

Data Migration in a Distributed File Service

Mallik Mahalingam, Christos Karamanolis, Lisa Liu,
Dan Muntz, Zheng Zhang
Computer Systems and Technology Laboratory
HP Laboratories Palo Alto
HPL-2001-128
May 23rd , 2001*

E-mail: {mmallik, Christos, lisaliu1, dmuntz, zzhang}@hpl.hp.com

data migration,
distributed file
system, Storage
Area Networks
(SAN), storage
management

As distributed systems span the globe, placing data near the
point where the data are accessed is becoming important to
improve client performance and to reduce network load. With
the advent of the utility model in storage services, it is
necessary for storage service companies to provide quality of
service guarantees to meet customer needs. Adaptive data
migration will be required by storage service providers to
guarantee these service-level agreements. Storage customers
will require the ability to transparently migrate data among
different storage service providers based on, for example,
pricing differences or QoS issues.

Data migration is also useful for reducing resource contention
(thus increasing scalability) by breaking up "hotspots" in the
file system. Data migration plays a significant role in
increasing the scalability and performance of distributed file
systems.

In this paper, we examine mechanisms for transparent, flexible
data migration in the context of our experimental distributed
file service, DiFFS.

* Internal Accession Date Only Approved for External Publication
 Copyright Hewlett-Packard Company 2001

Data Migration in a Distributed File Service
Mallik Mahalingam, Christos Karamanolis, Lisa Liu, Dan Muntz, Zheng Zhang,

Hewlett-Packard Labs
1501 Page Mill Rd, Palo Alto, CA 94304, USA

{mmallik,Christos,lisaliu1,dmuntz,zzhang}@hpl.hp.com

Abstract

As distributed systems span the globe, placing data near the
point where the data are accessed is becoming important to
improve client performance and to reduce network load.
With the advent of the utility model in storage services, it is
necessary for storage service companies to provide quality
of service guarantees to meet customer needs. Adaptive
data migration will be required by storage service providers
to guarantee these service-level agreements. Storage
customers will require the ability to transparently migrate
data among different storage service providers based on, for
example, pricing differences or QoS issues.

Data migration is also useful for reducing resource
contention (thus increasing scalability) by breaking up “hot-
spots” in the file system. Data migration plays a significant
role in increasing the scalability and performance of
distributed file systems

In this paper, we examine mechanisms for transparent,
flexible data migration in the context of our experimental
distributed file service, DiFFS.

1 Introduction

There is a significant change taking place in the resource
model of Internet-connected entities. Resources such as
computing, network and storage on the Internet are being
provided in much the same way as electricity and gas have
been provided in the past—via a “utility” model. A number
of industry [1] and academic [2] research projects are trying
to provide a “Utility-Based“ infrastructure to make these
resources available automatically, “on demand,” and to
guarantee requested service levels. Utility service providers,
such as storage service providers [3-5], guarantee certain
levels of service based on the resource usage model for their
resources.[3]

One challenge facing Internet Data Centers (IDCs) is how
to provide efficient and cost-effective storage services that
satisfy the evolving requirements of Application Service
Providers (ASPs). Service Providers and Data Centers must
handle fluctuating and unpredictable workloads. These
workload variations can cause parts of the storage
infrastructure to be over-stressed while other parts may be

under-utilized. Migration can increase performance of
storage systems in these environments by addressing issues,
including:

1. Decrease the distance between data and clients
accessing the data.

2. Reduce contention by using migration to break up “hot-
spots.”

3. Place data at a cost-effective location.

4. Allow for dynamic expansion (or reduction) of the data
set.

5. Provide non-disruptive access to critical data.

There are many factors that may contribute to poor
performance, including insufficient server processing
power, storage contention, network congestion, and poor
data placement. Migration is also used to respond to
resource changes. For example, in a utility-based
infrastructure, processing power, network bandwidth and
storage can change dynamically. Efficient data migration is
essential in this model.

Several data migration solutions have been proposed by
both academia and industry. The NFSv4 [6] standard
proposes mechanisms for revalidating NFS file handles in
the case of file system migration, but it does not introduce
any protocols for the actual data migration and it does not
consider migration at a finer granularity. The Andrew File
System (AFS) [7] provides mechanisms for logical volume
migration. Migration is made transparent to the application
through the user of a volume location database (VLDB)—a
global data structure (maintained consistently across the
system) that maps logical volume identities to physical
locations (servers). Both NFS and AFS allow migration at a
very coarse granularity, either an entire volume, or file
system. They do not support migration at the granularity of
individual files or file sets.

The following are three examples where file-level migration
is desirable: 1) to move the personal files of users close to
the point of use; 2) to move certain files away from “hot
spots;” 3) move the files to a file system better suited to
serve their content type. GASS[8] is a system that supports
a range of migration mechanisms. However, it requires
explicit support from the applications (a special API),

which makes this solution impractical for many
applications.

This report addresses the data migration issue from a
generic perspective. It proposes mechanisms for both
volume and object-level data migration. The problem is
investigated for widely distributed storage services that
follow the “file system” abstraction. The main requirements
for the proposed mechanisms in this context are:

• Scalability: they must scale for the size of current
and future data sets.

• Granularity: they must support data sets that vary
anywhere from a small set of files (perhaps a
single file) to logical volumes.

• Transparency: they must be non-intrusive to the
applications that are deployed above the storage
service.

The decision about what part of the data set to move, the
location to which it is moved, and the timing of the
migration are policy issues, which will be addressed in
future work. This paper focuses on mechanisms required for
migration.

The proposed mechanisms are designed in the context of
DiFFS, a distributed file service architecture currently under
investigation in HP Labs. An overview of DiFFS is given in
section 2, followed by a discussion on “location
transparency” for data in that architecture. Volume-level
migration is discussed in section 4 and object-level
migration in section 5. Section 6 addresses issues related
sharing objects that are migrated. Related work is discussed
in section 7 and the paper concludes in section 8.

2 DiFFS: a scalable distributed file service

DiFFS is a distributed file service that uses a partitioning
approach to address the problem of contention for storage
resources [9]. It is designed to tolerate host and
communication failures without sacrificing performance for
failure-free operation [10]. DiFFS can be deployed above
multiple types of physical file systems; objects can be
placed in a file system that is best suited to their type and
size. DiFFS achieves scalability by partitioning the storage
and controlling shared access on a per-partition basis. The
basic building block of the DiFFS architecture is a partition
server. Each partition server in the system has exclusive
control over a set of logical volumes (Figure 1). Every
logical volume is associated with an identifier (LV-ID) that
is unique in the system.

A directory in a file system is a list of entries, each one
containing a reference to an object (file or directory) in the
system. Traditionally, a directory entry includes the inode
number (inode#) and name of the referenced object.
However, files and directories within DiFFS may reside in

any partition, thus requiring cross-partition references. The
inode# field in the directory entry is augmented with the ID
of the logical volume where the referenced object resides.
The latter requires extensions to the directory entry
structure. To provide these extensions in a generic way,
DiFFS directories are implemented as normal (data) files in
the underlying physical file systems. This approach has two
advantages: 1) DiFFS can be deployed on top of any
physical file system; 2) directories can be implemented in
various ways that are optimal for different access and search
patterns.

1
2

PS1

Partition 1

PS2

Partition 2

PSN

Partition N

C1 CM Clients

SAN 8
9

5
6

Logical
Volume

Figure 1: DiFFS Architecture

The location of where the objects reside is transparent to the
clients. Object location is determined by some “placement
policy” at creation time.

3 Location transparency in data access

The DiFFS architecture provides a location-independent
representation of objects, which is similar to that of AFS.
Typically, when a client needs to access a file or a directory,
a lookup operation is performed first. The result of the
lookup is a file handle that is used by the client to perform
future accesses. The role of a file handle is to provide a way
to identify the object at the server end and is opaque to the
client. The file handles are often cached at the clients for
performance reasons.

A “lookup” operation in DiFFS is performed as depicted in
Figure 2. The execution is described in a way that is
independent of the access protocol [9] used. For example, a
lookup for file “/etc/passwd” is performed in three stages:
(1) retrieve the file handle for the root inode—this
information is typically stored on every partition, in this
case it is retrieved from partition 1; (2) read the contents of
directory “/” and construct the file handle for directory
“etc”; (3) read the contents of “etc” and construct the file
handle for file “passwd”.

PS1

Partition 1

PS2

Partition 2

PSN

Partition N

C1 CM clients

2233

{“etc”,
 0123, N}…

{“passwd”,
 1001, N}…

“etc” “/”

0123

…
joe:*:101:10:
…

“passwd”

1001

(1)
(3) (2)

Figure 2: Execution of lookup ("/etc/passwd") in DiFFS.

3.1 File Handle

The structure of a DiFFS file handle is shown in Figure 3.

Inode # … Gen# Inode

LV-ID

Figure 3: Structure of a file handle in DiFFS

A file handle is composed of the following information that
is kept within the directory entry of the object.

• Inode # of the object

• Logical Volume ID (LV-ID). The purpose of the LV-
ID is to identify:

o The Logical volume where the object resides.

o The partition server that is acting as a
“custodian” of the logical volume that
contains the object

• Generation # of the inode.

DiFFS provides a way to represent objects in a location-
independent manner by embedding the LV-ID in the
directory entry. The actual custodian of the logical volume
is retrieved as described in the following paragraphs.

3.2 Mapping Logical Volumes to Physical
Partitions

In order to access an object, a client has to retrieve the
actual custodian of the logical volume referenced in the file
handle of the object. This mapping information has to be
maintained in a consistent way in the system and it must be
accessible by the clients in an efficient way.

This section introduces two methods for maintaining
consistent system-wide mappings of logical volumes (LV-
IDs) to partitions.

3.2.1 Global mapping state

A global mapping table is maintained in the system, similar
to the volume location database (VLDB) in AFS. The
mapping table may be maintained and kept consistent by a
Storage Management Service. It can be replicated or cached
at various locations for performance and availability. A
mapping service running at the clients provides mapping
resolution by querying the table (either a replica of the table
or some locally cached part of it). The mapping table is
read-mostly. It is updated only in the presence of volume
migration (see section 4). Volume migration is not a
frequent event in the system. Therefore, a protocol that
guarantees strict replica consistency [11-13] can be
employed for updating the global mapping table.

3.2.2 Distributed algorithm

Each partition server maintains an ownership table with the
LV-IDs of all the volumes the server is responsible for
(owns). The table is assigned a version number; every time
its contents change, the version number is incremented.
Upon delivery of an access request for an object, the table is
consulted to check whether the local server hosts the
corresponding volume or not.

A partition server finds out about the ownership tables of
other partitions, as a side effect of cross-partition
transactions in the system. The ownership tables of other
partitions are locally cached on the partition and form its
neighbourhood information. The cached tables are
maintained loosely synchronized with their master copies on
the owner partition servers. The local copies of neighbours’
tables are consulted when, for example, the partition server
receives a request for an object that does not reside in a
local volume. Upon lookup, in addition to the file handle,
the client is also provided with a hint for the partition server
it should contact for that object. This information is cached
on the client and is used when the object is accessed. It is
just a hint about the location of the corresponding volume,
because the volume may not reside in the partition indicated
by the lookup. Such scenarios can occur when volumes are
migrated across partitions. Volume migration is discussed in
detail in section 4.

3 4

A: 1, 2

B

A

C

B: 3, 4

C: 5, 6

A: 1, 2

C: 5, 6

A: 1, 2

B: 3, 4

1 2

5 6

Figure 4: Initial Mapping of LV-IDs and Partition Ids.

Figure 4 shows an example of three partitions, each
containing two volumes. Each partition’s own table is
depicted with a thick borderline. Outgoing arrows indicate
“knowledge” of another partition’s ownership table (the
neighbourhood of that partition).

As a result of migrating a volume from partition A to
partition D (volume 1, in the case of Figure 5), both A and
D have the up-to-date ownership information about
themselves, but partitions B and C have now stale tables
about A (depicted as shaded boxes in the figure).

Stale maps are updated in one of two ways. First, any cross-
partition transaction (for example, general DiFFS traffic) is
piggybacked with the version number of the ownership
table of the originating partition. Thus, partition servers can
find out whether the locally cached copies of others’ tables
are out-of-date. In the latter case, the up-to-date tables are
explicitly requested from the corresponding partitions.

Second, the update of stale tables can be initiated when a
partition receives a request for an object that resides in a
migrated volume. For example, consider the configuration
of Figure 5. A file “foo” resides in volume 1, which has just
migrated from partition A to partition D. A parent directory
of “foo”, named “dir”, resides in volume 3/partition B. A
client does a lookup for “foo” in “dir” and gets back a file
handle, which indicates that “foo” is located in volume 1/
partition A (B consults its out-of-date cached table about
A). When a following request from the client arrives at
partition A, it is forwarded to partition D (or the client is
asked to re-send the request to D), the new location for
volume 1. Note, that A has an up-to-date table for itself and
D. In this case, the payload of the client request is required
to carry information about the location of the parent
directory of the object. That is, directory “dir” in
volume 3/partition B. Using this information, partition
server A can infer that partition B has out-of-date
information about the location of volume 1. The updated
tables for A and D are explicitly forwarded to partition B.

3 4

A: 2

B

A

C

B: 3, 4

C: 5, 6

A: 1, 2

C: 5, 6

A: 1, 2

B: 3, 4

2

5 6

C: 5, 6

D

1
A: 2

D: 1

D: 1

B: 3, 4

Figure 5: Mapping of LV-IDs and Partition Ids after
Logical Volume “1” migration.

The algorithm presented here guarantees that the
information about volume to partition allocations is
maintained in the system in a distributed way. Consistency
of this distributed state is maintained by means of a lazy
technique. The algorithm has the advantage that eliminates
any single point of failure (or performance bottleneck) in
the system, but it is clearly more complex than the approach
described in the previous section.

4 Volume-level migration

DiFFS supports volume migration as a fundamental
mechanism to ensure the robustness of the architecture.
Moving a volume is usually an expensive operation, the cost
of which is proportional to the size of the volume. DiFFS
builds the distributed file service on top of multiple volumes
and therefore can afford to use small volumes to aid
incremental, more fine-grained migration.

There are two basic flavors of volume migration in DiFFS:
changing the ownership of a logical volume and physically
relocating the logical volume to a different device. A
combination of these two is used in some cases.

The following examples demonstrate scenarios where
volume-level migration may be required:

1. When a partition server is retired, all the volumes it
owns need to be reassigned. This requires change of
ownerships for the volumes.

2. Likewise, when a partition server is overloaded, the
ownership of some of its logical volumes needs to
change to some other partition server that is idle or less
loaded.

3. When a device that hosts multiple logical volumes
becomes a “hot-spot” (or the network path that leads to
the device is highly congested), then one or more
logical volumes need to be migrated to different
device(s).

If volume migration across devices is required, then it is
performed first. There are many well-known online volume
migration techniques; a process using the mirroring
technique of the LVM package available in Linux is as
follows:

1. Form a logical volume with the mirroring option by
creating a mirror set that contains the target device (all
writes go through the replica of the logical volume
located on the target device “secondary” and reads go
through the primary logical volume).

2. When mirroring is complete, a replica of the logical
volume is created

3. Mirroring is cancelled and the primary of the mirror set
is freed up but note that the logical volume ID is not
changed.

If the device on which the logical volumes reside becomes a
“hot-spot,” the above procedure is sufficient to address the
problem.

4.1 Protocol for changing the custodian of a
logical volume

When reassigning the ownership of the logical volume, say,
LV-ID 1, from partition server Ps to partition server Pd
(with or without device migration), the following steps are
performed:

1. Freeze I/O (new requests are put into a pending state)
to the LV-ID 1 at Ps.

2. Dismount the file system from the logical volume LV-
ID 1 at Ps. As a side effect, outstanding I/Os for the
LV-ID 1 buffered in Ps’ cache are flushed.

3. Send a request to Ps to mount the volume.

4. Upon receiving an acknowledgement from Pd, update
the mapping to reflect the change of ownership of the
volume. We have discussed two alternatives in section
3.2.

4.2 Failure Analysis

4.2.1 Failure Model

We assume the following failure model:

Hosts fail by crashing; they do not exhibit malicious
(Byzantine) behavior.

Messages may be not sent or not delivered due to host
crashes. Also, messages may be lost due to network
partitioning. On recovery from any such failure, the
communication session between two hosts is re-established.
Messages delivered during the same communication session
between two hosts are always delivered in order. This
condition is guaranteed by using TCP as the communication
protocol.

Consistency of the local object-store is guaranteed, despite
failures. This property is ensured by mechanisms of the
physical file system, such as journaling [14], soft updates
[15] or recovery procedures (fsck) [16].

Log entries are written synchronously and atomically.

4.2.2 Failure analysis on volume-level migration

In order to guarantee fault-tolerance, we propose that the
partition server Ps, from which the volume is migrating,
initiates a recovery protocol after step (3) (described in
section 4.1). The recovery protocol is initiated when Ps
does not receive an acknowledgement from partition server
Pd. Ps may not receive an acknowledgement from Pd for
various reasons:

a) The new partition server (Pd) is not reachable due to
host or network failures

b) The new partition (Pd) is still available but the mount
process is still in progress

c) The new partition server (Pd) received the request,
mounted the file system for the logical volume but the
acknowledgement was lost due to network failure.

For all of the above failure cases, the recovery protocol at
Ps remounts the file system for the logical volume and
releases all pending I/Os to proceed normally. Request for
updating mapping of logical volume to the partition server
Pd is not sent, thus, leaving only the original partition server
Ps access the logical volume. There is a small possibility for
having both partition servers mounting a file system for the
same logical volume. However, Pd is instructed to dismount
the file system from the logical volume when the connection
with Pd is re-established.

5 Object-level migration

In some situations, it is desirable to move individual objects
instead of the whole volumes. For example, the files that
constitute the personal profile of a nomadic user need to be
migrated close to the physical location where they are
accessed from. What objects (individual or working-set)
should be migrated, when and where they should be moved
to are policy issues that are handed by SMS. Once SMS
identifies the object(s) that need to be migrated, migration
mechanisms move those objects to the specified locations.

The requirement here is to move individual objects (files or
directories) across volumes that potentially belong to
different partitions. Aggregated object-level migration can
be used for achieving “working-set” or “group” migration.

5.1 Protocol for object level migration

The Protocol for “online” object-level migration is
composed of the following 5 phases:

1. Create a consistent replica of the object in the new
location. Any requests to access the object are put on
hold while creating the replica. A relaxed requirement
will be to allow reads to proceed.

2. Create forwarding information at the original location

3. Release pending requests and perform a transparent file
handle revalidation

4. Update the namespace references to reflect the new
location of the object

5. Garbage-collect the forwarding information when all
the affected references in the namespace have been
updated and all the cached file handles are revalidated.

However, if “offline” migration is used, only phases 1 and 4
are required, to create the object replica and update the
namespace references to point to the new location.
“Offline” object migration is more applicable to
Hierarchical Storage Management (HSM) environments
that target optimization of data storage rather than in
environments that target performance.

For example, consider that partition servers P1, P2, P3 and
P4 own LV-IDs 1,2,3,4 respectively. SMS initiates
migration of object “/a/x” (inode #1001) that resides on LV-
ID 2.

2

“/a” “/a/x”(replica)

SMS

1

1

P1

2

P2

3

P3

4

P4

“/a/x”

C 1 C M

2 1

Figure 6: Execution of object-level migration for object
“/a/x”

In Phase 1, a replica (Inode# 1010) is created in LV-ID 4
for object “/a/x” (Figure 6). The replica can be created
using either user-level primitives such as “cp” or using
kernel operations. The actual replica creation can be

performed either by SMS or by the partition server that
owns the logical volume on which the object resides. While
creating the replica, new requests that modify the object are
put on hold.

A request is sent to P2 in Phase 2, for creating a forwarding
information for object “/a/x” <Inode #1001, LV_ID 2> to
reference the new location <Inode #1010, LV-ID 4>
(Figure 6).

In Phase3, all pending requests for accessing object “/a/x”
are returned back to the clients with a reply message that
contains a status that “object has moved” along with the
new location information. Upon receiving the reply
message, clients update the cached file handle. Subsequent
access to the object would land at the new location <Inode
#1010, LV-ID 4> (Figure 7). The mechanism also
revalidates stale cached file handles in the clients, which
point to the original location of the object <Inode# 1010,
LV-ID 2>.

“ /a” “ /a/x”

1

P1

2

P2

3

P3

4

P4

“ /a/x”

3 3

C 1 C M

Figure 7: File-handle re-validation process

5.2 Phase 4: Updating namespace references

Once an object is migrated, it is necessary to have the
namespace references to the object point to the new
location. Namespace updates can be accomplished either
aggressively or lazily. Each approach entails different
tradeoffs and design complexities.

5.2.1 Aggressive Update

Aggressive namespace update is performed immediately
after creating a consistent replica of the object. It is
implemented by performing “re-link” [10] operations on all
the namespace references that point to the migrated object.

For example, “/a1/x1” and “/a2/x2”, could point to the same
object, say, <inode# 1001, LV-ID 2> (hardlinks) (Figure
8a). The back pointer references [10] kept for object
<inode# 1001> at LV-ID 2 identify the parents of this
object. Assume that “/a1” (Inode# 1900) resides in LV-ID
1 and “/a2” (Inode# 1800) resides in LV-ID 3. Partition

servers P1, P2, P3 and P4 own logical volumes LV-ID 1,
LV-ID 2, LV-ID 3 and LV-ID 4 respectively.

“/a2”

1

P1

3

P3

Inode#
1001

“x2” , 1001, 2

…

…

2

P2

“/a1”
“x1” , 1001, 2

…

…

Fwd:
1002,4

P4

Inode#
1002

“/a2”

1

P1

3

P3

“x2” , 1002, 4

…

…

2

P2

“/a1”
“x1” , 1002, 4

…

…

4

P4

(a)

(b)

dir

file

Fwd info

dentry

4

Figure 8: Aggressive namespace update on "/a1/x1 and
"/a2/x2", when object (Inode #1001) referred by "x1" and

"x2" migrates at LV-ID 2 migrates to LV-ID 4 (Inode#
1002)

When object <Inode# 1001, LV-ID 2> migrates, to say,
<Inode# 1002, LV-ID 4>, we can traverse the back pointer
references kept for this object and locate the namespace
references from “/a1” <Inode #1900, LV-ID 1> and “/a2”
<Inode #1800,LV-ID 3>. Update requests are sent to
partition servers P1 and P2 to update the two references
(Figure 8b).

5.2.2 Non-Aggressive update

Non-aggressive update is initiated when a request for access
to the migrated object lands on a partition server where
forwarding information is maintained. That is, a server that
owned a logical volume where the object used to reside.
This server updates the namespace reference by decoding
the object and parent directory object information from the
file handle that is used while accessing the object. In order
to support the latter the file handle has been extended to
contain parent directory information as shown in Figure 9.

… P-Dir

Inode#
P-Dir
LV-ID

Inode # Inode
LV-ID

Gen#

Figure 9: DiFFS file handle that contains parent
directory information of an object for performing non-

aggressive namespace update

For example, partition servers P1, P2 and P4 own logical
volumes LV-ID 1, LV-ID 2 and LV-ID 4 respectively
(Figure 10a) and object “/a1/x1” (Inode#1001) has migrated
from LV-ID 2 to LV-ID 4 (Inode #1002). .

When a request for accessing this object arrives at P2, the
following operations are performed:

1. P2 sends a request to P1 (where the parent directory
object “/a1” resides) to change the directory entry for
object “x1” to point to the new location <Inode# 1002,
LV-ID 4>.

2. When P1 receives a request to update a directory entry,
it acquires a write lease on the directory file that is
being updated, invalidates cached copies of the
directory file at the clients and updates the directory
entry. P1 sends a message back to P2 with the status of
the update operation indicating success or failure. If the
corresponding directory entry has already been
updated, P1 responds with “success”.

3. Upon receiving a “success” message, P2 performs an
unlink operation locally to drop down the reference
count.

The result of non-aggressive namespace update of object
“/a1/x1” is show in Figure 10b.

The case of objects with multiple references (hardlinks) in
the namespace is handled in the same way as described
above. A reference is updated when it is used (through a
lookup operation) to generate a file handle to access the
original position of the object. However, there is no
guarantee that a reference to an object is always eventually
used to access it. Thus, the non-aggressive approach cannot
put any upper bound to the time required for all references
of an object to be updated.

A “lazy” namespace update process can be initiated to
update all the namespace references for the migrated object
by walking through the global namespace (in the
background of normal operation). However, going through
an entire hierarchy of global namespace to find the
references would not be practical in real systems.

1

P1

Inode#
1001

2

P2

“/a1”
“x1” , 1001, 2

…

…

P4

(a)

(b)

dir

file

Fwd info

dentry

3

1

2

1

P1

Fwd:
1002, 2

2

P2

“/a1”
“x1” , 1002, 4

…

…

4

P4

Inode#
1002

4

Figure 10: Non-Aggressive namespace update on "/a1"
when object "/a1/x1" migrates from LV-ID 2 (Inode#

1001) to LV-ID 4 (Inode# 1002).

When the parent directory of an object migrates prior to
migration of the object itself, the parent directory
information that is contained in the file handle of the object
may be stale and thereby making the update to the
namespace references difficult. This can be handled using
one of the following methods:

A. When a directory migrates, messages are sent to the
partition servers for each of its children. Each message
contains the original location and the new location of
the migrating directory. This information is retained at
the partition servers, and is consulted under the
following conditions:

a. When a file handle revalidation request (see
section 5.3) for a child of the directory lands
at the partition server.

b. When a child migrates from the partition
server, and the namespace update process is
initiated.

B. When a revalidation request of a file handle for an
object arrives at the partition server, both the object
portion of the file handle and the parent directory

portion (P-Dir Inode# and P-Dir LV-ID in Figure 9) of
the file handle are revalidated.

5.3 Phase 5: Garbage collection of forwarding
information

In order to provide an efficient garbage collection process,
clients are required to perform periodic revalidation of the
file handles they cache. That is, a client has to revalidate
every cached file handle at least every “Tr” units of time. In
this way, a partition server that maintains forwarding
information for a migrated object is guaranteed that after
“Tr” time there are no more file handles cached by clients
that point to the old location of the object (condition 1).

The passage of time Tr is not a sufficient condition to
garbage-collect the forwarding information for the
corresponding object. Another necessary condition is that
there are no more references in the namespace pointing to
the original location of the object (condition 2). This
condition is met by keeping track of the reference (link)
count of the original object location. In the case of
aggressive updates, the latter condition is met in bounded
time. However, in the case of non-aggressive updates, there
is no upper bound for the time required to maintain the
forwarding information for a migrated object.

The above two conditions are necessary and sufficient to
garbage collect “file” objects. However, they are not
sufficient in the case of migrated directories. A third
condition must be met in that case: the back-pointers of the
children of that directory have also to be updated to point to
the new location of the directory before the forwarding
information is discarded (condition 3). To achieve this, the
reference (link) count of directory objects is extended to
reflect not only references from the namespace (from parent
directories) but also references from children objects (back-
pointers). The forwarding information for a migrated
directory can be garbage collected when all the above
conditions (1, 2 and 3) are satisfied.

5.4 Failure Analysis

In order to provide fault tolerance, an entry is created in an
“intention log” at each step of the migration process. Entries
are reclaimed when the process is done. The intention log is
used for performing “undo” and “redo” operations in the
case of failures.

5.4.1 Failure analysis of object-level migration that
uses aggressive namespace update.

 In the following paragraphs, we outline the possible failure
cases and corresponding recovery operations for the
migration process.

 Create Log

Begin: Create copy of the object (1)

Begin: Create Forwarding Info (2)

Reclaim Log

Done: Create copy of the object (1)

Done: Create Forwarding Info (2)

Begin: “re-link” (4)

Done: “re-link” (4)

Figure 11: Object-level migration using aggressive
namespace update process with “Intention Log”.

A. Step (1) fails but the original copy of the object is still
intact and no damage has been done to namespace that
has reference to original object. The failure could leave
the copy process partially complete and the process
could have failed due to network partitioning or host
failures.

“Undo” the changes by removing the incomplete copy
that migration process might have created.

B. Step (1) was successful but there has been failure
before going to step (2) due to host failure

Either the copy that migration process has created can
be removed or move forward to step (2) and perform
“redo” as the original copy is still in tact since update
to the namespace has not been done.

C. Step (1) was successful, but a request was sent out to
create forwarding information (step (2)) and the
acknowledgment was lost due to network partition or
host failures.

The original copy is probably inconsistent but the
duplicate copy that migration process has created is
available. Perform step (2) over and over until we get
ACK from the partition server that contains the old
copy of the object.

D. Step (2) was successful and before going to step (4)
(re-link process), network partition or host failures
occurred

The original copy of the object is lost and it contains
forwarding information. New copy of the object is
available, so redo step (4) until it runs to completion.

E. Step (2) was successful and failure resulted some where
in the middle of step (4)

Perform step (4) until its completion. Step (4) is
repeated for all the namespace that the migrated object
has been referred from.

F. When reference count for the old object reaches zero
(all the namespace references have been updated),
forwarding information is kept for “Tr” time and the
entry is freed up when it expires.

G. Reclaim the entries from the intention log.

5.4.2 Failure analysis on non-aggressive namespace
update approach.

Failure analysis on the object-level migration that uses non-
aggressive update is little different from aggressive
namespace update approach since the namespace update
process is decoupled from migration process. However both
approaches have common phases, phase 1 and phase 2,
therefore the recovery process described in section 5.4.1 for
these two phases are still applicable here. We propose
using the same mechanism “intention log” that we used in
the case of aggressive namespace updates, to perform
recovery process. Failure scenarios for the operations
described in section 5.2.2 are described below.

A. Request is sent out in step (1) and due to host failure or
network partitioning, acknowledgement was lost.

B. If acknowledgement was sent out in step (2) and the
message was lost due network partitioning or host
failures

C. Step (2) was successful but before going to step (3)
there has been a host failure

D. Step (2) was successful but host failure occurred while
performing step (3)

For all failure cases, the recovery process performs step (1)
through (3), asynchronously, until it runs to completion.
Since initiation and completion of namespace update
process is logged in the “intention log”, recovery process
can be rescheduled even when partition server that
executes the recovery process crashes.

5.5 Comparison of aggressive and non-
aggressive namespace update approaches

The table below summarizes the characteristics of the two
approaches for namespace updates described in the previous
sections.

 Aggressive Non-Aggressive

Data
Structures

Requires additional
data structures such
as back pointers

No additional data
structures

Life of
forwarding
Information

“Tr” No upper bound

Migration
of parent
object

Need to aggressively
update all the
children

Requires extended file
handle revalidation
mechanism such as:

Revalidating the object
portion of the file handle
as well as the parent
directory portion of the
file handle
 Or
Propagating forwarding
information to all the
children when parent
directory migrates and
keeping the forwarding
information of the parent
directory for “Tr” time.

Namespace
Updates

All namespace
references are
updated immediately
after migration

No theoretical upper
bound on how long the
stale references live.
A lazy update process
can be employed, but
may not be practical

6 Issues related to sharing objects

Typically, clients cache the contents of file system objects
for performance reasons. The validity of the cached data
and the duration that the cached data remains valid are
controlled via mechanisms such as leasing. When an object
migrates, the migration process first acquires a write-lease
for the object and then performs the migration process. This
is done to ensure that no modifications to the contents of the
object are made while the migration is in progress.

When objects migrate, we not only have coherency related
issues, but also issues pertaining to hard state of the objects
such as locks. Hard state is migrated to the new custodian of
the object. The migration mechanism proposed here handles
the coherency related issues in the same way that it handles
objects. When a client gets a message back from the
partition server indicating the object has migrated, it
updates location information and obtains a fresh lease from
the new location.

7 Related work

Existing solutions do not address the level of granularity or
the robustness and simplicity for performing efficient data

migration supported by DiFFS. Implementations, such as
NFSv4[6], address migration at file system level, which is
insufficient for handling “hot-spots” at fine granularity.
AFS proposes migration at the volume level. An AFS
volume is a collection of a logical set of files such as a
user’s data. Migration of an AFS volume is performed by
cloning the volume and then updating the VLDB. AFS
volume-level migration is not suitable for environments
such as mobile computing, where migration of a small
“logical” set of objects is often required.

GASS provides data movement using file cache to
applications using specialized calls on Unix systems. In
order to take advantage of the supported mechanisms,
applications must explicitly access remote files using
specialized function calls such as globus_gass_open (),
globaus_gass_close (), etc.

Object level approaches, such as that of OceanStore[2],
provide migration mechanisms through traditional
(implementing their own physical file system) and non-
traditional interfaces (APIs) by utilizing location-
independent object naming. However, DiFFS provides
better migration mechanisms and higher granularity.
Partitioning based approaches such as Slice[17] and
Archipelago[18], make data migration difficult because the
object location is determined at creation time at the clients
using hashing functions; moving an object around involves
propagating a new hash value to all the clients that access
the object. This is an expensive process.

Other solutions such as Akamai FreeFlow [19] provide
mechanisms for delivering contents efficiently, but it is
primarily designed for web applications. It is not generally
suitable for applications that Application Service Providers
(ASPs) deploy.

Traditional solutions used in Hierarchical Storage
Management (HSM) systems, such as DataThink[20], are
focused on optimizing the storage space by moving inactive
data from primary storage to tertiary storage media (e.g.,
tape libraries). These systems are not concerned with
efficient data access.

Logical volume based migration approaches such as Veritas
[21], support data movement but not migration of the
control aspect of the data.

8 Conclusions

In this report, we have described two main mechanisms for
data migration that address performance and scalability in a
distributed file service which provides storage services
across multiple geographic sites. The mechanisms described
are simple, robust and designed to guarantee non-disruptive
access to data when the system is performing data
migration. We have outlined two different namespace

update approaches for object level migration and compared
them to stress the strengths of the aggressive approach.

The mechanisms proposed also handle soft state such as
leases. Migration of hard state information (e.g., locks) will
be addressed in the future.

DiFFS provides efficient data movement mechanisms and a
variety of granularities in order to help IDCs address
current and future demand for storage services. We have
provided some examples and scenarios that are potential
candidates where these data migration mechanisms can be
used. Data migration mechanisms proposed in this report,
help IDCs realize the true benefit of infrastructures based
on a utility model.

References
1. Wilkes, J., et al. Eos - The Dawn Of The Resource

Economy. in HotOS-VIII Workshop. 2001. Schloss
Elmau, Germany.

2. Kubiatowicz, J., et al. OceanStore: An Architecture for
Global-Scale Persistent Storage. in ASPLOS 2000.
2000. MA, USA: ACM.

3. StorageNetworks, http://www.storagenetworks.com.

4. StorageWay, http://www.storageway.com/.

5. ScaleEight, http://www.scale8.com/.

6. Shepler, S., et al., NFS version 4 Protocol. 2000.

7. Howard, J., et al., Scale and Performance in a
Distributed File System. ACM Transactions on
Computer Systems, 1988. 6(1): p. 51-81.

8. Bester, J., et al. GASS: A Data Movement and Access
Service for Wide Area Computing Systems. in Sixth
Workshop on I/O in Parallel and Distributed Systems.
1999. Atlanta, GA, USA.

9. Karamanolis, C., et al., DiFFS: a Scalable Distributed
File System. 2001, HP Laboratories: Palo Alto.

10. Zhang, Z., et al., Cross-Partition Protocols in a
Distributed File Service. 2001, HP Laboratories: Palo
Alto.

11. Schneider, F.B., Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial. ACM
Computing Surveys, December 1990. 22(4).

12. Karamanolis, C. and J. Magee. Configurable Highly
Available Distributed Services. in 14th IEEE
Symposium on Reliable Distributed Systems. September
1995. Bad Neuenhar, Germany.

13. Mishra, S., L.L. Peterson, and R.D. Schlichting,
Implementing Fault-Tolerant Replicated Objects Using
Psync, in Proceedings of the Eighth Symposium on
Reliable Distributed Systems. October 1989: Seatle,
Washington. p. 42--52.

14. Preslan, K., et al. Implementing Journaling in a Linux
Shared Disk File System. in 8th NASA Goddard
Conference on Mass Storage Systems and Technologies.
2000.

15. Gagner, G. and Y. Patt. Metadata Update Performance
in file Systems. in USENIX Symposium on Operating
Systems Design and Implementation (OSDI). 1994.

16. Bovet, D.P. and M. Cesati, Understanding the Linux
Kernel. 1st ed. 2001: O’Reilly.

17. Anderson, D., J. Chase, and A. Vadhat. Interposed
Request Routing for Scalable Network Storage. in
Usenix OSDI. 2000. San Diego, CA, USA: USENIX.

18. Ji, M., et al. Archipelago: An Island-Based File System
for Highly Available and Scalable Internet Services. in
4th USENIX Windows Systems Symposium. 2000.

19. Akamai, http://www.akamai.com.

20. DataThinK, http://www.datathink.com.

21. VERITAS, Veritas Volume Replicator,
http://www.veritas.com/us/products/volumereplicator/.

