need to solve the following optimization problem:

�opt = argmin
�

E(�(�)Y � U(�))2: (14)

To simplify the computation we assume that the noise variable Z is not correlated with
S and with W , although the derivation can be extended to the case where E(ZS) and
E(ZW ) are non-zero. As a �rst step we determine the optimal value of � for �xed �. Direct

di�erentiation yields: �opt = E(Y U)
E(Y 2)

, and by substituting this expression in (14), one �nds

that solving (14) is equivalent to solving:

�opt = argmin
�
(E(Y 2)E(U2)� E2(Y U)): (15)

Substituting Y = S +W + Z and U = �S +W in (15) the optimization problem reads:

�opt = argmin
�
(�2(QP +QN �M2) + �(2MN + 2M2 � 2QP ) + PQ+ PN �M2)

Di�erentiating with respect to � yields the optimal value:

� =
P � M(M+N)

Q

P +N + M2

Q

: (16)
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Returning to �opt, we substitute Y = S +W + Z and U = �S +W in �opt = E(Y U)
E(Y 2)

and
obtain:

�opt =
�Q+ P +M(1 + �)

Q + P +N + 2M
: (17)

Substituting the optimal value of � from (16) into (17) gives the explicit expression:

� =
P

P +N
+M

N

(P +N)(Q + P +N + 2M)
: (18)

Note that for negligible M one can write �opt �= �opt �= P
P+N

.

In order to perform aML decoding, one should compute the conditional probability PY jUfyjug
and the apriory probability PU(u). For computing the �rst probability, we use again a linear
dependence of the form: Y = (�)U + T , where T is a Gaussian r.v. independent of U and
(�) is a parameter that minimizes the variance of T , denoted VT . Substituting the optimal
value � = P

P+N
, and using the same technique as before, we arrive at:

opt =
Q +N + P

�optQ +N + P
and VT =

Q+ P +N

�optQ+ P +N
N: (19)

It follows that

Pfyjug = PN (0;VT )(y � optu); (20)

where PN (0;VT )(�) denotes the Gaussain probability density function with zero mean and
variance VT . For the second probability we substitute � = P

P+N
in the formula U = �S+W

and obtain:

PU(u) = PN (0;VU )(u); (21)

where VU = (�opt)2Q + P is the variance of U .

F Uniform and Adaptive Quantizers

In this appendix, we present the uniform and adaptive quantizers referred to in Section 5.
It is evident that these quantizers are related to the absolute di�erence and the adaptive
distortion measures described in Section 4.2. As the adaptive distortion measure is a better
model for the human visual system sensitivity, the corresponding adaptive quantizers has
advantage over the uniform quantizer in image watermarking applications.
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Uniform quantizers The pair of uniform quantizers that constitute the modulating map-
ping are de�ned by the following two formulas:

q0(s) = 2D round(
s

2D
� 1

4
) +

D

2

and

q1(s) = 2D round(
s

2D
+

1

4
)� D

2
;

where round(�) returns the closest integer value to its real input and D is a parameter.
The uniform quantizers are designed to satisfy the absolute di�erence distortion con-
straint with distortion level D. One should note that the uniform quantizers satisfy
the mean quadratic distortion constraint for distortion level that equal D2.

Adaptive quantizers The pair of adaptive quantizers are de�ned by their set of represen-
tation levels. The modulating mapping maps each input value to the closest represen-
tation level of the selected quantizer. Although the covertext r.v. may have an in�nite
support, e.g. a Gaussian r.v., it is enough to consider �nite quantization sets since the
probability of observing very large values is negligible. We de�ne two sets of positive
representation levels by:

qp(i) =
Æ

�
[(1� �

4
)(1 + �)i � 1]

and

qn(i) =
Æ

�
[(1 +

�

4
)(1 + �)i � 1]:

The representation levels of the adaptive quantizer pair are de�ned as: q0 = [�inv(qp);qn]
and q1 = [�inv(qn);qp], where inv(v) denotes the vector v in reverse order. The range
of the index i is determined so that the two sets cover the range of the r.v. S up to
negligible probability. The parameters � and Æ are designed so that the modulating
mapping satis�es the adaptive distortion constraint, i.e. the representation levels are
dense near zero and become more sparse as their absolute value grows. We found that
by setting � =

q
P
Q

and Æ = 3:3
p
P the quantizers satisfy also the mean quadratic

distortion constraint with distortion level P .
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