

Cross-Partition Protocols in a Distributed
File Service

Zheng Zhang, Christos Karamanolis, Mallik Mahalingam,
Daniel Muntz
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-129
May 23rd , 2001*

distributed file
system,
distributed
namespace, fault
tolerance,
Storage Area
Network (SAN)

A number of ongoing research projects follow a partition-based
approach in order to achieve high scalability for access to the
distributed storage service. These systems maintain a
namespace that references objects distributed across multiple
locations in the system. Typically, atomic commitment
protocols (e.g., 2-phase commit) are used for updating the
namespace, in order to guarantee its consistency even in the
presence of failures. Atomic commitment protocols are known to
impose a high overhead to failure-free execution. In addition,
they use conservative recovery processes and may considerably
restrict the concurrency of overlapping operations in the
system.

This report proposes a set of new protocols for the
implementation of the fundamental operations in a distributed
namespace. The protocols use intention logs to impose a
minimal overhead to failure-free execution. They are robust
against both communication and host failures, and they use
aggressive recovery procedures to re-execute incomplete
operations. The proposed protocols are compared with their
2-phase commit counterparts and are shown to be strictly
better in all critical performance factors: communication
round-trips, synchronous I/O, operation concurrency.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

2

1. INTRODUCTION... 3

2. GENERAL ASSUMPTIONS ... 4

2.1 SYSTEM MODEL AND FAILURE ASSUMPTIONS .. 4
2.2 CLIENT-SIDE FAILURE SEMANTICS ... 4

3. PROBLEM ABSTRACTION .. 5

3.1 THE TWO BASIC OPERATIONS ... 5
3.2 REDUCING THE PROBLEMS DUE TO FAILURES TO “ORPHAN” OBJECTS........................... 5

4. PROTOCOLS.. 6

4.1 DATA STRUCTURE .. 6
4.2 FAILURE-FREE PROTOCOLS .. 6

4.2.1 Link... 7
4.2.2 Unlink... 8

4.3 RECOVERY PROTOCOLS.. 9
4.3.1 General properties of recovery protocols.. 9
4.3.2 Recovery protocols for link.. 10
4.3.3 Recovery protocols for unlink.. 10

4.4 MULTI-OPERATION CONFLICTS .. 11
4.4.1 General properties ... 11
4.4.2 Link/link conflicts... 11
4.4.3 Unlink/unlink conflicts ... 12
4.4.4 Link/Unlink conflicts.. 12

4.5 DIFFS RENAME PROTOCOL AND RECOVERY .. 13
4.6 DIFFS RELINK PROTOCOL AND RECOVERY.. 14

5. IMPLEMENTATION AND OPTIMIZATIONS... 15

5.1 OPTIMIZING THE CREATE OPERATION IN DIFFS .. 15
5.2 OPTIMIZING THE LINK AND UNLINK PRIMITIVES .. 15

5.2.1 Intention Log.. 15
5.2.2 Back pointers.. 16

6. COMPARISON WITH OTHER APPROACHES... 17

6.1 2-PHASE-COMMIT ... 17

7. RELATED WORK AND CONCLUSIONS.. 19

8. REFERENCES.. 20

3

1. Introduction
DiFFS is a distributed file service architecture designed for storage area networks [1]. DiFFS
achieves high scalability by following a partitioning approach to sharing storage resources. The
architecture is robust against failures and unfavorable access patterns. It is independent of the
physical file system(s) used for the placement of data; multiple file systems can co-exist in a
DiFFS system.

Much of DiFFS scalability is attributed to its unique partitioning approach. Each partition is con-
trolled by one partition server, which coordinates non-idempotent operations that may affect the
state of the resources (allocate or de-allocate blocks, for example) of the SAN partition under its
responsibility. Other operations can bypass the partition server and directly access the SAN stor-
age (Figure 1-a)

PS1

Partition 1

PS2

Partition 2

PSN

Partition N

C1 CM clients

SAN

PS1

Partition 1

PSN

Partition N

inode(“etc”) inode(“passwd”)
inode# 0123 inode# 1001

dentry
{ name: “passwd”
 inode#: 1001
 part.ID: 1}

…
christos:*:101:10:…
…

(a) (b)

Figure 1: (a) DiFFS overall architecture and (b) Cross-partition reference in DiFFS
namespace

DiFFS partitions work together to present one uniform filesystem space to the end clients. As
such, directories may reside in arbitrary partitions, and a file’s parent directory can be on a dif-
ferent partition. Directories are stitched together with cross-partition references. In essence, the
traditional filesystem inode information is augmented with the partition ID of the pointed project.
The challenge is then how to make sure this global namespace is kept valid even in presence of
failures, and how to do this in the most efficient way.

While the intention of this report is to investigate protocols for cross-partition operations in the
context of DiFFS, the problem here is generic. It can be broadly stated as: how to maintain
global namespace consistency over a collection of distributed objects. Changes to the global
namespace take one of two forms:

• Insertion: a new reference, pointing to a possibly newly created object, is inserted into
the namespace. File system operations such as Create, Link, Rename (“to” directory) be-
long to this category.

4

• Removal: a reference pointing to an already existed object is removed from the name-
space. Remove and Rename (“from” directory) are primary examples of these operations.
If all references to an object are removed, the object itself is garbage collected.

The remaining of the paper is organized as follows: Section 2 covers general assumptions includ-
ing failure model and client-side semantic guarantees. Section 3 discusses how we reduce the
problem to “orphan” objects and never corrupt the global namespace. Section 4 is the main body
of the paper; it describes the protocol of each DiFFS namespace operation in detail as well as the
recovery procedures. Section 5 discusses issues for the efficient implementation of the. Section 6
compares our algorithms with an approach using the conventional 2-phase commitment protocol
and shows why and how our algorithms are indeed more lightweight. Lastly, we conclude in Sec-
tion 7 by discussing related work in this area.

2. General assumptions

2.1 System model and failure assumptions
We assume the following failure model:

• Hosts fail by crashing; they do not exhibit malicious (Byzantine) behavior.
• Messages may be not sent or not delivered due to host crashes. Also, messages may be

lost due to network partitioning. On recovery from any such failure, the communication
session between two hosts is re-established. Messages delivered during the same com-
munication session between two hosts are always delivered in order. This condition is
guaranteed by using TCP as the communication protocol.

• Consistency of the local object-store is guaranteed, despite failures. This property is en-
sured by mechanisms of the physical file system, such as journaling [2], soft updates [3]
or recovery procedures (fsck) [4].

• Log entries are written synchronously and atomically.

2.2 Client-side failure semantics
It is important to discuss the failure semantics presented to the clients. The idea is to provide no
stronger and no weaker semantics than those of traditional client-server models (e.g., NFS [5] or
CIFS [6]). The client application can receive an error, but the operation may or may not have
been carried out. For example, when the application creates a new file and receives an error, it
may find later that the file has actually been created in the system. The requirement is for the op-
erations to satisfy “at-most-once” semantics.

These semantics are consistent with what traditional client-server protocols offer. For example,
in NFS, the server can crash before the RPC request is received, or network partition prevents the
request to arrive at the server at the first place. In this scenario, the operation will not be carried
out at the server. On the other hand, even when the operation is carried out, the server may crash
before the RPC response is sent, or network partitioning may prevent the response to be deliv-
ered to the client. In this case, the operation has already been performed on the server, but the
application running on the client gets an error nonetheless. If any failures occur, we simply do
not respond back to the client. This is equivalent to failure of the client-server communication.

5

3. Problem abstraction

3.1 The two basic operations
DiFFS has the freedom to implement its own namespace operations – utilize a standard set such
as NFS is an option rather than a requirement. Also, all we care about are non-idempotent opera-
tions. From DiFFS namespace point of view, the two basic primitives are link, which inserts a
reference to an object into the namespace and unlink, which removes a reference to an object.
The rest of distributed file system operations can be mapped to these two primitives, as shown in
the following table:

Table 1: De-composition of distributed file system operations.

NFS operations DiFFS primitives
Create/mkdir Obtain a free file + Link
Link Link
Remove/rmdir Unlink
Rename Link (to_dir) + unlink(from_dir)
Migration support Relink = unlink(old_obj) + link (new_obj)

Each partition server owns a pool of pre-allocated, “free” files. Thus, the DiFFS create operation
is implemented by 1) obtaining a file from the pool of the target partition and 2) performing a
link primitive in the namespace. Details on optimizations of the create operation are discussed in
the implementation section (Section 5).

3.2 Reducing the problems due to failures to “orphan” objects
Existing systems that follow a partition-based approach suggest the use of transactional seman-
tics [7, 8] (for example 2-phase-commit protocol) for the execution of such operations [9-11].
These protocols are expensive and affect the performance of operations in the failure-free case
[12, 13] (for a more detailed comparison, see Section 6). A more lightweight approach is used in
DiFFS. By imposing a strict order on the execution of such operations, we can guarantee that all
possible inconsistencies are reduced to an instance of “orphan” objects. An orphan is an object
that physically exists in some partition but is not referenced from any point in the DiFFS name-
space.

The required execution order for cross-partition operations can be abstracted to the following
three steps:

1. Remove reference from the namespace, if necessary.

2. Perform changes of the target object, if any.

3. Insert reference in the namespace, if necessary.

So, the problem of namespace integrity is reduced to garbage collection of orphan files:

• In the case of link: the reference is added to the namespace at the last stage of the execu-
tion. Thus, in the worst case, the target object may not be referenced by any point in the
namespace.

6

• In the case of unlink: removing the reference from the namespace is the very first stage
of the execution. Again, in the worst case, the target object may not be referenced by any
point in the namespace.

4. Protocols

4.1 Data Structures
There are two fundamental data structures in the DiFFS namespace organization and they com-
plement each other:

1. Directory:

Each directory consists of multiple directory entries. The directory entry contains essen-
tially the reference to an object in the system. These references are typically used by
lookup procedures to locate the object in the file system. Specifically, in DiFFS, the di-
rectory entry includes the name, partition ID (PID), inode# as well as a monotonically
increasing number (trans#), the transaction number of the operation that created the di-
rectory entry.

2. Back-pointers:

In traditional file systems, such as Ext2 of Linux [4], system objects (e.g. files and direc-
tories) are assigned a property known as “link-count”. This property is an integer repre-
senting the number of hard-links that reference the object. However, for a distributed
filesystem such as DiFFS, link-count is not a sufficient property to maintain information
regarding the references to an object. The reason is that the integrity of the link-count
may be compromised in the presence of multiple concurrent operations that involve the
same object and in the presence of failure where partially completed operations are re-
executed. To address these problems, we extend the notion of link-count by using “back-
pointers”. The back-pointers associated to an object reference the directories that contain
hard-links to the object. They are attributes associated with each object, if it has been
linked into the DiFFS namespace. Back pointer contains the PID of the parent inode, the
parent inode #, the name under which it appears in the directory, and the trans# of the
link operation that inserts this object into the namespace.

In fact, the back pointer resembles a directory entry—it contains a reference to an object
in the system. The difference is that in the case of back pointer, this is a “parent” direc-
tory of the object the pointer is associated to. The uniqueness of the back pointer content
is what makes the operations idempotent, something that plain link-count is unable to
guarantee. The use of back-pointers will become clear in the section where recovery and
conflict resolution protocols are discussed.

4.2 Failure-free protocols
This section describes the protocols for failure-free execution of the link and unlink operations,
in DiFFS. The following is an index of the notations used in the diagrams:

• [act]: an atomic operation, either done or not done.

7

• ->: cross-partition message (or flow of control).

• Xn: denotes an error position. This error can affect anything after the immediately pro-
ceeding atomic action.

• Log+/-: log record insertion /deletion. The log record contains sufficient information to
replay a given operation.

• D+/-: addition/deletion of a directory entry.

• Bptr+/-: back pointer addition/deletion.

4.2.1 Link
The first fundamental operation in the DiFFS namespace is link, which refers to insertion to the
namespace. The algorithm for the execution of link is shown in Figure 2.

Message diagram:

Namespace

site
Object

site

[Log+]

[Log-]

[D+]

[Bptr+]
X1

X2

X3

add bptr

ACK

Link:

ink OK

Namespace site:

Link {
 if D does not exist then
 Log+;
 Execute Link main body;
 else
 Reply to client (error);
}
Link execute {
 Send “add bptr”+ “info” to Obj site;
 Wait until reply received or Timeout;
 if reply=ACK then
 if D does not exist then
 D+;
 Log-;
 reply to client (success);
 else /* ELINK(1) */
 unlink execute; //as in unlink op
 Log-;
 reply to client (error);
 else if reply=NACK then
 Log-;
 reply to client (error);
}

Object site:

Add back-pointer {
 if back-pointer exists
 (compare info vs. back-poiner) then
 if same transaction# then /* ELINK(2) */
 send ACK back to namespace;
 else /* ELINK(3) */
 send NACK back to namespace site;
 else
 Bptr+;
 Send ACK back to namespace;
}

Figure 2. Failure-free execution of operation link.

The link operation takes one round trip to be accomplished. In addition, there are three synchro-
nous I/O’s to storage, two of which to the log, and another to add the back pointer. We insert the
directory entry after the back pointer is added at the object-side, strictly following the ordering

8

rule laid out earlier. The object-side back pointer contains sufficient bookkeeping information in
order to handle recovery and perform garbage collection. The use of back pointers will become
clear in the sections where recovery and multi-operation conflicts are discussed.

The opening and reclamation of a log record in the name-space site mark the beginning and the
end of the link operation respectively. A log record being open implies that the operation has not
been completed. This may indicate the existence of failure and is used to initiate the recovery
process.

Notes:

• The “add bptr” message carries an “info” record as its payload. This record includes the
location details (PID, inode#) of the parent directory as well as the transaction# of the
current link operation. The back-pointer has to contain all this information to resolve
conflicting operations and perform garbage collection.

• The ELINK(*) points are handling special conflict cases, as will be described later in the
“multi-operation conflicts” section.

4.2.2 Unlink
The second fundamental operation in the DiFFS namespace is unlink, which removes a reference
of an object from the namespace. The algorithm for the execution of unlink is shown in Figure 3.

Message diagram:

Namespace

site
Object

site

[Log+]

[Log-]

[D-]

[Bptr-]
X2

X3

X1

rm bptr

ACK

Unlink

Unlink OK

Namespace site:

Unlink {
 if D does exist then
 Log+;
 D-;
 Reply to client (success);
 Unlink execute;
 else
 Reply to client (error);
}
Unlink execute {
 Send “remove bptr” + “info” to Obj. site;
 Wait until reply received or Timeout;
 if reply received (either ACK or NACK) then
 Log-;
}

Object site:

Remove back-pointer {
 if back-pointer does not exist
 /*EUNLINK(1)*/
 (“info” not equal to bptr) then
 send NACK back to namespace site;
 else
 Bptr-;
 Send ACK back to namespace;
}

Figure 3. Failure-free execution of operation unlink.

Notes:

9

• The “remove bptr” message carries an “info” record as its payload. This record includes
the location details (PID, inode#) of the parent directory as well as the transaction# of
the link operation that inserted the object into the dentry (available in the dentry). This
information is required to ensure that the unlink operation removes the back-pointer re-
lated to the dentry just removed from the namespace and not the back-pointer created by
some other (conflicting) link operation.

• The EUNLINK(*) points are handling special conflict cases, as will be described later in
the “multi-operation conflicts” section.

The interesting thing to observe is that the unlink operation takes one round trip to be accom-
plished, but unlike link, a reply to the client can be sent as soon as the directory entry is deleted
from the namespace. There are also three synchronous I/Os required for the execution of the
unlink, two of which to the log and another one to remove the back pointer. We delete the direc-
tory entry first, after which the back pointer is removed at the object-side, strictly following the
ordering rule laid out earlier.

4.3 Recovery protocols

4.3.1 General properties of recovery protocols
Recovery falls into two general classes, namely conservative and aggressive [7]. In the case of
conservative recovery, partial results of the original operations execution are undone in both the
namespace and object sites. In the worst-case scenario, conservative recovery unrolls the results
of an operation that was successful apart from its last part, the reclaiming of the log record. In the
case of aggressive recovery, the aim is to complete a partially performed operation and bring the
namespace and object sites in consistent state as far as that operation is concerned.

In this report, we focus on aggressive recovery. Aggressive recovery takes the form of picking up
an open log record and re-executing the corresponding operation (without opening another log
record, we will see details later). This way, all recovery transactions and messages are indistin-
guishable from failure-free operations. The advantage is that in multi-operation conflict analysis,
we only need to consider potential conflicts among failure-free operations without worrying
about interference with recovery processes. Also, we are able to reuse the majority of the rou-
tines of the failure-free operations, reducing overall complexity. A side effect of this is that we
now provide the stronger semantics, quantitatively, for operation completion (informally speak-
ing, there are better chances that an operation will terminate successfully).

on timeout for record r {
 replay link/unlink operation (r);
}

recover host {
 for all records r in log do
 replay link/unlink operation (r);
}

Figure 4. Starting recovery process.

10

Recovery is initiated in either of two ways, as shown in Figure 4:

1) When the communication with a specific host (where object-site operations are pending)
timeouts; routine “on timeout for record r” in Figure 4.

2) When the namespace host recovers from total failure (crash); routine “recover host” in
Figure 4.

4.3.2 Recovery protocols for link
Consider all possible failure points and refer to the three “X” failure positions in Figure 2:

1) Point X1 in Figure 2: then back pointer is not added, steps following “Bptr+” will not be
executed either.

2) Point X2 in Figure 2: back pointer is added, but directory entry is not inserted, steps fol-
lowing “D+” will not be executed either.

3) Point X3 in Figure 2: directory entry is inserted, but the log is not reclaimed.

Figure 5 describes the algorithm of the recovery process for the link operation. The “if” clause
distinguishes failures that occur at point X3 from failures at points X1 or X2. In the latter case
we simply re-execute the main body of the original operation. This is performed by calling rou-
tine “link execute (r)”, defined in Figure 2, which does not create a new log record. Note that due
to the use of back-pointers (which reference parent directories), we are not risking unnecessarily
incrementing the link-count of the target object. In other words, due to back-pointers, link is an
idempotent operation. Link operations can be safely re-executed in the presence of failures at
points X1 or X2.

replay link operation (r) {
 if dir-entry D does not exist then
 link execute (r); // same as in the failure-free case
 else
 Log-;
}

Figure 5. Recovery process for operation link.

If failures occur during the recovery procedure (before it is complete), the procedure can be re-
initiated without risking causing any inconsistencies.

4.3.3 Recovery protocols for unlink
Consider all possible failure points and refer to the three “X” failure position in Figure 3:

1) Point X1 in Figure 3: server crashes right after the log is opened but before anything else
is done.

2) Point X2 in Figure 3: directory entry is removed but nothing else is done.

3) Point X3 in Figure 3: back pointer is removed but server crashed before the log is re-
claimed.

11

The recovery procedure is shown in Figure 6. The “if” clause distinguishes failures that occur at
point X1 from failures at points X2 or X3. In the latter case, we simply re-execute the main body
of the original operation. This is performed by calling routine “unlink execute”, defined in Figure
3, which does not create a new log record. Note that due to the use of back-pointers, unlink also
becomes an idempotent operation. Unlink operations can be safely re-executed in the presence of
failures at points X2 or X3, without risking unnecessarily decrementing the link-count of the ob-
ject.

replay unlink operation (r) {
 if dir-entry D exists then
 D-;
 reply to client (success);
 unlink execute; // same as in the failure-free case
 Log-
}

Figure 6. Recovery process for operation unlink.

If failures occur during the recovery procedure (before it is complete), the procedure can be re-
initiated without risking causing any inconsistencies.

4.4 Multi-operation conflicts

4.4.1 General properties

4.4.2 Link/link conflicts
There are two cases of potential conflicts of two link operations: 1) they refer to the same name
entry and to the same object; 2) they refer to the same name entry but to different objects.

1. In case (1), the first operation to successfully set the back-pointer at the object is the one
that eventually succeeds. This is the case, even if recovery has to take place and either of
the link operations has to be re-played. When a link operation is re-played at the object
site and a back-pointer for the referenced entry already exists, an ACK is returned (im-
plying that this operation has completed successfully at the object site) only if the trans-
action# in the back-pointer matches the transaction# of the operation (ELINK(2) in
Figure 2). Otherwise, a NACK is returned, because the back-pointer has been already
added but that was due to another link operation (ELINK(3) in Figure 2).

2. In case (2), success depends on which operation enters the directory entry (D+) first. To
achieve this, on return of an ACK for a link operation, the namespace is checked again
for the entry. If the entry already exists (inserted by another link operation and is refer-
encing another object), the link operation fails and its results have to be undone on the
object site. This is the case for ELINK(1) in Figure 2. The functionality of the unlink op-
eration is re-used for this purpose. Note that the two objects may reside in different hosts
and therefore there are no guarantees for the delivery order of the ACKs for the two con-
flicting link operations.

12

4.4.3 Unlink/unlink conflicts
There is only one possible case of two conflicting unlink operations. This is when they both refer
to the same namespace entry. Irrespectively of the interleaving of executions, only one operation
succeeds in removing the namespace entry. In other words, this class of conflicts is easily re-
solved by serializing the operations at the name entry.

4.4.4 Link/Unlink conflicts
There are two possible cases of link/unlink conflicts:

1) A link operation fails at point X3; before recovery is initiated, an unlink operation is
started for the same entry.

2) An unlink operation fails at points X2 or X3; before recovery is initiated, a link operation
is started for the same entry (and same object?).

Namespace Object

[Log+]

[Log-]

[D+]

[Bptr+]

X3

Link:

Unlink: [Log+]

[D-]

[Bptr-]

Unlink OK

start recovery

[D+]
[Bptr+]

Link OK

Figure 7. A link/unlink conflict scenario.

The scenario of Figure 7 demonstrates case (1). Operation link(x) is performed. The operation
successfully adds a back-pointer to the object, an ACK is received back, the entry is added in the
namespace, but the log is not reclaimed because of a failure (crash of the namespace site). Before
recovery of the link operation is initiated, another client does a lookup, discovers the new entry x
and invokes a conflicting unlink(x) operation at the namespace site. The unlink is successfully
completed and only then the recovery of link is initiated. This will re-play all the link operation: a
back-pointer will be added at the object and an entry inserted in the namespace. Note the name-
space is intact, but this may present unacceptable semantic from clients’ point of view.

Such pathological scenarios can occur only in the presence of total failure (host crash) of the
namespace site. So, to avoid these problems, on recovery, the namespace site does not serve any
new operations until all pending operations in the log are re-started. In the example of Figure 7,
the unlink operation is not started until the partially complete link operation has already been
started. Our link recovery procedure simply reclaims the log. After which the unlink operation
can proceed as usual.

13

Namespace Object

[Log+]

[Log-]

[D+]

[Bptr+]

X3
Link:

Unlink:
[Log+]

[D-]

[Bptr-]

Link OK

Unlink OK

start unlink
recovery incompatible

Bptr

[Log-]

NACK

Figure 8. An unlink/link conflict scenario.

The scenario of Figure 8 demonstrates case (2). Operation unlink(x) is performed. The operation
successfully removes the back-pointer at the object site but no ACK is received back. In the
meanwhile, before recovery is initiated, a conflicting operation link(x) is started at the namespace
site. The link is successfully completed by adding a (new) back-pointer at the object site and in-
serting an entry at the namespace site. After that, the recovery process is initiated for the unlink
operation and tries to re-do the object site execution. This cannot compromise the back-pointer
that the successful link created, because the transaction # of the back-pointer is different than the
transaction # of the unlink operation. So, the re-execution of unlink fails at the object site and a
NACK is returned back to the namespace, where the log is reclaimed. This scenario demonstrates
another use of the back-pointers at the object site for guaranteeing the integrity of the namespace.

4.5 DiFFS rename protocol and recovery
In DiFFS, rename is a compound operation made up by two primitives:

• Link(fh_to_dir, fh_obj, name), and then

• unlink(fh_from_dir, name)

These two primitives and their recovery procedures have been described extensively. Therefore,
the main issue to consider is the recovery procedure for the composite operation. The composi-
tional approach followed here for the implementation of rename simplifies the design of its pro-
tocol and recovery process.

This compositional approach may result in some performance loss against an alternative mono-
lithic implementation of the operation. However, we believe that the reduction of protocol com-
plexity justifies such a loss, especially given that rename is an operation that occurs rarely in
typical workloads.

14

The recovery procedure is as follows. Note that failure/success here refer to the outcome of the
composite operation. We have the option to either abort by rolling back or to replay rename by
re-starting the process:

• If link fails, there are two sub-cases:

o Link is later verified as successful (i.e., the dentry is inserted into the to_dir): Ei-
ther do a unlink(fh_to_dir, name) to roll back and then abort, or continue at the
point of unlink(fh_from_dir, name).

o If link fails and the dentry is verified as not being inserted. Either restart from the
beginning or abort.

• If link succeeds, and unlink fails, there are two sub-cases:

o unlink is later verified as success. Simply exit.

o unlink is later verified as failure. Either do a unlink(fh_to_dir, name) to roll back
and abort, or repeat the unlink(fh_from_dir, name) to continue.

• If both steps succeed, rename is completed.

4.6 DiFFS relink protocol and recovery
Relink is an operation required in DiFFS to support object migration. In the case of migration, a
new instance of the object is created, and the namespace needs to be updated to point to the new
instance, while releasing the reference to the old instance.

One way to implement relink is similar to that used for rename, i.e. design it as a compound
operation:

• unlink(fh_dir, old_obj_name), followed by

• link(fh_dir, fh_new_obj)

As in the case of rename, we are not concerned with each primitive’s recovery. Relink is exe-
cuted as if it was a user-level process and the failure/success carries a different meaning. Note
that unlike rename, after the first step is completed successfully, we do not have the option of
rolling back, because the object may have now been garbage collected already. The recovery
process for the relink operation is as follows:

• If unlink fails, there are two sub-cases:

o Unlink is later verified as successful (i.e., the dentry is removed from the direc-
tory): Either do a link(fh_dir, fh_old_obj) to roll back and then abort, or continue
at the point of link(fh_dir, fh_new_obj).

o If unlink fails and the dentry is verified as still existing. Either restart from the
beginning or abort.

• If unlink succeeds, and link fails, there are two sub-cases:

o Link is later verified as success. Simply exit.

o Link is later verified as failure. Repeat the link(fh_dir, fh_new_obj) to continue.

15

• If both steps succeed, relink is completed.

An alternative, more efficient implementation is the following. When an object is migrated, its
associated back pointers are moved together with the object’s content to the new location. In this
case, the relink operation is simply an atomic transaction updating the directory entry and is local
to the namespace site.

5. Implementation and optimizations
This section is dedicated to various alternatives for efficient implementation of the proposed pro-
tocols.

5.1 Optimizing the Create operation in DiFFS
Create is one of the most frequent metadata operations in any kind of filesystem. In DiFFS, as
mentioned briefly in Section 3.1, create is a compound operation made up of obtaining an object
and then linking it into DiFFS namespace. To speed up the create operation, each partition pre-
allocate idle objects (files) and advertise them to all other partitions.

To eliminate any race conditions, sets of objects advertised to different partition are disjoint.
Each partition server has a map that records what idle objects are available from other partitions.
This map can be simply a file local to each partition server. If a partition is to create an object
resides from another partition but its map indicates that it have used up all that were advertised to
it, it requests the target partition for more. This process can be proactive as well. When each par-
tition server finds that its repository of idle objects are running low, it goes ahead and creates
more to meet the projected demand and subsequently advertise them to other partitions.

5.2 Optimizing the link and unlink primitives
From the previous discussion, we see that cross-partition operations where namespace and object
change do not reside in one place carry their price tag. There are 3 synchronous I/O to be per-
formed at the object and namespace side altogether.

The synchronous I/Os are essentially of two types: the intention log (at either the object or the
namespace site) whose failing to be reclaimed triggers garbage collection process, and the addi-
tional bookkeeping such as back pointers necessary to facilitate the detection of garbage. We
look at them in turn.

5.2.1 Intention Log
The purpose of the intention log is to facilitate garbage detection and collection in face if any
failure. As such we have to make sure that the log is persistent on the storage before the very first
outbound message. Consider link. If an object has been created and the insertion message to the
namespace left before the log has reached stable storage, a crash at the object-side will leave us
no clue as how to start the garbage collection upon recovery. The case for remove is similar.

Writing a single log is not expensive since log updates are sequential. Constantly writing and
deleting log record are costly, however. This is so because this pattern simply breaks the sequen-
tial access pattern to the disk. To solve this problem, we reclaim log entry in a lazy fashion.
When an operation closes, we write to the intention log a record indicating which transaction is
closed. This way, the intention log is efficiently updated sequentially at all time. In addition, In

16

addition, a background process creates checkpoint periodically. When checkpoint occurs, a new
log is used instead. In parallel, the background process scans through the old intention log to col-
lect entries and identify if any intention log is left open and, if so, engage the garbage collection
process.

Note we can afford to do the reclaiming late precisely because our overall execution order guar-
antees that the namespace is never corrupted. Before an intention log is successfully reclaimed,
the object to which the log belongs is still in question as far as its legitimacy in the namespace is
concerned. So how long can we delay the reclamation of the log? In fact, there is no real con-
straint. This is so because if the object is garbage, it’s an orphan and therefore we can pick it up
any time we want.

5.2.2 Back pointers
Back pointers are object-side properties. Therefore by definition it can be completely out of the
critical path for namespace unlink operations.

Back pointer addition is on the critical path for link. Pure link operation is not frequent. More
often is DiFFS link gets invoked as a result of “create.” Compare with NFS create, however,
DiFFS creates goes faster because it’s simply a link with a pre-allocated idle file. In contrary,
traditional NFS create will involve multiple disk IOs to modify the physical filesystem resource,
read and change bitmap etc. None of these IOs are necessary with pre-allocated files. Each parti-
tion server can allocate idle files periodically and assign quotas to other partition servers and ad-
vertise them. In this way, the chance of running out idle, remove files when “create” is to be car-
ried out is minimal.

Back pointer can be implemented in a number of different ways:

1. Per-object shadow file.

In this case, assume /diffs/foo is the object, then /diffs/shadow/foo can be the shadow file
that contains the back pointers. The shadow file is created locally when the object
(/diffs/foo) is created.

2. Consolidated shadow file.

Per-file shadow/back pointer file can be consolidated into one, or multiple, shadow files.
The inode # of /diffs/foo can be hashed by a deterministic function to locate a corre-
sponding shadow file where its back pointer is kept. Modification to this shadow file, in
the form of insert or delete back pointers, are journaled to keep the integrity of the con-
tent. DiFFS’ principle of implementing directories as files require this journaling service
to be in place already.

In both cases above, adding or removing a back-pointer involves a synchronous I/O to the
shadow file. In the case of link, this synchronous I/O is on the critical path of the operation. Op-
timizing the performance of back-pointer operations is thus an important implementation issue.
We suggest the use of a journaling service (the same used for the logging on the namespace site)
for improving performance. Back-pointer additions/removals are recorded synchronously to a
record of a log file at the object site. Log/journal files are fine tuned for very efficient synchro-
nous I/Os. The contents of the record (addition or removal of a back-pointer for an object) are
then propagated to the shadow file (per-object or consolidated) in a lazy manner, outside the
critical path of operations.

17

6. Comparison with other approaches

6.1 2-phase-commit
Other research projects [9, 11] suggest using traditional transaction mechanisms for updates of
the global namespace. In particular, 2-phase-commit (2PC) is recommended for the implementa-
tion of operations that span more than one site. In this report, we make two claims:

1. 2-phase-commit introduces an overhead to the failure-free execution of operations. Fail-
ure-free operation overhead is avoided by the lightweight protocols proposed here.

2. 2-phase-commit may lock system resources for extensive periods of time reducing the
concurrency of operation execution in the system. Our protocols do not lock any system
resources and allow for maximum concurrency of operation execution, as discussed in
section 4.4.

In order to justify these claims, consider the implementation of the link and unlink operations,
using a typical 2PC protocol. The protocol coordinator can be either the client that initiates the
operation or one of the sites that are involved in the execution of the operation. To facilitate a
straightforward comparison of the 2PC protocols with our protocols, in the following diagrams,
the coordinator of 2PC is chosen to be the name-space site.

Namespace

site
Object

site

[D+]
[Lcnt++]

Link
prepare

Object?
[D+]?

OK OK

commit

async ACK
Reply-
Link

[Log+] (L1)

[Log+] (L2)

[Log+] (L3)

[Log-] (L5)

[Log-] (L4)

Figure 9. An implementation of link using 2-phase-commit.

Figure 9 illustrates a 2PC-based implementation for operation link. Figure 10 illustrates a 2PC-
based implementation of operation unlink. As it is the case with the protocols of Figure 2 and
Figure 3, there is one round-trip over the network on the critical path of each operation. In the
case of 2PC, the use of back-pointers is not necessary. Link-counts at the object site suffice,
since the target object properties are kept “locked” between phase-1 (delivery of “prepare”) and
completion of phase-2. Back-pointers are not required for scenarios of conflicting link and/or
unlink operations (similar to those of Figure 7 and Figure 8). It is sufficient to make sure that on
recovery of the namespace site, pending transactions are restarted before handling any new client

18

requests. The use of link-counts instead of back-pointers does not improve the performance of
the 2PC protocols; updating the link-count of an object still requires a synchronous IO. In addi-
tion, the 2PC protocols have the following disadvantages in comparison to the protocols pro-
posed in this report, as discussed below.

Namespace

site
Object

site

[D-]
[Lcnt--]

Unlink
prepare

Object?
[D-]?

OK OK

commit

async ACK

Reply-
Unlink

[Log+] (L1)

[Log+] (L2)

[Log+] (L3)

[Log-] (L5)

[Log-] (L4)

Figure 10. An implementation of unlink using 2-phase-commit.

��The 2PC protocols have three accesses to log files in the critical path of the operations, as
opposed to just one in our protocols. The log record at the object site (L2) is required to
make sure that the back-pointer is not changed by another transaction while the outcome of
the current transaction is pending. The second log record in the namespace site (L3) is re-
quired to ensure that the outcome of the phase-1 of 2PC (“prepare”) is recorded, so that the
operation can be re-played if a failure occurs during phase-2 of 2PC.

�� 2PC protocols require two messages over the network for the back-pointer to be updated, as
opposed to just one message in our protocols.

�� In the presence of host or communication failure anywhere up to log point L3, the partial
results of the 2PC execution are un-done on recovery. In our protocol, the operation results
are re-done as long as the initial log record has been created in the namespace. The latter dif-
ference does not affect the overall failure semantics as perceived by the clients, but in prac-
tice, the protocols of Figure 2 and Figure 3 in combination with the recovery process of
Figure 5 and Figure 6 provide better probability for the successful implementation of the op-
erations in the presence of failures.

�� In the case of the 2PC protocol, when a client receives back a reply to its link or unlink op-
eration, we are guaranteed that the namespace has been updated ([D+] or [D-]), but we are
not guaranteed that the link-count of the object has been updated (incremented or decre-
mented respectively). The latter would require a second synchronous round-trip interaction—
an ACK to the commit operation, before a reply is sent back to the client. In the case of our
algorithm, the stronger guarantee is provided without requiring a second round-trip latency in
the critical path of the operation.

��Another issue with the 2PC protocols is related to resource management at the object site.
After point L2, the log record at the object site has to be kept until completion of phase-2

19

(commit or abort). However, in the presence of failure (e.g. network partitioning), there is no
guarantee for the time it takes for the phase-2 message to be delivered (if delivered at all).
So, the issue is how long has a log record to be kept and whether it can be reclaimed if no
phase-2 communication is received. This is an important problem, because the related object
link-count is in fact locked for the duration of the log record—no other transaction can ac-
cess it to change its value (even from another namespace site).

The following table summarizes the comparison between 2-phase-commit protocols and the pro-
tocols proposed in this paper.

Required

object
attributes

Total log
accesses

Log ac-
cesses in
critical

path

Total
round trips

Round
trips in
critical

path

Recovery
approach

Degree of
concur-
rency

2PC
Simple:

Link
counter

Link: 5

Unlink: 5

Link: 3

Unlink: 3

Link: 2

Unlink: 2

Link: 1

Unlink: 1

Conserva-
tive

Low

DiFFS
Complex:

Back point-
ers

Link: 2

Unlink: 2

Link: 2

Unlink: 1

Link: 1

Unlink: 1

Link: 1

Unlink: 0
Aggressive

High (with
conflict

resolution)

7. Related Work and Conclusions
DiFFS is an architecture designed to provide a widely distributed file service [1]. Much of DiFFS
scalability and flexibility is due to its partition-based approach to storage distribution. This report
proposes robust and lightweight cross-partition protocols for operations in the DiFFS namespace.

The report claims that the cross-partition protocols of DiFFS are instances of a more general
problem: how to maintain consistent global namespace over a collection of distributed objects.
We show that all namespace operations can be decomposed into just two primitive operations:
link and unlink. The main issue with cross-partition operations is how to maintain namespace
consistency even in the presence of communication and/or host failures. We prove that by impos-
ing a specific execution order to these operations, we can reduce the problem to instances of “or-
phan” objects in the system; the global namespace is never corrupted. The report discusses pro-
tocols and recovery procedures for the two primitive operations, taking under consideration all
possible scenarios of conflicts. We claim that the proposed protocols impose minimal overhead
to failure-free execution and, in general, they are more lightweight than traditional atomic
commitment protocols. To justify this claim, we conduct a detailed comparison with protocols
that are based on 2-phase-comit. We demonstrate that the proposed protocols are strictly better in
all critical performance factors (communication round-trips, synchronous I/O). In addition, they
facilitate higher concurrency for operation execution; they provide better probabilistic
characteristics for successful completion of cross-partition operations in the presence of failures.
The price for those desirable characteristics is that objects must be annotated with additional
properties than in traditional file systems. In particular, the back pointers to all “parent” directo-
ries must be associated with every object in the system.

Slice is a research system from Duke University [11], which also follows a partition-based ap-
proach to achieve scalability for a distributed file service. Slice uses two possible mechanisms
for object distribution, MKDIR SWITCHING and NAME HASHING, the details of which are outside
the scope of this report. Irrespectively of the distribution mechanism used, namespace operation

20

in Slice may cross more than one site. Slice suggests using 2-phase-commit for logging and re-
covery across sites. However, the performance implications of such protocols are not clear from
the published results for Slice.

Archipelago is another research system from Princeton University [9, 14] that suggests 2-phase-
commit as the mechanism to guarantee namespace consistency in a distributed file system. Ar-
chipelago proposes the deployment of a distributed file system across the nodes of a cluster of
mutually trusted file servers. A variety of physical file systems may be supported in the cluster.
The basic principle of the system is to distribute files arbitrarily across the cluster servers using
hashing of object names (pathnames). Namespace objects (directories) are also distributed using
the same mechanism, but, in addition, they are replicated across the cluster. The degree of repli-
cation of a directory depends on the usage of the directory—the more it is used, the higher its
degree of replication is. The current Archipelago prototype uses 2-phase-commit for the imple-
mentation of cross-server operations, such as CreateDir and RemoveDir. The difference with
DiFFS is that in this case, 2-phase-commit is used not only for namespace consistency but also
for achieving consistency between the replicas of the directory.

8. References
[1] C. Karamanolis, M. Mahalingam, D. Muntz, and Z. Zhang, “DiFFS: a Scalable Distrib-

tued File System,” HP Laboratories, Palo Alto, Technical Report HPL-2001-19, January
24 2001.

[2] K. Preslan, A. Barry, J. Brassow, R. Cattelan, A. Manthei, E. Nygaard, S. V. Oort, D.
Teigland, M. Tilstra, M. O'Keefe, G. Erickson, and M. Agarwal, “Implementing Journal-
ing in a Linux Shared Disk File System,” presented at 8th NASA Goddard Conference
on Mass Storage Systems and Technologies, 2000.

[3] G. Gagner and Y. Patt, “Metadata Update Performance in file Systems,” presented at
USENIX Symposium on Operating Systems Design and Implementation (OSDI), 1994.

[4] D. P. Bovet and M. Cesati, Understanding the Linux Kernel, 1st ed: O'Reilly, 2001.

[5] B. Callaghan, NFS Illustrated: Adison-Wesley, 2000.

[6] P. Leach and D. Perry, “CIFS: A Common Internet File System,” Microsoft Interactive
Developer, 1996.

[7] P. A. Bernstein, N. Goodman, and V. Hadzilacos, “Concurrency Control and Recovery in
Distributed Databases,” , 1987.

[8] J. N. Gray, “Notes on Database Operating Systems,” in Operating Systems: An Advanced
Course, 1978.

[9] M. Ji, E. W. Felten, R. Wang, and J. P. Singh, “Archipelago: An Island-Based File Sys-
tem for Highly Available and Scalable Internet Services,” presented at 4th USENIX
Windows Systems Symposium, 2000.

[10] B. White, M. Walker, M. Humphrey, and A. Grimshaw, “A Secure and Scalable File
System Infrastructure,” Computer Science Department, University of Virginia, Char-
lotesville, Tecnical Report 2000.

21

[11] D. Anderson, J. Chase, and A. Vadhat, “Interposed Request Routing for Scalable Net-
work Storage,” presented at Usenix OSDI, San Diego, CA, USA, 2000.

[12] D. Cheung and T. Kameda, “Site-Optimal Termination Protocols for a distributed Data-
base under Networking Partitioning,” presented at 4th ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing, Minaki, Ontario, Canada, 1985.

[13] D. Skeen, “Nonblocking Commit Protocols,” presented at ACM SIGMOD, 1981.

[14] M. Ji and E. W. Felten, “Design and Implementation of an Island-based File System,”
Department of Computer Science, Princeton University, Technical Report 610-99, Octo-
ber 1999.

