[} cickano

Verification of a Synthesisable Reed-Solomon

ECC Core

David Banks

Publishing Systems and Solutions Laboratory
HP Laboratories Bristol

HPL-2001-125

E-mail: dmb@hplb.hpl.hp.com

Reed-Solomon,
error correction,
verilog,
synthesis,
synthesisable,
hardware, ECC,
Galois field

In this report we describe the verification of a Reed-Solomon
error correction core that supports errors and erasures
decoding. In a second report HPL-2001-124 we describe the
design of this core.

The verification was performed using both simulation and
prototyping.

The simulation environment consisted of automatic test vector
(codeword) generation for a variety of tests, unit delay
simulation of a gate-level netlist in Verilog-XL, and comparison
of the simulation results against an independently developed
Reed-Solomon ECC model written in C. The prototyping
environment consisted of a Xilinx FPGA containing the ECC
block with a flexible pattern generator, together with circuitry
for adding errors and erasures, and circuitry for accumulating
test results. Tests were configured using a C program (running
under Linux), which communicated with the hardware under
test using a standard parallel port interface.

Overall, we ran 1,147,000 vectors through the simulation, and
10,176,000,000 random vectors through the prototype. No
failures were detected.

) Copyright Hewlett-Packard Company 2001 Approved for External Publication

1
2

3

4

INTRODUCTION. ...ttt ettt seeaestesae e sesse s ensere e 4
VERILOG SIMULATION ..ottt sttt snn e e 5
21 METHODOLOGY ...cvvitiireiresieieseeseesessessessessessensesesessessessessessesessessssessessssensesesss 5
21.1 Overall block diagram...........cc.ccoeeeeieiecieie e 5
2.1.2 AV/= oi (0] gl < 1= = 1 o] o R 6
2.1.3 Verilog SIMUIALTON........c.ecviieieeseee e 9
214 Gadiel’ sreference encoder and decoderoccovvveevevenceeneneeene 11
2.15 S 2 L0 LY 010 (=SS 12
2.1.6 COMPAriNG FESUITS.....cveueeieriieiesiesie e 13
2.1.7 Top level ShEll SCriPt.....cccoiciieceece e 15
2.1.8 File system organi Zation...........ccccceceeeeeeiees cerese s e 16
2.2 SPECIFICTESTS tuteieueeuiereesestestessesseseesessessessessessessensessesessessessessessessessessensensens 17
22.1 Test A- Random error and erasure combinations (32)........c.cceeveueene 18
2.2.2 Test A- Random errorsand erasure combinations (20)c.cce.e... 19
2.2.3 Test B- Realistic data (32)ovvvereeeririeieesee e 20
224 Test C - All error and erasure combinations (32).......cccceceveeveneneenne. 21
2.2.5 Test C - All error and erasure combinations (20).........cccccceveveenieennens 22
2.2.6 Test D - Uncorrectable error detection (32)........ccccceeeveeveeieeveennenne, 23
2.2.7 Test D - Uncorrectable error detection (20)........cccccvveeeenenenienneneens 24
2.2.8 Test E- Sensitivity to erasure positions (32).......cccccevenererenesineennes 25
2.2.9 Test F - Sensitivity to gaps between codewords (32).........ccccveereneenee. 26
FPGA PROTOTYPE ...ttt sttt 27
31 METHODOLOGY ...ccoeiieieuienieueeseesessessessessessessesesssssessessessessensessessssessessessessenss 27
3.1.1 Overall prototype block diagram............cccccceveeveevesiereseccee e 27
3.12 Hardware deSign..........cceeiieiiieecect et et s enee s 28
3.1.3 Hardware implementation............cooeeiieeneninneeseeie e 41
3.14 TESE SOMWAI ...t ee s 45
32 SPECIFIC TESTS .uttiuteeteesteesteesteesseesntesneeeteesseesteesseesseesneesnsesnseenseessenssessnseenses 50
3.21 Test A— Random error and erasure combinations..............cccceeeenene 50
3.2.2 Test B— RealiStiC datalc.eveeeeeeeiiniiisiesiee s 52
3.23 Test C— All error and erasure combinations.............eeveeereeiesen e 53
3.24 Test D — Uncorrectable error deteCtion..........coceveeveereenenniesiinneens 54
3.25 Test E— Sensitivity t0 erasure POSItioNS.........ccoeeeeeereenierens seesieneens 56
3.2.6 Test F— Random error and erasure combinations (limited
IMIAXEN ASUIES) ... eeeeeeiestestesteseesee s et e st sesbesbe st e st e b e e e seeseebe st e sbe s b e s e e e e e st e st nbesbeneenes 57
VERIFICATION OF OTHER REED-SOLOMON CODES...........ccc....... 60
41 CODESINGF (25)..omeeeeeeeeeteeeieeee et et 60
4.1.1 SIMUIALTION ..o 60
412 PrOtOLYPE. ... e e e 60
42 CODESIN FIELDS OTHER THAN GF (25 ... 60
421 1S 1 U1 = 1o o S 60
422 PrOtOLYPE. ...t e e e 61
REFERENCES...... .o oottt sttt srae e nn e nesre s 62
APPENDIX A —-MISCORRECT PROBABILITIES.......cccoeotviininieienn 63
APPENDIX B— CALC_SYMBOL_PROBS() .eovereererrerresreniesenseesessesesseseesesnenns 64

Verification of a Synthes sable Reed-Solomon ECC Core

Page 2 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

8 APPENDIC C—CHANNEL_FI XED I NET() ooeeieeeeeeeeeeeeeeeeee e 65
Figure 1 — Overall smulation block diagramccccoeeeieieies s 5
Figure 2 — Overall prototype block diagramcccccvviiceece e 27
Figure 3 - FPGA DIOCK diagram........ccceoiieiiiiinieiese s s 28
Figure 4 - Clumped erasures— number of erasures distribution..........cc.cccceveivienee 35
Figure 5 - Clumped erasures - symbol error distribution.............cccoeeniinennncennen. 35
Figure 6 - The EVALXC2SVE-HQ240 prototyping poard............cccceeerereereererieriennens 42
Figure 7 - The PWR3 power MOAUIE..........ccoveieiiieiece et 42
Figure 8 — Custom parallel cable CONStructionccccvvceecie i 44
Figure 9 — Graph of expected verses observed miscorrection probabilities................. 59

Page 3 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

1 Introduction

This document describes the verification of the Reed-Solomon ECC block designed
by HP Labs Bristal. For further details on the design of the ECC block, please refer to
[1] . The verification was performed using both smulation and prototyping.

The amulation environment congsted of automatic test vector generator for a variety
of tests, unit delay Smulation of a gate-leve netlist in Verilog-XL, and comparison of
the smulation results againgt an independently developed Reed-Solomon ECC model
writtenin C.

The prototyping environment conssted of an FPGA containing the ECC block with a
flexible pattern generator, together with circuitry for adding errors and erasures, and
circuitry for accumulating test results. Tests are configured by a C program (running
under Linux), which communicates with the hardware under test usng a standard
pardle port interface.

The remainder of this document is structured as follows. Section 2 describesin detall
the amulation methodology and the specific tests run. Section 3 describesin detail the
prototyping methodology and the specific tests run. Findly, in section 4 we discuss
the issues that may arise in re-using this verification infrastructure for Reed-Solomon
codes other than the RS(160,128,t=16) code of interest to us.

Page 4 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

2 Verilog simulation

2.1 Methodology

2.1.1 Overall block diagram

Vector
Generation
(C code) message_data.raw
Verilog Simulation
(top.v)
.| generate_data
messagedata.v d task
y y
Gadiel's
encoder (gate reference
level netlist) encoder
(C code)
ref_encoder.raw
» cut
encoder.raw
y
our_encoder.raw v
| generate_errors
errordata.v i task compare
(C code)
.| cutand
errors.raw paste corrupt.raw
v erasures.raw v
Gadiel's
decoder (gate reference
level netlist) decoder
(C code)

ref_decoder.raw

> cut
decoder.raw

our_decoder.raw
\ 4 h 4

FULLSIMLOG and
FULLSIM shell scripts co- compare
ordinate the execution of several (C code)
tests

Figure 1—Overall smulation block diagram

The overd|l smulaion methodology isillusraed in Figure L The vect ors C
program can generate test vectors for severd tedts (testa, testh, ... etc), detaled later
in this section. The file names shown in Figure 1 are actudly prefixed with the test
name, so that the results of previous smulations are not overwritten.

For each named tegt, a verilog smulation is run which includes two externd files
(test_messagedatav and test_errordata.v) generated by the vect or s C program; one
gpecifies the 128-byte information blocks to be encoded (and the gaps between them).
The other specifies the 160-byte error patterns to apply to the encoded data. The

Page 5 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

smulation generates four files: the output of the encoder (encoder.raw) the corrupted
data and erasures positions (errorsraw and erasuresraw) and finaly the output of the
decoder (decoder.raw).

Thereaults of the verilog smulaion are checked againgt an independently coded
Reed-Solomon encoder and decoder, provided by Gadid Serouss of HP Labs Palo
Alto (for more details on this design see [2], which isdso available directly from
Gadid). The same data st is run through Gadid’ s encoder and decoder, and asimple
C program is used to compare the output status codes and corrected data.

In order to smplify the execution of severd back-to-back tests, we have provided a
sample shell script (FULLSIM), which iterates through the different tests, renaming
files where necessary, etc.

On a Pentium 111 700 MHz Linux box, running Cadence' s Verilog- XL 3.11.p001, we
achieve a smulation performance of one vector every two seconds. We found gate-
level amulation considerably (3x-6x) faster than RTL smulation, aslong asit was
done in unit delay mode (the +delay_mode_unit) flag. Thiswas dso condderably
faster (3x-6x) than usng Modd Sm 3.4a on the same platform.

Theremainder of this sub-section describes each of the components of the sSmulation
environment in greeter detail, giving specific examples where these are helpful.

2.1.2 Vectorgeneration

The vector generation phase generates a specified number of vectors for each of six
possible tests (testa, testh, testc, testd, teste and testf), which are detailed in the next
section. To generate a set of vectors, thevect or s C program must be run. The
command line option syntax for vect or s is:

vectors

a <nun®] [-b <nunp] [-c <base nunp]

d <base nun®] [-e <nunk] [-f <nunp]

s <scale factor>] [-r <random seed>] [-Vv <verbosity>]
B <code bl ock size>]

T <code correction capability>]

[
[
[
{
[-W<code synbol wi dth>]

-a The number of vectors to generate for testa (default 100).

-b The number of vectorsto generate for testb (default 100).

-C The base number of vectorsto generate for testc. The actual number of vectors
will be 289 times the base for the RS (160,128,t=16) code, Sncethistest
iterates through every correctable combination of errors and erasures (default
D).

-d The base number of vectorsto generate for testd. The actual number of vectors
will be 45.8 times the base for the RS (160,128,t=16) code, since this test
iterates through al possible numbers of erasures (default 10).

-e The number of vectors to generate for teste (default 100).

Page 6 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

-f The number of vectorsto generate for testf (defaut 100).

Thus, the default number of vectors generated is:

100+ 100+ 289+ 458 + 100+ 100 =1,147
A typicd smulation run of thislength will take about 40 minutes.

-S A scdefactor to gpply to the number of vectors for each test (default 1).

Thus if —s1000 was used, atota of 1,147,000 vectors would be generated. A
smulaion run of thislength would take about a week.

-r A random seed, so that (if required) different vector sets can be generated
(default 21011967).

-V Theverbogty (0,1,2 or 3) when generating vectors (default 1)

The Reed Solomon code to be tested is specified using the following options:

-B The block size of the Reed- Solomon code to be tested (default 160).

-T The number of errors the Reed Solomon code can correct (default 16).

-W Thesymbol width (in bits) of the Reed-Solomon code (default 8). Currently
only vaues of 4 and 8 are supported.

The default code isan RS (160, 128, T=16) in GF (2°8).

Theresult of executing the vect or s (with al the default options) would ke the

following files written to the current directory

%./vectors

Running testa for
Runni ng testb for
Runni ng testc for
Runni ng testd for
Running teste for
Running testf for

100 vectors

100 vectors

1 vectors per conbination
10 vectors per erasure
100 vectors

100 vectors

Total nunber of vectors = 1147

%Ils -1 test*

-rwr--r-- 1d

STW-T--T-- 1 dnb
STWr--T-- 1 dnb
STWr--T-- 1 dnb
SIW-r--T-- 1 dnb
STWr--T-- 1 dnb
SrwWr--r-- 1 .dnb
SrWr--r-- 1 dnb
SIWr--T-- 1 dnb
SrWr--r-- 1 dnb
STWr--T-- 1 dnb
STW-T--T-- 1 dnb
STWr--T-- 1 dnb
STW-T--T-- 1 dnb
STWr--T-- 1 dnb
STWr--T-- 1 dnb
SrWr--r-- 1 dnb
-rwr--r-- 1 dnb
SrwWr--r-- 1 dnb

users 952 Mar
users 51100 Mar
users 51300 Mar
users 28200 Mar
users 941 Mar
users 51100 Mar
users 51300 Mar
users 28200 Mar
users 2973 Mar
users 147679 Nar
users 148257 MNar
users 81498 Mar
users 5805 Mar
users 234038 Mar
users 234954 Mar
users 129156 Mar
users 890 Mar
users 51100 Mar
users 51300 Mar

00 00 0o 00 00 00 ©0 0o 0O o OO 0o o ©0 0O o ©0 0O O

11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:
11:

Page 7

41
41
41
41
41
41
41
41
41

testa.l og

testa errordata.v
t est a_nessagedat a.
t est a_nessagedat a.
testb.log

testb errordata.v
t est b_nmessagedat a.
test b_nessagedat a.
testc.log

41 testc_errordata. v

41
41
41
41
41
41

t est c_nessagedat a.
t est c_nessagedat a.
testd.l og

testd errordata.v
t estd_nessagedat a.
t est d_nmessagedat a.

41 teste.log

41
41

teste errordata.v
t est e_nmessagedat a.

raw
Vv

raw
v

raw
\

raw
\"

raw

523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

STWr--T-- 1 dnb users 28200 Mar 8 11:41 teste nessagedata.v
-rwr--r-- 1 dnb users 1090 Mar 8 11:41 testf.log

STWr--T-- 1 dnb users 51100 Mar 8 11:41 testf_errordata.v
STWr--T-- 1 dnb users 51300 Mar 8 11:41 testf_nessagedat a.raw
SIWr--T-- 1 dnb users 28341 Mar 8 11:41 testf_nessagedata. v

To understand what isin each file, we can usevect or s to generate avery short run
comprising of just three vectors for testa

./vectors -a3-b0-c0-d0-e0-fO0
Runni ng testa for 3 vectors
Total nunber of vectors = 3

The*".log” file comprises.
<vector number> <nerrors> <nerasures> <gap following this vector>

The" _messagedatav” fileisintended to be included directly in the verilog smulaion
using the “include directive. This file specifies the input to the encoder, and conssts

of acdl tothetask generat e_data (<message>, <gap>) for eachvector. Inthe
below example, each vector is 1024 hits (i.e. 128 symbols) and there are no gaps
between vectors.

dbanks: dnb: [181] % cat testa_nessagedata.v

gener at e_dat a(1024' h9516f 4223bc535bf 7b4c8d18179d458bd43717bf 4f 1cf 59999bad9c3abl16f 9402c
ed6267b297262de4b345f b508a8624c19ee311bad8aa5393f 3173e09107e35f de09caf 77c2dc5b762257c6
acddeb6e7bce7f 36a729893a1da07826b0f 65cadd6f 85c4dbb39a9315b00f 707dde27559b1f 48f 5811892
3bb90a616900bd17d6, 0)

gener at e_dat a(1024' hd4581ad411cea2ec7453bdc05ca925697c438203b5h5e7f 7872b357162f 40a364c¢
240b5ef 2ad4a660007275db14cc62d8f 483045f d173c844371f 5a565f f dch223e71016945a7c9461a3f 112
ef b8407f 0070c4f e880082ch717870d6774c889b3398b1c7f 22d5¢54d14d66c005a63f 061703049f 03866a
74f eda4b7627d3115a, 0)

gener at e_dat a(1024' hef 7eb2c0cb1981d1bf c0d7d6c4db75¢761df 3c60ba87d6el5ae73bc6a95d2598db
d759a7f 0da78b09a4f 865e2af c268bdb62eb95e9c17643a8b20a510f 2f eaeb064392f 71d0aa7b7592d1683
293c0e059¢ef a9a87bb11ca64c3d4b5d2039f bdOae24f 01f f 59a8b7b2d5cd35f f 094404a73e9e2ef 9af f 85d
72cd1345d0b202dag5, 0)

The"_errordatav” fileisadso intended to be induded in the verilog smulation. This

file specifies how datais corrupted between the encoder and decoder, and consgts of
acdl tothetask generate_error (<error pattern>, <erasure flags>).The
error pattern field specifies the magnitude of errors and erasures, and the erasure flags
field contains asingle bit erasure flag for each symbol pogtion. In thebelow example,
esch error pattern is 1280 hits (i.e. 160 symbols).

dbanks: dnb: [182] %cat testa errordata.v

gener at e_error (1280" hf cf 10000e7b10000000000000000009f 000000530000000000001800000000000
0Oaf 00710300000000000000000000000000331e00007300000000000098000000d20000000000000000000
000000000000000cd000000d286000b000000ea0000000721f 700000000007c00cc790000004c850000000
0aa00b4000000000000000000000d00005700ec000000da00000000000000000000f 20f 5d0000000000
160" b110011000000000100010000001000000101100000000000001100100000010001000000000000000
0010001101000100011100000101100011000010100000001001001010001000000000011100000)

gener at e_er r or (1280' h000
00
00
000¢200000000000000000000000000000000000000
160" b0O000
000)

gener at e_er ror (1280' h000
00
00
000

Page 8 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

160" b00O000
000) ;

Thefina file generated isthe“_messagedataraw” file, which contains the same
message dataasthe“_messagedatav” file, but in aformat suitable for Gadid'’s
reference Reed Solomon encoder. In the below example, which contains three
vectors, each vector conssts of 128 decima vaues. Thereis no explicit separator
between vectors; instead symbols are smply read in blocks of 128.

dbanks: dnb: [183] % cat testa nessagedata.raw

149 22 244 34 59 197 53 191 123 76 141 24 23 157 69 139 212 55 23 191 79

28 245 153 153 186 73 195 171 22 249 64 44 237 98 103 178 151 38 45 228 179 69
251 80 138 134 36 193 158 227 17 186 216 170 83 147 243 23 62 9 16 126 53
253 224 156 175 119 194 220 91 118 34 87 198 172 221 235 110 123 206 127 54 167

41 137 58 29 160 120 38 176 246 92 173 214 248 92 77 187 57 169 49 91 0 247
7 221 226 117 89 177 244 143 88 30 24 146 59 185 10 97 105 0 189 23 214

212 88 26 212 17 206 162 236 116 83 189 192 92 169 37 105 124 67 130 3 181
181 231 247 135 43 53 113 98 244 10 54 76 36 11 94 242 173 74 102 0 7

39 93 177 76 198 45 143 72 48 69 253 23 60 132 67 113 245 165 101 255 220 178
35 231 16 22 148 90 124 148 97 163 241 18 239 184 64 127 0 112 196 254 136 O
130 203 113 120 112 214 119 76 136 155 51 152 177 199 242 45 92 84 209 77 102
192 5166 63 6 23 3 4159 3 134 106 116 254 218 75 118 39 211 17 90
239 126 178 192 203 25 129 209 191 192 215 214 196 219 117 199 97 223 60 96 186
135 214 225 90 231 59 198 169 93 37 152 219 215 89 167 240 218 120 176 154 79
134 94 42 252 38 139 219 98 235 149 233 193 118 67 168 178 10 81 15 47 234
235 6 67 146 247 29 10 167 183 89 45 22 131 41 60 14 5 158 250 154 135
187 17 202 100 195 212 181 210 3 159 189 10 226 79 1 255 89 168 183 178 213
205 53 255 9 68 4 167 62 158 46 249 175 248 93 114 205 19 69 208 178 2
218 149

Indl of the abovefiles, the sandard Reed Solomon convention of presenting the
mogt significant symbal firgt is followed.

2.1.3 Verilog simulation

The verilog Smulation comprises atop-leve test harness (top.v) that indantiatesan
encoder and a decoder, using the gate-level netlists generated from Synopsys. The test
harness dso defines and implements two tasks: generate data and generate _error.

2.1.3.1 Generate datatask
The definition of the generate datatask islisted below:

task generate_dat a;
input [WDIH* (B- 2* T) - 1: (]

di nval ;
input [31: Q]
) gap;
i nt eger
I,
N
begi n
for (i =B-2*T- 1; i >=0; i =i - 1) begin
@posedge cl ock & cl ocken);
for (j =0, Jj <WDIH j =j +1)
din[j] <= dinval[WDIH* i +j] ;
if (i =(B-2*T- 1)) begin
| oad <= 1,
end el se begin
| oad <= 0;
end
end
@posedge cl ock & cl ocken);
din <= 'bx;
for (i =0, i <2* T+gap -1, i =i +1)
@posedge cl ock & cl ocken);
end
endt ask

Page 9 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

Thistask takestwo parameters. dinval, which specifies the message to be encoded,
and gap, which specifies the number of extraidle clock cycdlesto gopend to the
codeword. Note that a minimum of 2T idle cdlocks must be gppended, to dlow space
for the 2T check symbols. During thisidle period, din to the encoder is set to the
“don't care’ date, consequently if we ever mistakenly use this deta, the smulation
will rapidly fail.

2.1.3.2 Generate error task
The definition of the generate_error task is listed below:

task generate_error;

input [WDTH* B- 1: Q]
errorval s;

input [B- 1: 0]
erasureval s;

i nt eger
I,

N
reg [WDTH - 1: 0]
errorval ;
begi n
while (encsob != 1) begin
errorerasure <= 'bx;
errordout <= 'bx;
@posedge cl ock & cl ocken);
end
for (i =B- 1, i >>0; i =i - 1) begin
for (j =0; j <WDIH j =j +1)
errorval [j] = errorval SfWDTH * i +j] ;
errorerasure <= erasureval s[i];
errordout <= encdout ~ errorval;
@posedge cl ock &% cl ocken);
end
end
endt ask

Thistask takestwo parameters. errorvas, which specifies the corruption to be added
to the codeword, and erasurevals, which specifies whch symbols will be tagged as
erasures. The task synchronizesitsdf with the output of the encoder using the encsob
sgnd, which is asserted with the first symbol of the encoded codeword. The task
writes to the errorerasure and errordout globd registers, which are used astheinput to
the decoder. During the idle period between codewords, errorerasure and errordout are

st to the “don’t care’ State, consequently if we ever mistakenly use this deta, the
amulaion will rgpidly fall.

2.1.3.3 Initialising the simulation
Thesmulation isinitidised in avery consarvetive way, using the following verilog
initia block:

initial
begi n
... stuff deleted ...
I/l Start by letting everything get into a bad state
din <= 'bx;

| oad <= 'bx;
reset <= 'bx;
naxerasures <= 'bx;

/] Véit for it to get really bad
for (i =0; i <50; i =i + 1)
@posedge cl ock & cl ocken);

/1 Blip reset for a single clock cycle
@posedge cl ock &% cl ocken) ;

Page 10 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

reset <= 1,
@posedge cl ock & cl ocken);
reset <= 0;

/1 Take | oad to sonething sensible as well
load <= O;
naxer asures <= ~ NAXERASURES;

/1 Wit one nore clock before starting
@ posedge cl ock &% cl ocken);

“include "test_messagedat a. v"

for (i =0; i <1000; i =i +1)
@posedge cl ock & cl ocken);

theend <= 1;

for (i =0; i <10; i =i + 1)
@posedge cl ock & cl ocken);

$finish;
end
The most important thing to noteis thet the input Sgnals to the Smulation will bein
the worst possible state (the don't care state) for many cycles prior to the reset, and
that reset is asserted for asingle cycle. Thisvdidatesthat asingle cyclereset is
aufficient to reset both the encoder and decoder.

2.1.3.4 Simulation input and output files

Theinput to the smulation is the following two files:
i. test messagesv — alig of cdlsto generate data, as generated by vect ors.
ii. test errordatav — alig of cdlsto generate error, asgenerated by vectors.

The output from the smulation is the following four files
i. encoder.raw — containing the output of the encoder.
ii. erorsraw — containing the corrupted codewords.
iii. erasures.raw — containing the erasure postions.
iv. decoder.raw — containing the output of the decoder.

2.1.4 Gadiel's reference encoder and decoder

Gadid Serouss, of HP Labs Palo Alto, wrote the reference Read Solomon encoder
and decoder. This code has been well used in HP over a number of years.

Sight modifications to the outer “wrapper” of this code have been madein the
following aress.

i. Theformat in which the data files are read and written has been changed. In
the origind code the data files were binary. Each symbol was represented by a
single byte, limiting the maximum symbol szeto 8 bits. We have instead
adopted the above (.raw) format, where a white-gpace-separated decimal
number represents each symbol. This, in principle, dlows codes with symbols
larger than 8 bits to be supported.

ii. Althoughtheorigind code fully implemented erasure decoding, this
functionality was not supported in the outer “wrapper”. We have modified the
wrapper such that the input to the decoder comprises B symbols (the corrupted

1 The origind code was retained, and can be enabled by #defining BINARY infilersc.

Page 11 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

data) followed by afurther B symbols flagging erasures (0 = no erasure, 1 =
erasure).2

iii. Intheorigind code, the decoder output the corrected data only and not the
additiona check symbols. We have modified the wrapper to output the
complete decoded codeword (data and check symbols) plus one additiond
symbol to indicate whether decoding was successful (0 = OK, 1 =fall).

iv. A -V option was added to alow the maximum number of erasuresto be
reduced from the code’ s maximum (the default) to asmdler vaue. This
mimics the behaviour of our decoder.

For the RS (160, 128, t = 16) code, the following command must be executed to run
the reference encoder:

rs —n160 —+32 <input_file.raw> <output_file.raw

Thefile<i nput _file. raw> should contain the messages to be encoded (128 decimd
symbols per message). The resulting codewords will be written to thefile
<out put _fil e.raw> (160 decima symbols per codeword). An example of the output
IS

Field parans: m= 8 poly = 11d

RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
100 bl ocks processed, 12800 synbols in, 16000 synbol s out

For the RS (160, 128, t = 16) code, the following command must be executed to run
the reference decoder:

rs —d -n160 —+32 V20 <input_file.raw> <output_file.raw

Thefile<i nput _fil e. raw> should contain the corrupted codewords to be decoded
(160 decima symbols per codeword). The resulting corrected codewords will be
written to the file<out put _fi I e. raw> (160 decima symboals plus one satus symbol
per codeword). An example of the output is:

Field parans: m= 8 poly = 11d

RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k

100 bl ocks processed, 63 K, 37 failed

Chi en searches: 75
12800 synbol s out, 16000 synbols in, 543 corrected

2.1.5 Statuscodes

Gadid’ s reference decoder uses the following status codes:
0 Correctable.
1 Uncorrectable.

Our decoder uses the following basic status codes:
Correctable, no errors, no erasures.
Correctable, no errors, sSome erasures.
Correctable, some errors, no erasures.
Correctable, some errors, some erasures.
Uncorrectable, no erasures.
Uncorrectable, some erasures.

abrrwNEFL O

2 This new erasures functiondity is enabled by #defining WITHERASURES infilersc.

Page 12 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

Dueto the interna architecture of the decoder, the status code is generated after the
decoder has atempted to correct the corrupted codeword, and is available when the
find symbol of the corrected codeword is being output. This minimises latency. Thus,
regardiess of whether the error pattern is correctable, or not, the decoder will dways
attempt to correct it.

As an additiond check, the decoder re-cal cul ates the syndromes over each sequence
of symbols output by the decoder. This check is performed by thefind pipeine stage
within the decoder, called the monitor block.

If the Satus code was 0 to 3, the sequence of symbols output by the decoder should
aways correspond to avalid codeword (i.e. the syndromes will be zero). If thisis not
the case, the status code is replaced with 6.

If the gtatus code was 4 or 5, the sequence of symbols output by the decoder is
unlikely to be avdid codeword (i.e. one or more of the syndromes should ke nor+
zero). If thisis not the case, the gtatus code is replaced with 7.

The status codes 6 and 7 should dways be tregted as uncorrectable.
More specificaly:

6 Uncorrectable, specid case 1. This represents the case where the satus
code going into the monitor block was 0 to 3 (i.e. correctable), yet for some
reason the syndrome of the sequence of symbols output by the decoder was
non-zero, indicating an invaid codeword. This could indicate adesign error in

the decoder. It could adso indicate thet hardware is not operating reliably, say
due to incorrect power supply voltages, or excessve system noise.

7 Uncorrectable, specia case 2. This represents the case where the status
code going in to the monitor block was 4 or 5 (i.e. uncorrectable), yet for some
reason the syndrome of the sequence of symbols output by the decoder was
zero, indicating avadid codeword. This event does occur in practise,

particularly if the weight of the error patternis 2T + 1 (i.e. just above what is
correctable). Usudly the codeword, whilgt vdid, isthe wrong one. The only
reason we expose this behaviour outside of the decoder is because it may help,

in the future, usto design more effective decoders.

2.1.6 Comparing results

Thefina smulation step for each test isto compare the results of our verilog
samulation with that of Gadidl’ s reference encoder and decoder. We have written a
amdl C program, conpar e, for this purpose. The syntax for compare is.

conpare <test.log> <ref_file.raw> <our_file.raw
[<encoder flag> [<T> <maxerasures>]]

<t est . | og> should bethe log file generated from vect or s for thistest.

<ref _file.raw> should be the output generated from Gadid’s reference encoder or
decoder.

Page 13 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

<our raw file> should bethe output generated from the verilog smulation.

When checking the encoding process, an <encoder flag> of 1 must be specified,
informing compare that the input files contain no Satus code, otherwise conpar e
expects a Satus code to be appended.

 should match the block size of the code (eg. 160).

<T> should be the error correction capability of the code (eg. 16).

<maxer asur es> should be the maximum number of dlowable erasures (eg. 20 or 32)
The following checks are performed:

i. Encoder data check — the codewords output from our encoder should match
the codewords output from the reference encoder for al messages.

ii. Decoder data check — the corrected codewords from our decoder should match
the corrected codewords from the reference decoder, for dl the codewords that
the reference decoder was able to correctly decode (i.e. this step is omitted for
uncorrectable error patterns, since in this case the data output is undefined).

iii. Decoder status check — thefollowing checks are gpplied to the Status codes
generated by the decoders.
- astatus code in the range 0..3 from our decoder should match a0 status
code from the reference.
- adauscodeintherange4..7 from our decoder should match a1 Satus
code from the reference decoder.

iv. Decoder sanity check — using the log file generated by vect or s we perform
some sanity checks on both the reference decoder and our decoder. Thisisan
attempt to check there is no defect that affects both the reference decoder and
our decoder. More specificaly,

- if anerror patern has 2 * nerrors + nerasures £ 2T and nerasures£
maxerasures, then it should be declared correctable. We check thisis
the case.

- if anerror paternshas 2 * nerrors + nerasures > 2T and nerasures £
maxerasures, then it may be miscorrected. We track the number of
times this happens.

- if anerror pattern has nerasures > maxerasures, it should aways be
declared uncorrectable. We check thisis the case.

An example run of conpar e for the encoder isillusrated below:

processed 1000 bl ocks
checki ng encoders agai nst each ot her
dcheckcount =1000 df ai | count =0

The status and data for al 1000 vectors was checked, no failures were detected.

An example run of conpar e for the decoder isillustrated below:

Page 14 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

processed 1000 bl ocks
checki ng reference decoder agai nst expected behavi our:

#failures to correct=0, #m scorrects=6

refstatus=0 occurred 727 times

refstatus=1 occurred 273 tines

m scorrect table:

nerasures=32 occurred 14 times, mscorrected 6 times

checki ng our decoder agai nst expected behavi our:

#failures to correct=0, #n scorrects=6

ourstatus=0 occurred 103 tines

ourstatus=1 occurred 164 tines

ourstat us=2 occurred 177 tines

our stat us=3 occurred 283 tines

ourstatus=4 occurred 55 tines

ourstatus=5 occurred 217 tines

ourstatus=6 occurred O tines

ourstatus=7 occurred 1 times

m scorrect table:

nerasures=32 occurred 14 times, mscorrected 6 times

checki ng decoders agai nst each ot her

scheckcount =1000 sf ai | count =0 dcheckcount =727 df ai | count =0

Thedausof al 1000 vectors was checked, no failures were detected. The data for the
727 codewords with correctable errors according to the reference decoder were
compared againgt our decoder. Again, no failures were detected. The miscorrect table
details where miscorrects occurred. All of the miscorrects correspond to the case
where nerasures was 32, which is as expected.

2.1.7 Top level shell script
A smpletop-leve shdl script (FULLSIM) is provided to run dl Six tedts (testa-testf):
#!/ bi n/ csh

set BLOK=160
set R=32
set T=16

foreach nane (testa 32 testa 20 testb_32 testc_32 testc_20 testd 32 testd 20 teste 32
testf_32)

set test="echo $name | cut -d_-f1
set maxerasures = “echo $narme | cut -d_ -f2°

ECHO "H** XA hd Ak kA Ak K KKK KKK KKK K KA KK I KK IR AR IR A K I X kK

echo "Running $t est with nmaxerasures $naxerasures"
echo AR R EE RS R R RS SRS RS E SRS EEEEEEEEEEEEEEEEEEEEEEEEEEE A

Input files to the sinulation
rm-f test_nessagedata.v
rm-f test_errordata.v

Qutput files fromthe simlation
rm-f encoder.raw

rm-f errors.raw

rm-f erasures.raw

rm-f decoder.raw

In -s vectors/${test}_nessagedata.v ./test_nessagedata.v
In -s vectors/${test}_errordata.v ./test_errordata.v

#verilog top.v encoder.v decoder.v synbol del ay.v erasurelist.v delay.v expander.v
scal er.v syndrome. v euclid.v polyeval .v fourney.v nonitor.v

verilog +define+GATE LEVEL +defi ne+MAXERASURES="$naxer asures" +del ay_node_unit top.v
gat el evel / encoder . vg gat el evel / decoder.vg Hibext+. v -y ~/reedsol onmon/|i bs/ perf/veri

verilog.| og vectors/ ${nare}_veril og. | og
encoder . raw vect or s/ ${ nane} _encoder . r aw
errors.raw vectors/ ${nane}_errors. raw
erasures. raw vectors/ ${nane} _erasures. raw
decoder . r aw vect or s/ ${ nane} _decoder . r aw

23333

Page 15 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

echo "Runni ng reference encoder"
cut -d"#" -f1 < vectors/${nanme}_encoder.raw > vect ors/ ${ nane} _our encoder . raw

.Ibin/rs -n${BLOCK} -r${R vectors/${test}_nessagedata.raw

vect or s/ ${ nane} _r ef encoder . raw

./ bin/conpare vectors/${test}.log vectors/${nane}_ref encoder.raw
vect or s/ ${ nane} _ourencoder.raw 1 ${BLOCK} ${T} ${naxerasures}

it $?

echo "

el se
echo
endi f

echo

== 0) then

Check successful, the encoder passed the test."

echo "Runni ng reference decoder”

"Check failed, the encoder failed the test."

cut -d"#" -f1l < vectors/${nanme}_decoder.raw > vectors/ ${nane}_our decoder. raw

cut -d"#" -f1 < vectors/${nane}_errors.raw > vectors/1
cut -d"#" -f1 < vectors/${nane}_erasures.raw > vectors/2
paste vectors/1 vectors/2 | tr -d "\t" > vectors/${nane}_corrupted.raw

.Ibin/rs -d -n${BLOXK} -r${R -V${naxerasures} vectors/${name}_corrupted. raw
vect or s/ ${ nane} _r ef decoder . raw

./bin/conpare vectors/${test}.log vectors/${nare} _ref decoder.raw
vect or s/ ${ nane}_ourdecoder.raw 0 ${BLOK} ${T} ${maxerasures}

if ($?
echo

el se
echo

endi f

ed

==0) then

"Check successful, the decoder passed the test."

"Check failed, the decoder fail ed the test."

The only point of noteis that this shell script dso controls the vaue of maxerasures
into both the reference decoder and our decoder. Generdly dl smulation is done with
maxerasures st to 32. We do however re-run three of the tests with maxerasures set

to 20.

2.1.8 File system organization
The following files and directory hierarchy isrequired for the Smulation:

bin/rs

bi n/ conpar e

gat el evel / decoder . vg

gat el evel / encoder . vg

vectors

vectors/testa errordata.v
vectors/testa.l og

vect or s/t est a_messagedat a. raw
vect or s/ t est a_nessagedat a. v
vectors/testb_errordata.v
vectors/testb. | og
vectors/testb_nmessagedat a. raw
vect or s/ t est b_nessagedat a. v
vectors/testc_errordata.v
vectors/testc. | og

vect or s/ t est c_nessagedat a. r aw
vect or s/t est c_nessagedat a. v
vectors/testd_errordata.v
vectors/testd. | og

vect or s/t est d_nessagedat a. r aw
vect or s/ t est d_nessagedat a. v
vectors/teste_errordata. v
vectors/teste.log

vectors/test e_nmessagedat a. raw
vect or s/ t est e_nessagedat a. v
vectors/testf_errordata.v
vectors/testf.log

vect ors/t estf_messagedat a. r aw

Page 16

523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

vectors/testf_nessagedat a. v
vectors/testjimerrordata. v
vectors/testjimlog
vectors/testjimnessagedat a. raw
vect ors/testjimnessagedat a. v
top.v

par ans. v

2.2 Specific tests
The tests described in this section werefirst described in [3].

The overdl processfor vector generation iscommon to al of thetests. A single vector
comprises three dements:
i. A randomly generated message (e.g. 128 random bytes).
ii. A randomly generated gap following the message.
iii. A randomly generated pattern of errors and erasures, whose characterigtics
differ between the different tests.

A further point worth noting isthet an error (by definition) must have anon-zero
meagnitude, or it would not be an error. An erasure, however, may be flagged ona

symbol that is actudly correct. Thus, when generating an erasure we do not exclude
this posshility.
In the below descriptions, B refers to the block size of the code, and T to it's error

correcting capability. For example, an RS (160, 128, t=16) code would yidd avdue
of 160 for B and 16 for T.

Page 17 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

2.2.1 Test A-Random error and erasure combinations (32)

The purpose of thistest is to validate the decoder operates correctly when successive
vectors contain wildly different error characteristics.

We generate successive vectors ensuring the no errors case, the errors only case, the
erasures only case and the errors and erasures case each occurring frequently. We dso
want include some uncorrectable codewords, to vaidate uncorrectable error pattern
detection. Randomly sdected vaid codewards will be corrupted according to the
following error digtribution:

1/10 no errors

2/10 erors only

2/10 erasures only

5/10 errors and erasures

Theweight (nerrors* 2 + nerasures) of the error pattern in each case will be chosen a
random from the range O to 3T. Error patterns with aweight > 2T are generaly
uncorrectable. However, thereisasmdl probaility that some of these corrupted
codewords will be "within the ball" of a different codeword, and thus will miscorrect.
The proportion of these heavily corrupted codewords that miscorrect should

correspond to the mathematical mode (see table in Appendix A)

The following results were obtained for the run generated fromvect ors - s10:

Runni ng reference encoder
Field parans: m= 8 poly = 11d
RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
1000 bl ocks processed, 128000 synbol s in, 160000 synbol s out
processed 1000 bl ocks
checki ng encoders agai nst each ot her
dcheckcount =1000 df ai | count =0
Check successful, the encoder passed the test.
Runni ng ref erence decoder
Field parans: m= 8 poly = 11d
RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
1000 bl ocks processed, 690 CK, 310 failed
Chi en searches: 717
128000 synbol s out, 160000 synbols in, 7122 corrected
processed 1000 bl ocks
checki ng reference decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=8
refstatus=0 occurred 690 tines
refstatus=1 occurred 310 times
m scorrect table:
ner asur es=26 occurred 11 tinmes, mscorrected 1tines
ner asur es=30 occurred 6 times, mscorrected 3 times
nerasur es=32 occurred 8 times, mscorrected 4 tinmes
checki ng our decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=8
ourstatus=0 occurred 111 tines
ourstatus=1 occurred 137 times
our stat us=2 occurred 160 times
our stat us=3 occurred 282 times
ourstatus=4 occurred 64 tines
ourstatus=5 occurred 245 tines
ourstatus=6 occurred O tines
ourstatus=7 occurred 1 tines
m scorrect table:
nerasures=26 occurred 11 times, mscorrected 1times
ner asur es=30 occurred 6 tines, mscorrected 3 tines
nerasur es=32 occurred 8 times, mscorrected 4 tines
checki ng decoders agai nst each ot her
scheckcount =1000 sfai | count =0 dcheckcount =690 df ai | count =0
Check successful, the decoder passed the test.

Page 18 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

Within this run, 8 miscorrects occurred, generaly when the number of erasures was
large. This corrdates well with the expected probabilities.

2.2.2 Test A-Random errors and erasure combinations (20)

Thisisidenticd to the previous test, except that maxerasures has been reduced to 20.
This causes some (previoudy) correctable error patterns to be dechred uncorrectable,
but has the advantage of reducing the probability of miscorrection.

For the run generated from vectors -s10, the following results were obtained:

Runni ng ref erence encoder
Field parans: m= 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25. 00% over k
1000 bl ocks processed, 128000 synbol s in, 160000 synbol s out
processed 1000 bl ocks
checki ng encoders agai nst each ot her
dcheckcount =1000 df ai | count =0
Check successful, the encoder passed the test.
Runni ng ref erence decoder
Field parans: m= 8 poly = 11d
RS code params: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
1000 bl ocks processed, 613 CK, 387 failed
Chi en searches: 616
128000 synbol s out, 160000 synbol s in, 5088 corrected
processed 1000 bl ocks
checki ng reference decoder agai nst expected behavi our:
#failures to correct=0, #mscorrects=0
ref status=0 occurred 613 tines
refstatus=1 occurred 387 tines
checki ng our decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=0
ourstatus=0 occurred 111 times
ourstatus=1 occurred 80 times
our stat us=2 occurred 160 ti mes
ourstat us=3 occurred 262 tines
ourstatus=4 occurred 64 tines
ourstat us=5 occurred 245 times
ourstatus=6 occurred O tines
our status=7 occurred 78 tines
checki ng decoders agai nst each ot her
scheckcount =1000 sfai | count =0 dcheckcount =613 df ai | count =0
Check successful, the decoder passed the test.

It can be seen that reducing maxerasures from 32 to 20 has removed diminated the
miscorrected codewords, but at the expense of faling to correct some previoudy
correctable error patterns. In particular, 77 codewords that were previoudy corrected
are now declared as uncorrectable (these 77 are now declared as status code 7,
implying avaid codewad was Hill output).

Page 19 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

2.2.3 Test B - Realistic data (32)

The purpose of this test is to exercise the decoder with error patterns similar to those
expected in the target application.

For each vector, the number of erasuresis randomly selected from therange O to 2T *
5/8 - 1, and the number of errorsis selected randomly from therangeOto T * 3/8 - 1.
For T=16, this corresponds to 0 to 20 and O to 6 respectively. All error patterns should
be corrected.

The following results were obtained for the run generated fromvect ors - s10:

Runni ng ref erence encoder
Field parans: m= 8 poly = 11d
RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
1000 bl ocks processed, 128000 synbol s in, 160000 synbol s out
processed 1000 bl ocks
checki ng encoders agai nst each ot her
dcheckcount =1000 df ai | count =0
Check successful, the encoder passed the test.
Runni ng ref erence decoder
Field parans: m= 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25. 00% over k
1000 bl ocks processed, 1000 K, O fail ed
Chi en searches: 991
128000 synbol s out, 160000 synbol s in, 13073 corrected
processed 1000 bl ocks
checki ng reference decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=0
refstatus=0 occurred 1000 ti nes
refstatus=1 occurred O tines
checki ng our decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=0
ourstatus=0 occurred 9 tines
ourstatus=1 occurred 131 times
ourstatus=2 occurred 44 times
ourstat us=3 occurred 816 tinmes
ourstatus=4 occurred O tines
ourstatus=5 occurred O tines
ourstatus=6 occurred O tines
ourstatus=7 occurred O tines
checki ng decoders agai nst each ot her
scheckcount =1000 sf ai | count =0 dcheckcount =1000 df ai | count =0
Check successful, the decoder passed the test.

Every codeword was declared correctable, and no data mis-matches between the
decoderswere observed.

Page 20 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

2.2.4 Test C-Allerror and erasure combinations (32)

The purpose of thistest is to exhaustively test every correctable combination of
number of errors and number of erasures.

More specificaly, we check dl combinations where nerrors * 2 + nerasures = weight,
where weight varies between 0 and 2T. For each weight vaue, nerrors can range from
0to (weight/2). For the RS (160, 128, t=16) code, the number of combinations works
out a 289. For each combination we generate <base_nune vectors. All error patterns
should be corrected.

The following results were obtained for the run generated fromvect ors - s10:

Runni ng ref erence encoder
Field paranms: m= 8 poly = 11d
RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
2890 bl ocks processed, 369920 synbols in, 462400 synbol s out
processed 2890 bl ocks
checki ng encoders agai nst each ot her
dcheckcount =2890 df ai | count =0
Check successful, the encoder passed the test.
Runni ng ref erence decoder
Field parans: m= 8 poly = 11d
RS code params: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
2890 bl ocks processed, 2890 K, O failed
Chi en searches: 2880
369920 synbol s out, 462400 synbol s in, 46240 corrected
processed 2890 bl ocks
checki ng reference decoder agai nst expected behavi our:
#failures to correct=0, #mscorrects=0
refstatus=0 occurred 2890 tinmes
refstatus=1 occurred O tines
checki ng our decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=0
our status=0 occurred 10 times
ourstatus=1 occurred 320 tines
our stat us=2 occurred 160 ti mes
our stat us=3 occurred 2400 tines
ourstatus=4 occurred O tines
ourstatus=5 occurred O tines
ourstatus=6 occurred O tines
ourstatus=7 occurred O tines
checki ng decoders agai nst each ot her
scheckcount =2890 sf ai | count =0 dcheckcount =2890 df ai | count =0
Check successful, the decoder passed the test.

Every codeword was declared correctable, and no data mis-matches between the
decoderswere observed.

Page 21 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

2.25 Test C-Allerror and erasure combinations (20)

Thisisidenticd to the previous test, except that maxerasures has been reduced to 20.
This causes some (previoudy) correctable error patterns to be declared uncorrectable,
but has the advantage of reducing the probability of miscorrection.

Runni ng ref erence encoder
Field parans: m= 8 poly = 11d
RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25.00% over k
2890 bl ocks processed, 369920 synbols in, 462400 synbol s out
processed 2890 bl ocks
checki ng encoders agai nst each ot her
dcheckcount =2890 df ai | count =0
Check successful, the encoder passed the test.
Runni ng ref erence decoder
Field parans: m= 8 poly = 11d
RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
2890 bl ocks processed, 2470 CK, 420 failed
Chi en searches: 2460
369920 synbol s out, 462400 synbol s in, 35110 corrected
processed 2890 bl ocks
checki ng reference decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=0
refstatus=0 occurred 2470 tines
refstatus=1 occurred 420 times
checki ng our decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=0
our status=0 occurred 10 times
ourstatus=1 occurred 200 times
ourstatus=2 occurred 160 ti mes
our st at us=3 occurred 2100 ti nes
ourstatus=4 occurred O tinmnes
ourstatus=5 occurred O tines
ourstatus=6 occurred O tines
our st at us=7 occurred 420 times
checki ng decoders agai nst each ot her
scheckcount =2890 sf ai | count =0 dcheckcount =2470 df ai | count =0
Check successful, the decoder passed the test.

Compared to the previous run, 420 codewords are now declared as uncorrectable.
This should be the number of codewords with between 21 and 32 erasures. Thisturns
out to be the case®

360+60+50+50+40+40+30+30+20+ 20+ 10+ 10=420

Page 22 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

2.2.6 Test D-Uncorrectable error detection (32)

The purpose of thistest is to confirm that the observed probability of miscorrection,
given a specific number of erasures, correlates with the mathematical model. The
expected probabilities derived from the model are listed in Appendix A.

Asitisonly feasble to smulate ardatively smal number of vectors, the results will
be gatigticaly sgnificant only in the cases where the probability of miscorrectionis
large. This sametest can be performed on the FPGA prototype with more than 10"5
times as many vectorsin agiven time. Thus, more satistically sgnificant results can
be obtained in this way.

A large number (B) of errorswill be added, to essentialy randomise the codeword.
Following this, the number of erasuresis varied from 0 to B. For nerasures £ 2T we
run 10x as many vectors as for nerasures > 2T.

The following results were obtained for the run generated fromvect ors - s10:

Runni ng ref erence encoder
Field parans: m= 8 poly = 11d
RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
4580 bl ocks processed, 586240 synbols in, 732800 synbols out
processed 4580 bl ocks
checki ng encoders agai nst each ot her
dcheckcount =4580 df ai | count =0
Check successful, the encoder passed t he test.
Runni ng ref erence decoder
Field parans: m= 8 poly = 11d
RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
4580 bl ocks processed, 166 K, 4414 failed
Chi en searches: 1704
586240 synbol s out, 732800 synbols in, 5223 corrected
processed 4580 bl ocks
checki ng reference decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=166
refstatus=0 occurred 166 tinmes
refstatus=1 occurred 4414 tines
m scorrect table:
nerasures=26 occurred 100 times, m scorrected 1times
nerasures=28 occurred 100 times, mscorrected 21 times
nerasures=30 occurred 100 times, mscorrected 43 times
nerasures=31 occurred 100 tines, mscorrected 1tinmes
nerasures=32 occurred 100 times, mscorrected 100 tines
checki ng our decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=166
ourstatus=0 occurred O tines
ourstatus=1 occurred 101 times
ourstatus=2 occurred O tines
ourstatus=3 occurred 65 tines
ourstatus=4 occurred 100 tines
ourstatus=5 occurred 4300 tines
ourstatus=6 occurred O tines
ourstatus=7 occurred 14 times
m scorrect table:
ner asures=26 occurred 100 tines, m scorrected 1tines
nerasures=28 occurred 100 times, niscorrected 21 tines
nerasures=30 occurred 100 times, mscorrected 43 times
nerasures=31 occurred 100 tines, mscorrected 1times
nerasures=32 occurred 100 times, mscorrected 100 tines
checki ng decoders agai nst each ot her
scheckcount =4580 sf ai | count =0 dcheckcount =166 df ai | count =0
Check successful, the decoder passed the test.

Comparing these results to the probabilities in gppendix A shows a good match.

Page 23 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

2.2.7 Test D-Uncorrectable error detection (20)
Thisisidentica to the previous test, except that maxerasures has been reduced to 20.

The following results were obtained for the run generated fromvect ors - s10:

Runni ng ref erence encoder
Field parans: m= 8 poly = 11d
RS code parans: n = 160 r = 32 k = 128 L = 1 redund = 25. 00% over k
4580 bl ocks processed, 586240 synbols in, 732800 synbol s out
processed 4580 bl ocks
checki ng encoders agai nst each ot her
dcheckcount =4580 df ai | count =0
Check successful, the encoder passed the test.
Runni ng ref erence decoder
Field parans: m= 8 poly = 11d
RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
4580 bl ocks processed, 0 CK, 4580 failed
Chi en searches: 1102
586240 synbol s out, 732800 synbols in, O corrected
processed 4580 bl ocks
checki ng reference decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=0
refstatus=0 occurred O tines
refstatus=1 occurred 4580 tines
checki ng our decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=0
ourstatus=0 occurred O tines
ourstatus=1 occurred O tines
ourstatus=2 occurred O tines
ourstatus=3 occurred O tines
our stat us=4 occurred 100 ti mes
ourstatus=5 occurred 4300 tines
ourstatus=6 occurred O tines
our stat us=7 occurred 180 ti mes
checki ng decoders agai nst each ot her
scheckcount =4580 sf ai | count =0 dcheckcount =0 df ai | count =0
Check successful, the decoder passed the test.

It can be seen Al codewords are declared uncorrectable, and that no miscorrections
are observed.

Page 24 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

2.2.8 Test E -Sensitivity to erasure positions (32)

The purpose of thistest isto validate the operation of the erasurelist block within the
decoder.

We generate codewords where the erasures are clustered at the beginnings and ends of
codewords. Thisis a particularly gressful case for the erasurdist block; thetest in
effect checks that erasures are alway's associated with the correct codeword. All error
patterns should be corrected. More specificaly:

3/10 of the time a codeword will have O, 1 or 2 erasures

4/10 of the time a codeword will have between 3 and 2T-3 erasures

3/10 of the time acodeword will have 2T -2, 2T-1 or 2T erasures

The erasures be will distributed within the codeword as follows:
3/10 of time clustered a the start
3/10 of time clustered at the end
4/10 of time dustered at the start and end

The dustering dgorithm will set an erasure in alocation with a probability of 0.9,
moving in from the start or end of the codeword until the required number of erasures
has been marked.

The following results were obtained for the run generated fromvect ors - s10:

Runni ng ref erence encoder
Field parans: m= 8 poly = 11d
RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
1000 bl ocks processed, 128000 synbol s in, 160000 synbol s out
processed 1000 bl ocks
checki ng encoders agai nst each ot her
dcheckcount =1000 df ai | count =0
Check successful, the encoder passed the test.
Runni ng ref erence decoder
Field parans: m= 8 poly = 11d
RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
1000 bl ocks processed, 1000 CK, O failed
Chi en searches: 896
128000 synbol s out, 160000 synbol s in, 15721 corrected
processed 1000 bl ocks
checki ng reference decoder agai nst expected behavi our:
#failures to correct=0, #mscorrects=0
refstatus=0 occurred 1000 tines
refstatus=1 occurred O tines
checki ng our decoder agai nst expected behavi our:
#failures to correct=0, #m scorrects=0
ourstat us=0 occurred 104 times
ourstatus=1 occurred 896 tines
ourstatus=2 occurred 0 tines
ourstatus=3 occurred O tines
ourstatus=4 occurred O tinmes
ourstatus=5 occurred O tines
ourstatus=6 occurred O tines
ourstatus=7 occurred O tines
checki ng decoders agai nst each ot her
scheckcount =1000 sfai |l count =0 dcheckcount=1000 df ai | count =0
Check successful, the decoder passed the test.

Every codeword was declared correctable, and no data mis-matches between the
decoderswere observed.

Page 25 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

2.29 Test F-Sensitivity to gaps between codewords (32)

The purpose of thistest isto verify that gaps between codewords are of no
significance to the operation of the encoder or decoder.

Thistest replicatestest A, but adds gaps between the codewords. The length of the
gap is chosen a random from between 1 and 4B clock cycles from the following
digtribution:

4/10 between 1 and 2T

3/10 between 2T + 1 and B

1/10 between B + 1 and 2B

1/10 between 2B + 1 and 3B

1/10 between 3B + 1 and 4B

The following results were obtained for the run generated fromvect ors -s10:

Runni ng ref erence encoder
Field parans: m= 8 poly = 11d
RS code parans: n =160 r = 32 k = 128 L = 1 redund = 25. 00% over k
1000 bl ocks processed, 128000 synbol s in, 160000 synbol s out
processed 1000 bl ocks
checki ng encoders agai nst each ot her

dcheckcount =1000 df ai | count =0
Check successful, the encoder passed the test.
Runni ng ref erence decoder
Field parans: m= 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25. 00% over k
1000 bl ocks processed, 727 K, 273 failed
Chi en searches: 743
128000 synbol s out, 160000 synbols in, 7550 corrected
processed 1000 bl ocks
checki ng reference decoder agai nst expected behavi our:

#failures to correct=0, #m scorrects=6

refstatus=0 occurred 727 tines

refstatus=1 occurred 273 times

m scorrect table:

nerasures=32 occurred 14 tines, mscorrected 6 times

checki ng our decoder agai nst expected behavi our:

#failures to correct=0, #m scorrects=6

ourstatus=0 occurred 103 ti mes

ourstatus=1 occurred 164 times

ourstatus=2 occurred 177 tines

ourstatus=3 occurred 283 times

ourstatus=4 occurred 55 tines

ourstatus=5 occurred 217 times

ourstatus=6 occurred O tines

ourstatus=7 occurred 1 tines

m scorrect table:

nerasures=32 occurred 14 times, mscorrected 6 times

checki ng decoders agai nst each ot her

scheckcount =1000 sfai | count =0 dcheckcount =727 df ai | count =0
Check successful, the decoder passed the test.

These results show the operation of the encoder and decoder is independent of gaps
between codewords. The reason the results are not identica to test A isthat drawing
additiond random numbers to determine the length of gep affects the precise error

patterns.

Page 26 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

3 FPGA prototype
3.1 Methodology

3.1.1 Overall prototype block diagram

IBM PC running
RedHat Linux 6.1

FPGA Evaluation Board
(Erst Electronic GbmH - EVALXC2SVE)

Test Software (configured with XChecker cable)
written in C
running as root download Xilinx XCV1000E-6
oot test configuration
iIrec i
hardware] [(368 bits) » 16 MHz
access
— -_encoder
Parallel port / . \|l||2%
controller Centrontlcs LE)larallel 5" 5
hardware \/ port cable / o
i
upload
test results
(1240 bits) T GND T 1.8V T 3.3V

Power Supply
(Erst Electronic GbmH - PWR3)

T GND T 6V-12V

Bench Power Supply

Figure2—Overall prototype block diagram

At the core of the prototype are the Reed-Solomon encoder and decoder, surrounded
by some hardware for generating test messages, adding error and erasure patterns, and
capturing results. All of this functiondity isimplemented using an off-the-shelf FPGA
prototyping board containing asingle Xilinx XCV 1000E FPGA. Also implemented in
this FPGA isapardld port interface. This dlows test configurations to be
downloaded and test results to be uploaded. An individud test comprises up to 232
vectors, and with a 16 MHz clock 10"5 vectors can be run every second.

The hardware is controlled from a PC running Linux. The controlling test softwareis
written in C, and is able to access the hardware registers of the pardld port controller
directly. The advantage of this gpproach is that no kernd drivers are required; the
disadvantage is that the test software must be run as root.

The default behaviour of the test softwareisto first vaidate the connection tothe
hardware (usng some simple loopback modes implemented by the pardld port
interface in the FPGA). Once thisis done, alarge number of individud tests are run
sequentialy. For eech tegt, a configuration is downloaded which specifies the type
and number of messages and the required ditribution of errors and erasures. The test
is started, and the hardware polled for until adoneflag is seen. Oncethetest is
complete, the results are uploaded and compared againgt the expected results.

Page 27 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

3.1.2 Hardware design
3.1.2.1 FPGA block diagram

Clock ClockEnable
———
nReset
Start
5 _> Pattern Generator
LEDO B
j=2]
Q
@
LED1 £
»
c A 4
o
®
% Encoder
e
S
1 CRCA |« /\
L cne] } Y
Strobe Channel0
Parallel
Port d s
Dataln[7:0] Interface -CRC 5 /| . CO error s
—_— / + weight °
Y v b
;p 2
w Channell g
/
- A "~ corc1 e
T L ©
/ CRCC error weight: . e
g A 4 v [
5 =
k=) o %0
15 maxerasures 3
o Decoder 23 2
= LAoo
= | =
» <
2]
E CRCD
: |~ creofe——
24 v y A\ 4
Results Counters
Done

Figure 3- FPGA block diagram

The FPGA contains the encoder and decoder, together with anumber of additiona
blocks that are required to generate messages, add corruptions, and accumulate
datigtics on the results. These blocks will be described in detail in subsequent
sections.

The generd gpproach for validating the decoder isto check that output of the decoder

meatches the origind output from the encoder. The purpose of the fixed delay block is
to delay the encoded data, to dlow such acomparison to be done. Asan extra

Page 28 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

precaution, we aso compute sgnatures (CRCs) on the symbol data at four Srategic
points. Aslong as there are no unrecoverable errors, the vaue in CRCD at the end of
atest run should match the valuein CRCA.

Thefollowing globa configuration registersexist:

name width description

r_seed 3 The seed for the random number generators. Within the

FPGA there are severa random number generators. The
seed for each of them isderived from thisvaue.

n K7 The number of codewords to run the test for.
erasurei nX 1 The vaue to gpply to the erasurein input of the decoder
between codewords.

maxerasures 8 The vaue to gpply to the maxerasures input of the decoder.

Thefollowing globa resultsregisters exist:

name width description

code_si gnat ur eA Y The output of CRCA, which cdculates a signature
over the symbol data after the encoder.

code_si gnat ureB K The output of CRCB, which caculates a signature
over the symbol data after channdl 0 has added
corruptions.

code_si gnatureC Y The output of CRCB, which caculates a sgnature
over the symbol data after channd 1 has added
corruptions.

code_si gnat ureD K The output of CRCD, which caculates a Sgnature

over the symbol data after the decoder

3.1.2.2 Pattern generator

The purpose of the pattern generator block isto generate 128 byte messages followed
by variable length gaps, to use as test data to be encoded.

Within the pattern generator, the following configuration registers exit:

name width description

pg_node 1 The message data source (i.e. what each 8hbit symbal is)
0: random— bits 7 to 0 of arandom number generator.
1: counter — bits 15 to 8 of the counter.

pg_cstart 16 The gtart vdue for the counter.

pg_climt 16 Thelimit vaue for the counter.

pg_cincrement 16 The increment vaue for the counter.

pg_i Of i xed 12 The fixed part of intervd 0.

pg_i Omask 12 The random interval mask for i0.

pg_i 1f i xed 12 Thefixed part of intervd il.

pg_i 1mask 12 The random interva mask for i1.

pg_i prob 8 The probability of sdecting the interva between codewords

fromiQ rather than i1 (0 to 128).

Page 29 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

The vaue for each 8bit symboal of the message is teken ether from bits 7 to 0 of a
random number generator or from bits 15 to 8 of the counter, based on thepg_node

regigter.
At the beginning of atest run, the counter isinitidised with pg_cst art .

With each symbol of each message, the counter is updated as follows.

if (counter + pg_cincrement < pg_climt)
counter <= counter + pg_cincrenent
el se
counter <= counter + pg_cincrenment — (pg_climt — pg_cstart)

After a 128 byte message, 32 idle are dways inserted to alow time for the encoder to
gppend the 32 check symbols.

After this afurther gap is insertedwhose length is selected using the following
formulae:

if (prbs7() < pg_iprob)

gap <= pg_i Ofi xed + (prbsl12() & pg_i Omask)
el se

gap <= pg_i 1fixed + (prbsl2() & pg_i 1mask)

where prbsN() returns a random number in the range 0 to 2N 1, and

In the test software, some specific configurations of the pattern generator are used.

This configuration (cdled random_nogaps) results in agap of zero:
pg_node = 0
pg_i Ofixed = O
pg_i Omask = 0
pg_i prob = 128

This configuration (cdled random_smallgaps resultsin aggp intherange 0 to 15:
pg. node = 0
pg_i Ofixed = O
pg_i Omask = 15
pg_i prob = 128

This configuration (cdled random_largegaps resultsin agap in the range 0 to 511.
pg_node = 0
pg_i Ofixed = O
pg_i Omask = 511
pg_i prob = 128

This configuration (caled random_variablegaps) resultsin asmadl (0 to 15) gap 75%

of thetime, and alarge (0 to 511) gap 25 % of thetime:
pg_node = 0
pg_i Ofi xed = 0O
pg_i Omask = 511
pg_i 1fixed = 0O
pg_i 1lmask = 15
pg_i prob = 32

The pattern generator does not contain any results registers.

Page 30 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

3.1.2.3 Channel model

The purpose of the channel model block is to corrupt the encoded data, by adding
either errorsor erasures according to a programmable distribution.

Aningtance of the channd modd block can be configured to add either errors or

eraaures. The channd modd block is replicated twice, thus dlowing both errors and
erasures to be added.

Within each instance of the channdl modd, the following configuration registers exist:

name width description

node 2 0 — add errors, but add only if erasurein = 0.
1 — add errors regardless.
2 — add erasures, but add only if erasurein = 0.
3 — add erasures regardless.

prob_enabl e 8 The probability of the block being enabled for agiven
codeword (0 — 128).

prob_synbol _fixed The fixed part of the prob_symbol digtribution.

prob_synbol _mask The random mask for the prob_symbal distribution.

start_mask The random mask for start distribution.

8
8
start_fixed 8 The fixed part of the start distribution.
8
8

step_prob The probability of sdecting the step vaue from step0
rather than stepl (0 to 128).

stepO_fixed 8 The fixed part of the stepO distribution.

st ep0_mask 8 The random mask for the stepO distribution.

stepl_fixed 8 The fixed part of the stepl distribution.

stepl_mask 8 The random mask for the stepl distribution.

maxi num 8 The maximum number of corruptionsin any one

codeword.

Bit 1 of the mode register determines the type of corruption this channd mode block
will add. If bit 1is 0 then errorswill be added, otherwise erasures will be added.

Bit O of the node register determines whether the block avoids erasures added by the
previous channd modd block. If bit 0 is 0 then corruptions will only be added in
positions not aready marked as erasures. If bit O is 1 then corruptions may be added
anywhere,

Thepr ob_enabl e regiser determines the probability thet this block will be enabled
for a given codeword. The probability value can range from 0 to 128, with O
corresponding to “never enabled” and 128 corresponding to “dways enabled”:

/* Choose whether to corrupt this codeword */
if (rand7() < prob_enabl ed)

enabled = 1
el se

enabled = 0

Corruptions are added using the following dgorithm:

Page 31 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

/* Initialization at the start of a codeword */

prob_synmbol = prob_synbol fixed + (rand() & prob_synbol _nask);
target = start_fixed + (rand() & start_mask);

count = 0;

/* Iterate through the synbols in the codeword */

for (i =0; i <160; i =i + 1) {
/* Choose whether to corrupt this synbol */
if ((count < maxinmum &&
(target ==1i) &&
(RAND7 < prob_synbol) &&
((rpde & 1) || (erasure[i] == 0)) &&

(enabled == 1)) {
/* Choose corruption value, exclude 0 fromerrors */
corrupti on = RANDS;
if ((corruption == 0) && ((nmopde & 2) == 0))
corruption = 255;
/* Do the corruption, flagging erasure if required */
synmbol [i] = synmbol[i] ~ corruption;
if (node & 2)
erasure[i] = 1;
/* Increment count of corruptions added */
count = count + 1,

/* Select the next corruption target */
if (target == i) {
if (RAND7 < step_prob)
target = target + stepO_fixed + (rand() & stepO_nmask);
el se
target = target + stepl_fixed + (rand() & stepl_nask);
}

}

At the start of acodeword, pr ob_synbol ischasen from the distribution specified by
prob_synbol _fixed and prob_synbol _mask. Thisrepresents the probability thet a
candidate location will be corrupted.

Thestart _fixed,start_mask,stepO_fi xed, st ep0_mask, st epl_fi xed,
stepl_mask and st ep_pr ob registers are then used to select a sequence of candidate
locations within the codeword, for passble corruption.

At each candidate loceation, the probability of actudly adding a corruption is
determined by pr ob_symbol . In certain modes, locations that are dreedy flagged as
erasures will be avoided. Thiswill skew the probability digtribution dightly, which

we do not correct for. An upper bound on the number of corruptions is provided by

maxi mum.

In the test software, some specific configurations of the channd modd are used:
This configuration (called off) prevents the channd mode from adding corruptions:

node = 0

prob_enable = 0
prob_synbol _fixed = 0
prob_synbol _mask = 0
step_prob =0
start_fixed =0
start_mask = 0

Page 32 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

stepO_fixed = 0
step0_mask = 0
stepl _fixed =0
stepl_mask = 0
maxi mum = 0

This configuration (called randomi ze) causes every symbol to be corrupted as an

error:

node = 0
prob_enable = 128
prob_synbol fixed =
prob_synbol _mask = 0
step_prob =0
start_fixed =0
start_mask = 0
stepO_fixed = 0
step0_nmask = 0
stepl_fixed =1
stepl nmask = 0

maxi mum = 160

128

This configuration (called random errorss) causes on averagemax / 2, and a most
max, errors to be added to a codeword. See Appendix B for a definition of the
cal c_symbol _prob() function.

node = 0

prob_enable = 128

synbol _prob_fixed = calculated by calc_symbol_prob(max/ 2)
symbol _prob_mask = calculated by calc_symbol prob(max/ 2
step_prob =0

start_fixed =0

start_mask = 0

stepO_fixed = 0

stepO_nmask = 0

stepl_fixed =1

stepl_mask = 0

maxi mum = nmax

This configuration (caled random erasur es) causes on average max / 2, and & most
max, erasures to be added to a codeword. See Appendix B for a definition of the
cal c_synbol _prob() function.

node = 3

prob_enabl e = 128

symbol _prob_fixed = calculated by calc_symbol prob(max/ 2)
synbol _prob_nask = calculated by calc_symbol_prob(max / 2)
step_prob =0

start_fixed =0

start_mask = 0

stepO_fixed = 0

step0_nmask = 0

stepl_fixed =1

stepl mask = 0

maxi mum = nmex

This configuration (caled fixed errors) causesexactly num errorsto be added. The
digribution of these errors throughout the codeword is fairly random. See Appendix C
for adefinition of the channel _i ni t _fi xed() function.

node = 0

prob_enable = 128

Page 33

523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

prob_synbol _fixed = 128

prob_synbol _mask = 0

step_prob =0

start_fixed =0

start_mask = calculated by channel_init_fixed()
stepO_fixed = 0

step0_nmask = 0

stepl_fixed =1

stepl_mask = calculated by channel_init_fixed()
maxi mum = num

This configuration (called fixed erasures) causesexactly num erasures to be added.
The digtribution of these erasures throughout the codeword isfairly random. See
Appendix C for adefinition of thechannel _i nit _fi xed() functior

node = 3

prob_enabl e = 128

prob_synbol _fixed = 128

prob_synbol _mask = 0

step_prob =0

start_fixed =0

start_mask = calculated by channel_init_fixed()

step0_fixed =0

stepO_mask = 0

stepl_fixed =1

stepl_mask = calculated by channel_init_fixed()

maxi mum = num

This configuration (called clunped erasures) causes at npst 32
erasures to be added, in such a way that they nore likely to occur at
the start or end of the codeword than in the niddle.

node = 3

prob_enable = 112

prob_synbol fixed =1

prob_symnbol _mask = 127

step_prob = 4

start _fixed =0

start_nmask = 3

stepO_fixed = 128

step0_mask = 7

stepl_fixed =1

stepl_mask = 0

maxi mum = 32

Thedidtributions obtained for clumped erasures areillustrated below:

Page 34 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

Probability distribution of number of erasures
0.16 2
0.14 T .
0.12
£ 008 O Series]
E_ 0.06
0.04 T
o AL AR DR AR [T
— < ~ L) M O L s ~N [Te] [ca] -—
-— -— -— -— ~ ~ ~ ~M
number of erasures

Figure 4- Clumped erasures—number of erasuresdistribution

Probability distribution of symbol errors

prebhabllity

position within codeword

Figure5- Clumped erasures- symbal error distribution

Within each ingtance of the channe modd, the following results registers exist:

name width description

total _errors 0 A cumuldive totd of the number of corruptions
added.

total _fram ngerrors 40 A cumulative totd of the number of framing errors
detected.

Thet ot al _err or s register counts the number of corruptions added by this block
during the tet run.

Page 35 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

Thetotal _frani ngerrors register counts the number of timesthe SOB (dart of
block), EOB (end of block) and ACTIVE control signds are incorrectly generated by
the encoder.

3.1.2.4 Resultscounters

The purpose of theresults counters block isto accumul ate statistics from the decoder
during a test run.

Within the results counters block, the following configuration register exiss:

name width description

mat chn 8 The vdue of number of erasures for which the
meatchn_status0123 and matchn_statusA567 registers will
accumulate results.

Within each ingtance of the results counters block, the following results registers
exis:

name width description

total _erasures 40 A cumulativetota of the number of erasure counted
by the decoder.

total _errors 40 A cumulative total of the number of errors counted
by the decoder.

total _diffs K7 The number of codewords where there were some

differences between the symbols output from the
encoder and the symbols output from the decoder,
over dl codewords.

significant_diffs K% The number of codewords where there were some
differences between the symbols output from the
encoder and the symbols output from the decoder,
for codewords where the error pattern had weight
2T or less, and which decoder dlaimed as

correctable.

framingerrors 40 A cumulativetotd of the number of decoder
framing errors detected.

status0_diff0 K The number of codewords for which the decoder

output agatus of 0, and for which no symbol
differences between the encoder and decoder were
detected.

status0_di ff NO K7 The number of codewords for which the decoder
output agtatus of 0, and for which some symbol
differences between the encoder and decoder were
detected.

statusl_diff0 K7 The number of codewords for which the decoder
output agatus of 1, and for which no symbol
differences between the encoder and decoder were
detected.

statusil_di ffNO 2 The number of codewords for which the decoder

Page 36 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

output agtatus of 1, and for which some symbol
differences between the encoder and decoder were
detected.

status2_diffO0

The number of codewords for which the decoder
output a gatus of 2, and for which no symbol
differences between the encoder and decoder were
detected.

status2_di ffNO

The number of codewords for which the decoder
output agatus of 3, and for which some symbol
differences between the encoder and decoder were
detected.

status3_diff0

The number of codewords for which the decoder
output a gatus of 3, and for which no symbol
differences between the encoder and decoder were
detected.

status3_di ffNO

The number of codewords for which the decoder
output agtatus of 3, and for which some symbol
differences between the encoder and decoder were
detected.

status4_diffO0

The number of codewords for which the decoder
output agatus of 4, and for which no symbol
differences between the encoder and decoder were
detected.

status4_di ffNO

The number of codewords for which the decoder
output a gatus of 4, and for which some symbol
differences between the encoder and decoder were
detected.

status5_diff0

The number of codewords for which the decoder
output a gatus of 5, and for which no symbol
differences between the encoder and decoder were
detected.

status5_di ffNO

The number of codewords for which the decoder
output agtatus of 5, and for which some symbol
differences between the encoder and decoder were
detected.

status6_diffO0

The number of codewords for which the decoder
output agatus of 6, and for which no symbol
differences between the encoder and decoder were
detected.

status6_di ffNO

The number of codewords for which the decoder
output a gatus of 6, and for which some symbol
differences between the encoder and decoder were
detected.

status7_diff0

The number of codewords for which the decoder
output a gatus of 7, and for which no symbol
differences between the encoder and decoder were
detected.

status7_di ffNO

The number of codewords for which the decoder
output a gtatus of 7, and for which some symbol

Page 37 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

differences between the encoder and decoder were
detected.

overal |l _cc K7 The number of codewords with an error pattern of
weight 2T or less, for which the decoder output a
dausof 0, 1, 2 or 3.

overal | _cu K2 The number of codewords with an error pattern of
weight 2T or less, for which the decoder output a

gsausof 4,5, 6 or 7. This can occur routingly if
maxerasuresislessthan 2T.

overal |l _uc K2 The number of codewords with an error pattern of
weight 2T + 1 or more, for which the decoder
output astatus of O, 1, 2 or 3. Thisrepresentsa
miscorrection.

overal | _uu K7 The number of codewords with an error pattern of
weight 2T + 1 or more, for which the decoder
output astatus of 4, 5, 6 or 7.

mat chn_st at us0123 K7 The number of codewords for which the decoder

output astatus of 0, 1, 2 or 3, and for which the
number of erasures matched nat chn.

mat chn_st at us4567 2 The number of codewords for which the decoder
output agatus of 0, 1, 2 or 3, and for which the
number of erasures matched nat chn.

first_diff K The codeword rumber wherethet ot al _diffs was
firg incremented.

last _diff K The codeword number wherethetotal _diffs was
lagt incremented.

3.1.25 Parallel Port Interface

The purpose of the parallel port interface block isto allow the configuration and
resultsregistersdescribed in the preceding sections to be accessed using a standard
PC equipped with a centronics parallel port. Inaddition, thisinterfaceisused to start
a test running, and to poll for completion.

The pardld port interface implements a command based interface, where a command
issent by placing an 8-bit vaue on signds DO to D7 and then taking STROBE low
and back high again. The command vaueislatched shortly after the rising edge of
STROBE. The following commands are implemented:

command command decription value of DOUT when
opcode name command complete
00 STOP Stop the current test run. undefined
01 START Start anew test run. undefined
02 TRANSFER Transfer test results to the results undefined
regiser.
03 SHIFT RESULTS Shift the resultsregister left 4 by bits. Top 4 bits of the results
register prior to shift
04 POLL Poll for test completion. 0if test il running
1if test completed
05 LOOPBACK Copy the configuration register directly undefined
to theresultsregister.
10- 1F ECHO Echo opcode]3:0] to DOUT. opcode[3:0]

Page 38 523/0111:24AM

20- 2F

Verification of a Synthes sable Reed-Solomon ECC Core

SHIFT CONFIG

Shift the configuration register left 4 undefined
bits so that opcode[3:0] isloaded into

the bottom 4 hits..

30- 3F

LED

Load opcode[3:0] into the LED
register.

undefined

40- 4F

CEPROB

Defines the probaility of ClockEnable
being asserted on agiven cycle The
probability is (opcode[3:0] + 1) / 16.
For example, opcode 40 would et the
probability to 1/16, opcode 4F would

undefined

St it to 16/16.

Some commands return 4 bit results (DOUT) using the following pardld port Satus

sgnds

~DOUTI3] returned on signd BusyAck (inversion transparent to software).

DOUT[2] returned on signa Acknowledge.
DOUT[1] returned signa PaperOut.
DOUT](O] returned signa Select.

A test is configured by downloading a configuration into the configuration register (4

bits at atime) using the SHIFT CONFIG command. The test can then be started using
the START command. Periodicaly, the completion status of the test can be polled
using the POLL command. Once the test is complete, the TRANSFER command is
used to load the results register with the test results. Findly the results of the test are
uploaded (again, 4 bits at atime) usng the SHIFT RESUL TS command.

Theindividua configuration registers described in the preceding sections are mapped

into the 368-hit configuration register in the following sequence:

name width gart pogtion
in
configuration
register
pg_node 1 367
c0_node 2 365
cl_node 2 363
erasur ei nX 1 362
spar e 1 361
r_seed 3 328
n K% 296
pg_cstart 16 280
pg_climt 16 264
pg_ci ncr enent 16 248
pg_i Of i xed 12 236
pg_i Omask 12 224
po_i 1f i xed 12 212
pg_i 1mask 12 200
pg_i prob 8 192
cO_prob_enabl e 8 184
c0_prob_synbol _fi xed 8 176
c0_pr ob_synbol _nask 8 168
cO_step_prob 8 160
cO_start_fixed 8 152
cO_start_mask 8 144
c0_stepO_fixed 8 136

Page 39

523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

c0_st ep0_mask
c0_stepl_fixed
c0_stepl_nask
cO_maxi num

cl_prob_enabl e

SES

3

R

c1_prob_synbol _fixed
c1_prob_synbol _nask
cl step_prob

cl start_fixed
cl start _mask
cl stepO_fixed
cl_step0_mask
cl stepl fixed
cl_stepl_nask

c1l_maxi num
mat chn
naxer asur es

[ee] Fee) Foo) Noe) Foe] foe] Hee] feo] feo] Neo] Foo) Foo) Noe) Kool Foo) HoclNoc]

Cl* B|R|8(5|&|B(R|N|B(B| S

ThesH FT coNFI G command shifts the configuration register |eft 4 bits and then
replaces the LS 4 bits with opcode 3:0].

Thefirst 4-bit chunk to be shifted in would st

pg_node = opcode[3]
c0_node[1] = opcode[2]
c0_node[0] = opcode[1]
cl _node[1] = opcode[0]

Thefina 4-bit chunk to be shifted in would s&t:
maxerasure[3] = opcode[3]
maxer asure[2] = opcode[2]
maxer asure[1] = opcode[1]
maxer asure[0] = opcode[0]

Theindividud results registers described in the preceding sections are mapped into
the 1240-bit results regigter in the following sequence:

name width dart position
inresults
register

code_si gnat ur eA 32 1208
code_si gnat ureB 32 1176
code_si gnat ureC 32 1144
code_si gnat ur eD 32 1112
cO_totalerrors 40 1072
cO framngerrors 40 1032
cl totalerrors 40 992

cl framngerrors 40 952
total _erasures 40 912
total _errors 40 872
total diffs 32 840
significant_diffs 32 808
framngerrors 40 763
statusO diff0 32 736
statusO_di ffND 32 704
statusl _diffoO 32 672
statusl diffND 32 640

Page 40 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

status2_diff0 32 608
status2_di ffNO 32 576
status3_diff0 32 54
status3_di ffND 32 512
status4_diff0 3P 480
status4_diffND 3P 448
status5_diff0 3P 416
status5_di ffND 3P 334
status6_diff0 3P 32
status6_di ffND 3P 320
status7_diff0 32 283
status7_di ffNO 32 256
overal | _cc 32 24
overal | _cu 32 192
overal | _uc 32 160
overal | _uu 32 128
mat chn_st at us0123 3P 96
mat chn_st at us4567 3P 64
first_diff 3P 3P
last_diff 3P 0

ThesH FT RESULTS command shifts sets DOUT to the MS 4 hits of the results
regigter, then shifts the results register left 4 bits

Thefirst 4-bit chunk to be shifted out would have:

DOUT[3] = code_si gnat ur eA[31]
DOUT[2] = code_si gnat ur eA[30]
DOUT[1] = code_si gnat ur eA[29]
DOUT[0] = code_si gnat ur eA[28]
Thefina 4-bit chunk to be shifted out would have:
DOUT[3] = last_diff[3]
DOUT[2] = last_diff[2]
DOUT[1] = last_diff[1]
DOUT[0] = last_diff[O0]

3.1.3 Hardware implementation

3.1.3.1 Prototyping board

The prototype isimplemented using an off-the-shelf development board from ErSt
Electronic GmbH (their webgite is http://www.erst.ch). The board used was the
EVALXC2SVE-HQ240 containing asngle Xilink XCV1000E-HQ240-6 FPGA.

Page 41 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

Figure 6- The EVAL XC2SVE-HQ240 prototyping poard

More informetion on the prototyping board can be found a:
http:/AMww.erst.ch/english/evalxc2sveleval xc2sve.html

The board is supplied with a power supply caled the PWR3 power module, which
generates the 1.8V and 3.3V supplies required by the Xilinx FPGA using switching
regulators. The PWR3 power module requires asinge DC supply of between 6V and
12v.

Figure 7 - The PWR3 power module

More information on the power module can be found at:
http://www.erst.ch/engli sh/evalkcv/eva xcvhg240.html#powr3

The prototyping board and power module together cost $2,500.

3.1.3.2 Jumper configuration

The prototype board is highly configurable usng jumpers. As some of these jumpers
select power supply voltages, incorrect settings may cause permanent damage. Check
everything carefully before gpplying power!!

Page 42 523/0111:24AM

The jumper settings used for our design are listed below:

Verification of a Synthes sable Reed-Solomon ECC Core

jumper ID jumper name jumper position
Ji MO off

2 M1 off

J3 M 2 off

N Connector for Xchecker cable na

J5 Connector for JTAG cade na

J6 Connector for SdectMap cable na

J7 LED D9 on

N LED D8 on
J9-J14 LEDsD7-D2 off
J5-218 Connectors for externa clocks na
J9-J22 Ground Points na
123 Reset link 1-2
4 VCCO sdlection link 23
J25 Connector for daisy chain na
J26 GCLKO_SEL link 2-3
J27 GLCK1 SEL link 2-3
J28 GCLK2_SEL off
J29 GCLK3_SEL off
J30 VCOO0 off
31 VCO1 off
J32 promsel off

J33 connector for externa power na
JA solder bridge factory st
J35-J101 VREF sdection off
J102-J105 VREF sdection link 2-3
J106-J109 VREF sdection link 1-2
J110-J111 VREF Measurement points na
J112-7113 Ground Points na
J114-7121 VCCO sdlection on
J122 Linear Burst off
J123 Connector for SRAM JTAG na
J124 FPGA Clock off

3.1.3.3 Download cable

To download the FPGA PROM fileto the FPGA we used a Xilinx Xchecker serid
download cable, connected to a Windows PC running the Xilinx software. A
download speed of 115 Kbps waorks reliably. The Xchecker cableis connected to J4

on the prototyping board as follows:
Xchecker signal colour J4 pinnum J4 pin name
VCC red 6 33V
GND black 7 GND
CCLK ydlow 4 CCLK
D/P blue 2 DONE
DIN green 5 DATA
PROG oange 1 PROG
INIT white 3 INIT
RST purple n'c nc

Page 43

523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

Note that the old Xchecker cablesuse a5V VCC, but will generaly run perfectly well

from 3.3V.

3.1.3.4 Paralld cable

A custom cable needs to be congtructed to connect the pardlel port on the PC to the
development board. The diagram below illustrates how this cable is made up.

1 13

ONORORONONORORONORONORONO
QOIPIOIP|Q|C (P PO |P|P

14

25 way male IDC D
type connector
looking into pins

40 way female IDC
connector looking from
the rear, connects to

101 113 ST4 on prototype board

[oiojlegivliejiojisgivziolienioiozion 2 N N B N N J
deeedeedeaddddddecsaaaas

51 62

Figure 8— Custom parallel cable congtruction

3.1.35 FPGA Usage

remove black pins: @

The development board contains a X CV 1000E Xilinx FPGA. The utilization of this
part (as reported by the Xilinx mapper) is shown beow:

Target Device : xv1000e

Target Package : hg240

Target Speed : -6

Mapper Version : virtexe -- D26

Mapped Dat e © Veéd Mar 28 14:48:08 2001

Desi gn Sunmmary

Nunber of errors: 0
Nunber of warni ngs: 84
Nunber of Sices: 12,286 out of
Nunber of S ices containing

unrel ated | ogi c: 38 out of
Nunber of Sice Flip Fops: 10, 662 out of
Total Nunber 4 input LUTs: 19, 076 out of

Nunber used as LUTs:

Nunber used as a route-thru:

Nunber used as Shift registers:
Nunber of bonded | CBs: 16 out of
Nunber of QOLKs: 1 out of
Nunber of QOLKI CBs: 1 out of

12,288 99%

12, 286 1%

24,576 43%
24,576 T77%
18, 843
73
160
158 10%
4 25%
4 25%

Total equivalent gate count for design: 230,312

Additional JTAG gate count for 1CBs: 816

It can be seen that the current design occupies gpprox 99% of the available dices.
Thisfigure is dightly mideading, Snce thet mapper does not sat placing unrelated
logic within the same dice until the whole device has been occupied. However, we

Page 44

523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

are dill pretty dose to the limit. It would not be feesible to prototype alonger codein
within this device.

3.1.4 Test software

The test softwareiswritten in C, and is designed to run under Linux. It will not, inits
current form, run under HP-UX or Windows. This is because it uses a Linux specific
sysemcdl -i oper () - to map the PC's pardle port interface register into user
space, thus enabling direct access to the hardware without adriver. The name of test
software executableist est er . The software is currently compiled for apardle port
a 10 address 0x378, which is the default for LPT1.

3.1.4.1 Command line options
The command line option syntax fort est er is:

tester [-a <base nunk] [-b <base nunp] [-c <base nunp]
[-d <base nunmp] [-e <base nunk] [-f <base nunvp]
[-x <nump] [-y <nunP] [-z <nunp]
[-s <scale factor>] [-r <random seed>] [-Vv <verbosity>]
[-C <cl ock enabbl e probability>]

-a The base number of vectorsto execute testafor. The actua number of vectors
will be four times the base, since thistest is run with four different pattern
generator configurations (default 1,000,000).

-b The base number of vectorsto executetestb for. The actual number of vectors
will be 132 times the base, snce thistest is run for four different pattern
generator configurations and 33 different error and erasure combinations
(default 100,000).

-C The base number of vectors to execute testc for. The actud number of vectors
will be 1156 times the base, since thistest isrun for four different paitern
generator configurations and 289 different error and erasure combingtions
(default 10,000).

-d The base number of vectorsto execute testd for. The actual number of vectors
will be 33 times the base, Sncethistest is run for 33 different erasure
combinations (default 1,000,000).

-e The base number of vectorsto execute teste for. The actua number of vectors
will be 8 times the base, since thistest isrun for four different pettern
generator configurations and 2 different erasureinX combinations (default
1,000,000).

-f The base number of vectorsto execute testf for. The actua number of vectors
will be 33 timesthe base, sncethistest isrun for B different erasure

combinations (default 1,000,000).
Thus, the default number of vectors generated is:

4* 1000000 + 132 * 100000 + 1156 * 10000
33* 1000000 + 8* 100000 + 33 * 1000000 = 101,760,000

Page 45 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

A typicd run of thislength will take about 22 minutes.
-S A scde factor to gpply to the number of vectors for each test (default 1).

Thus, if just—s 100 was given, atotd of 10,176,000,000 vectors would be
generated. A run of this length would take about 37 hours.

-r A random seed, S0 that (if required) different vector sets can be generated
(default 21011967).

-v The verbogty (0 to 15) when generdting vectors (default 1).

-X The number of iterations of the flashing LED test (default 10).

-y The number of iterations of the parald port echo test (default 2000).

-Z The number of iterations of the pardld port loopback test (default 1000).
-C The probahility of assarting clock engble (0 — 15), with 0 equating to a
probatility of 1/16", and 15 equating to a probebility of 16/16™ (i.e. 1). The resits of

arun should beidentical, regardless of the clock enable probability, a the complete
test system is stadled when clock enableis low.

3.1.4.2 Results checking

After each iteration of each test, the test software applies severa checks to the results
cauntersto check for correct operation of the encoder and decoder.

There are two checking modes: CHK_DIFFS and CHK_NORMAL.

The CHK_DIFFS mode is the most conservative, and should be used when dl error
patterns are expected to be correctable. This mode will only passif every codeword is
corrected back to the origind.

The CHK_NORMAL modeis asub-set of CHK_DIFFS, and should be used where
some of the error patterns are expected to be uncorrectable.

In the CHK_NORMAL mode, the following checks are made:

name description return
code
failure
bit

framing Theco_frami ngerrors,cl_fram ngerrors and 0

fram ng_errors counters should be zero. A failure
implies the postion of the SOB, EOB and ACTIVE
sgnds from the encoder or decoder isincorrect.

statusb Thestatus6_di ff0 andstatus6_di ffNO counters 1
should be zero. A failure implies the monitor block has
trapped a case where the decoder claims to have corrected

Page 46 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

acodeword, yet the resultant codeword isinvaid.

missing The sum of the vaues of thesixteen st at us counters 2
codewords should equa n. The sum of the values of thefour over al |

counters should equa n. A fallure implies the decoder has

slently discarded a codeword, or (Somehow) generated

extra ones.
sgnificant Thesi gni ficant _di ffs counter should be zero. A 3
diffs falure impliesthe input to the decoder was correctable,

the decoder output astatus of correctable, then failed to

correct properly.
falureto If maxer asur es =32, thenthe overal | _cu counter should 4
correct be zero A failure implies the input to the decoder was

correctable, yet the decoder output a Satus of
uncorrectable. If maxerasuresis reduced below 32, this
case may occur, hence we only perform this check if
maxerasures is 32.

miscorrection Theoveral | _uc counter should equa the sum of the four 5
consstency stat us[0123] _di f f NO counters. A fallureimplies

something other than a miscorrection caused the decoder

to output a status of correctable then failed to correct

properly.
correction Theoveral | _cc counter should equa the sum of the four 6
conggency status[0123] _di ff 0 counters. A failure implies one of

two things.

1) Theinput to the decoder was correctable, the decoder
output a status of correctable, yet failed to correct

properly. Thiswill dso be recorded in the

signi ficant _diffs counter.

2) Theinput to the decoder was uncorrectable, yet
somehow (magic?) the decoder managed to correct back to
the origind codeword.

CO erasures If channd O is set to add erasures, then t ot al _er asures 12
shouldequd c0_t ot al _errors. A falureimpliesthe
decoder has incorrectly counted the number of erasures.

C1 erasures If channd 1isset to add erasures, then t ot al _er asures 13
shouldequd c1_t ot al _errors. A falureimpliesthe
decoder has incorrectly counted the number of erasures.

In the CHK_DIFFS mode, the following additional checks are made:

name description return
code
failure
bit

dl correctable Thesumof theoveral | _cc andoveral | _cu counters 7

should equd n. A fallureimplies the test induded some
uncorrectable error patterns, and the CHK_DIFFS mode
should not be used. Thisisafailure of the test software,

Page 47 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

not the decoder.

dl corrected Thesum of thefour st at us[0123] _di f f 0 counters 8
should ben. Theover al I _cc counter should equa n. A
fallureimplies some codewords were not properly

corrected.
some diffs Thetotal diffs counter should bezero. A failure 9
implies some codewords were not properly corrected.
incorrect Thecode_si gnat ur eD regiser should equd the 10
sgnaure code_si gnat ur eAregister. A falureimpliessome
codewords were not properly corrected.
undefined 11
CO erors If channd Oissetto add errors, then tot al _errors 14

shouldequd c0_t ot al _errors. A falureimpliesthe
decoder has incorrectly counted the number of errors.

Cl errors If channd lissetto add errors, then total _errors 15
shouldequd c1_total _errors. A falureimpliesthe
decoder has incorrectly counted the number of errors.

3.1.4.3 Expected miscorrection probability

With Reed-Solomon codes, if the weight of the error pattern exceeds the error
correction cgpability of the code, there is afinite probability thet the corrupted

codeword will liewithin the ball of adifferent codeword. In this case, the decoder will
correct to the different codeword, and a miscorrection is said to have occurred.

Miscorrection can happen with any Reed-Solomon decoder, regardless of how it is

implemented. Without prior knowledge of the error pattern, it is not detectable by the
decoder. Hence, it is a serious failure mode.

The probability of miscorrection depends heavily on the number of erasures; asthe
number of erasures approaches 2T, the probability of miscorrection gpproaches unity.
Appendix A ligts the probability of miscorrection for a RS (160,120,T=16) code, as
the number of erasuresvaries from O to 32.

It is possibleto trade off correction capability for detection capability, by placing an
explicit limit of the number of erasures that may occur. If thislimit is exceeded, the
codeword is declared uncorrectable. Some otherwise correctable codewords will now
be declared as uncorrectable. However, the probability of miscorrection is reduced,
since this decreases with number of erasures.

If aparticular test contains just uncorrectable error patterns with a fixed number of
erasures, the expected probability of miscorrection can be obtained directly from the
tablein Appendix A.

If, however, the test contains either a mixture of correctable and uncorrectable error

petterns, or a variable number of erasures, then the probabilities listed in Appendix A
must be weighted, according to the distributions of error and erasures.

Page 48 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

Determining the precise digtributions of error and erasure for a given channel
configuration is hard to do andyticdly. Ingtead, the test software runs a short

smulation of the channd, usingthe cal i brat e_mi scorrect s() function.

The smulation modd s the errors and erasures added by channel 0 and channel 1 over
arun of 1,000,000 codewords. Counts are maintained (by number of erasures) for the
number of correctable and uncorrectable error patterns. These are scaled using the
probabilitieslised in Appendix A, to give the expected probability of miscorrection

for this pecific configuration asawhole. A table is generated, showing the how the
expected probabilities reduce as maxerasures is reduced.

This gpproach is used to derive the expected miscorrection probabilities for tests A
andF.

Page 49 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

3.2 Specific tests

3.2.1 Test A—Random error and erasure combinations

The purpose of thistest isto validate the decoder operates correctly when successive
vectors contain wildly different error characteristics.

Thetett iterates through the four gap configurations. nogaps, smallgaps, largegaps

and variablegaps. This checksfor any senstivity to gaps between codewords.
Maxerasures is s& to 32.

The pattern generator is configured to generate randomly selected vaid codewords.
Channd 0 is configured such that 50% of the codewords have an average of 18 and a
maximum of 36 erasures added (therandom erasur es configuretion).

Channd 1 is configured such that 50% of the codewords have an average of 9 and a

maximum of 18 errors added (therandom error s configuration).

The test includes some uncorrectable error patterns, and so the checking mode is set to
CHK_NORMAL.

Thetest wasrun usingt est er —s100 —v15, which generates atotd of:
4* 1,000,000 * 100 = 400,000,000 vectors

All checks defined in CHK_NORMAL mode passed.

Thecal i brate_ni scorrects() function generated the following table:

maxerasures prob(cu) prob(uc)

32 0.000000e+00 3.677533e-03
31 1. 540000e- 03 2. 037533e-03
30 3.880000e- 03 2.029369e-03
29 6. 720000e- 03 6. 888828e-04
28 1.052000e- 02 6.819536e-04
27 1. 600000e- 02 1.465440e-04
26 2.215000e- 02 1.438288e-04
25 2.976000e- 02 2.278844e-05
24 3.869000e- 02 2.220337e-05
23 4.969000e- 02 2.669433e-06
22 6. 209000e- 02 2. 586809e-06
21 7.581000e- 02 2.288010e-07
20 9.090000e- 02 2.195126e-07
19 1.085300e-01 1.599571e-08
18 1.264200e-01 1.517070e-08
17 1.447200e-01 9. 695390e-10
16 1.640000e- 01 9.128643e-10
15 1.841300e-01 5.484194e-11
14 2.047500e- 01 5.150709e-11
13 2.258600e- 01 2.372961le-12
12 2.461500e- 01 2.187200e-12

Page 50 523/0111:24AM

11 2.670300e-01 1.048965e-13
10 2.869200e-01 9.498990e-14
9 3.078800e- 01 3.282340e-15
8 3.275200e-01 2.928969e-15
7 3.459400e-01 6. 267958e-17
6 3.602500e-01 5.239942e-17
5 3. 715700e- 01 9. 351424e-19
4 3.787400e-01 7.784026e-19
3 3. 830300e-01 8.250100e-20
2 3. 849100e-01 8.051137e-20
1 3. 855400e-01 7.007313e-20
0 3.856700e-01 7.007313e-20

Verification of a Synthes sable Reed-Solomon ECC Core

The observed probability of miscorrections ranged from 0.00354 to 0.00357. This
correlated well with the theoretical probability of 0.003678, as maxerasuresis set to

32

Page 51

523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

3.2.2 Test B — Realistic data

The purpose of this test is to exercise the decoder with error patterns similar to those
expected in the target applicaton.

Thetest iterates through nerasures vaues from 0 to 32. For eech vaue of nerasures,
nerrors is caculated so that nerrors + 2* nerasures = 32. Thisensuresthe error
pattern is dways correctable. For each nerrors-nerasures combinaion, the test
iterates through the four gap configurations. nogaps, smallgaps, largegaps ad
variablegaps. This checksfor any sengtivity to gaps between codewords.

The pattern generator is configured to generate randomly selected vaid codewords.
Channd 0 is configured such that 50% of the codewords have an average of nerasures
/ 2 and amaximum of nerasures erasures added (the random erasur es configuration).
Channel 1 is configured such that 50% of the codewords have an average of nerrors/

2 and amaximum of nerrors errors added (the random errors configuration).

The test includes no uncorrectable error patterns, and so the checking modeis set to
CHK_DIFFS.

Thetest wasrunwith t est er —s100 —v15, which generates a totd of:
4* 33* 100,000 * 100 = 1,320,000,000 vectors.

All checks defined in CHK_NORMAL and CHK _DIFFS modes passed.

There were no miscorrections, since al error patterns were correctable.

Page 52 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

3.2.3 Test C— All error and erasure combinations

The purpose of thistest is to exhaustively test every correctable combination of
number of errors and number of erasures.

In the previous test, the number of errors and erasuresin a particular codeword was
chosen randomly from a specific digtribution. In this test, the number of errors and
erasures are fixed for a particular iteration of the test.

The test iterates through dl combinations of nerrorsand nerasures where nerrors * 2
+ nerasures= weight, where weight is between 0 and 32. For each weightvaue,
nerrors can range from O to (weight / 2). There are 289 such nerrors-nerasures
combinations. For each combination, the test iterates through the four gap

configuraions nogaps, smallgaps, largegaps andvariablegaps. This checksfor any
sengitivity to gaps between codewords. Maxerasuresis set to 32.

The pattern generator is configured to generate randomly selected vaid codewords.
Channel 0 is configured such that dl of the codewords have an exactly nerasures
erasures added (the fixed erasures configuration).

Channd 1 is configured such that dl of the codewords have an exactly nerrorserrors
added (the fixed errors configuretion).

The test includes no uncorrectable error patterns, and so the checking modeis set to
CHK_DIFFS.

Thetest wasrun with t est er —s100 —v15, which generates a totd of:
4* 289* 10,000 * 100 = 1,156,000,000 vectors

All checks defined in CHK_NORMAL and CHK _DIFFS modes passed.

There were no miscorrections, snce al error patterns were correctable.

Page 53 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

3.24 Test D- Uncorrectable error detection
The purpose of this test is to confirm that the observed probability of miscorrection,

given a specific number of erasures, correlates with the mathematical model. The
expected probabilities derived from the model are listed in appendix A.
Thetedt iterates through nerasures vaues from 0 to 32. Maxerasuresiis set to 32.

The pattern generator is configured to generate randomly sdlected valid codewords
with no gaps between codewords (the random nogaps configuration).

Channd 0 is configured such that al of the codewords have 160 errors added,
eff ectively replacing the codeword with random deta (the randomi ze configuration).

Channd 1 is configured such that dl of the codewords have a nerasures erasures
added (the fixed erasures configuration).

The test includes just uncorrectable error petterns, and so the checking mode is set to
CHK_NORMAL.

Thetest wasrunusingt est er —s100 —v15, which generates atotd of:
33* 1,000,000 * 100 = 3,300,000,000 vectors

All checks defined in CHK_NORMAL mode passed.

The observed probability of miscorrection is caculated by dividing the over al | _uc
counter by the N, the number of vectors per iteration.

Page 54 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

The reaults are shown below:

number expected observed expected observed Z
of number of number of probability of probability of
erasures miscorrects miscorrects MisCorrects MisCorrects
0 0 0 1.121170e17 0.000000e+00 -0.00
1 0 0 1.125540e-16 0.000000e+00 -0.00
2 0 0 2.609560e 16 0.000000e+00 -0.00
3 0 0 2.487040e 17 0.000000e+00 -0.00
4 0 0 5.799180e15 0.000000e+00 -0.00
5 0 0 5.224660e 16 0.000000e+00 -0.00
6 0 0 1.225340e-13 0.000000e+00 -0.00
7 0 0 1.038400e-14 0.000000e+00 -0.00
8 0 0 2.449820e 12 0.000000e+00 -0.00
9 0 0 1.941600e-13 0.000000e+00 -0.00
10 0 0 4.608420e-11 0.000000e+00 -0.02
11 0 0 3.392670e 12 0.000000e+t00 -0.01
12 0 0 8102350e-10 0.000000e+00 -0.09
13 0 0 5.495870e 11 0.000000e+00 -0.02
14 0 0 1.320810e-08 0.000000e+00 -0.36
15 0 0 8.173650e10 0.000000e+00 -0.09
16 2 3 1.977010e-07 3.000000e07 0.73
17 0 0 1.102620e-08 0.000000e+00 -0.33
18 27 26 2.684530e 06 2,600000e06 -0.16
19 1 0 1.328510e-07 0.000000e+t00 -1.15
20 326 302 3.256270e05 3.020000e05 -1.31
21 14 14 1.400970e-06 1.400000e06 -0.00
22 3457 342 3.457490e 04 3.342000e04 -1.96
23 126 130 1.257590e-05 1.300000e-05 0.38
24 31254 31583 3.125430e 03 3.158300e 03 1.86
25 923 920 9.228220e05 9.200000e05 -0.09
26 230993 230558 2.309930e 02 2.305580e02 -0.92
27 5192 5196 5.191610e 04 5.196000e-04 0.06
28 1309070 1306989 1.309070e-01 1.30698%01 -1.95
29 19912 20015 1.991150e-03 2.001500e-03 0.73
30 5058440 5058529 5.058440e 01 5.058529e01 0.06
31 39062 39272 3.906250e03 3.927200e03 1.06
32 10000000 10000000 1.000000e+00 1.000000e+00 0.00

*** dataisactually from —s10, replace with —s100 ***

THE Z COLUMN ISCALCULATED USING THE EXPECTED AND

OBSERVED PROBABILITIESWITH FOLLOWING STATISTICAL TEST:

OBSERVED —EXPECTED

Q(expected * (1 — expected) /

n)

The observed probability of miscorrections is within 95% confidence bounds given by

-196 £ Z £ +1.96.

For further details on this Satidticd test, see [4].

Page 55

523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

3.2.5 Test E — Sensitivity to erasure positions

The purpose of thistest isto validate the operation of the erasurelist block within the
decoder.

The test iterates through the four gagp configuraions nogaps, smallgaps, largegaps
and variablegaps. This checks for any senstivity to geps between codewords. For
each gap configuration, the test iterates through erasureinX = 0 and erasureinX = 1.
Maxerasuresis st to 32.

Channd O is disabled (theoff configuration).

CHANNEL 11SCONFIGURED TO ADD AT MOST 32 ERASURES, WITH
MOST OF THE ERASURESARE THE START AND END OF THE
CODEWORDS (THE CLUMPED ERASURES CONFIGURATION).

The test includes no uncorrectable error patterns, and so the checking modeis set to
CHK_DIFFS.

Thetest wasrun with t est er —s100 —v15, which generates atotd of:
4* 2* 1,000,000 * 100 = 800,000,000 vectors

All checks defined in CHK_NORMAL and CHK_DIFFS modes passed.

There were no miscorrections, snce al error patterns were correctable.

Page 56 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

3.2.6 Test F—Random error and erasure combinations (limited
maxerasures)

The purpose of thistest isto validate that reducing maxerasures reduces the
probability of miscorrection, at the cost of failing to correct some previously
correctable error patterns

The test iterates through maxerasures vauesfrom 0 to 32.

The pattern generator is configured to generate randomly selected valid codewords
with no gaps between codewords (the random nogaps configuration).

Channd 0 is configured such that 50% of the codewords have an average of 18 and a
maximum of 36 erasures added (therandom erasur es configuretion).
Channe 1 is configured such that 50% of the codewords have an average of 9 and a

maximum of 18 errors added (therandom error s configuration).

The test includes some uncorrectable error paterns, and so the checking mode is set to
CHK_NORMAL.

Thetest wasrunusingt est er —s100 —v15, which generates atotd of:
33* 1,000,000 * 100 = 3,300,000,000 vectors

All checks defined in CHK_NORMAL mode passed.

Page 57 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

The expected an observed probabilities of failed correction and miscorrection are

shown in the below table.

mexerasures expected observed epated observed
probability of probability of probability of probability of
failed failed miscorrection miscorrection
correction correction
32 0. 000000e+00 0. 000000e+00 3. 666729e-03 3. 561400e- 03
31 1. 570000e- 03 1. 508000e- 03 2.016729%-03 2. 059400e- 03
30 3.920000e-03 3. 547000e-03 2.008761e-03 2. 065300e- 03
29 6. 770000e-03 6. 304900e-03 6. 834492e-04 6. 963000e- 04
28 1. 054000e- 02 9. 827200e-03 6. 764404e-04 6. 861000e- 04
27 1. 607000e-02 1. 448780e-02 1. 462670e-04 1. 473000e- 04
26 2. 227000e-02 2.022720e-02 1. 435310e-04 1. 535000e- 04
25 2.990000e-02 2. 745770e-02 2.272171e-05 2. 280000e- 05
24 3. 884000e-02 3. 616400e-02 2. 213295e-05 2. 490000e- 05
23 4.975000e-02 4. 671360e-02 2.661517e-06 2.500000e- 06
22 6. 221000e-02 5. 855750e-02 2. 579899%€-06 2. 600000e- 06
21 7.594000e-02 7. 245200e-02 2. 288060e-07 4.000000e- 07
20 9. 102000e-02 8. 735220e-02 2. 195035e-07 2. 000000e- 07
19 1. 084400e-01 1. 040750e-01 1. 598666e-08 0. 000000e+00
18 1. 262400e-01 1. 214285e-01 1. 516298e-08 0. 000000e+00
17 1. 445600e-01 1. 402720e-01 9. 618153e-10 0. 000000e+00
16 1. 638600e-01 1. 594642e-01 9. 055817e-10 0. 000000e+00
15 1. 839300e-01 1. 796524e-01 5.546738e-11 0. 000000e+00
14 2. 046700e-01 2.000611e-01 5. 215705e- 11 0. 000000e+00
13 2. 257800e-01 2. 214465e-01 2.362512e-12 0. 000000e+00
12 2. 460900e-01 2. 424941e-01 2. 179500e-12 0. 000000e+00
11 2.67/0700e-01 2. 640226e-01 1.052982e-13 0. 000000e+00
10 2. 869400e-01 2.856715e-01 9. 542553e- 14 0. 000000e+00
9 3.080200e-01 3. 074614e-01 3. 257125e-15 0. 000000e+00
8 3. 275900e-01 3.277059e-01 2. 905696e-15 0. 000000e+00
7 3. 461200e-01 3. 461859e-01 6. 390467e-17 0. 000000e+00
6 3.605100e-01 3.614618e-01 5. 362451e-17 0. 000000e+00
5 3.717800e-01 3. 728243e-01 9. 348937e-19 0. 000000e+00
4 3.789000e-01 3.801331e-01 7.78153%-19 0. 000000e+00
3 3.831700e-01 3. 844080e-01 8. 225229e-20 0. 000000e+00
2 3. 850200e-01 3.861152e-01 8. 051137e-20 0. 000000e+00
1 3. 856500e-01 3. 863464e-01 7.007313e-20 0. 000000e+00
0 3. 858000e-01 3. 866950e-01 7.007313e-20 0. 000000e+00

*** dataisactually from —s10, replace with —s100 ***

Drawn graphicdly, this data shows an excdlent match between observed and

expected probabilities:

Page 58

523/0111:24AM

probability

Verification of a Synthes sable Reed-Solomon ECC Core

1.00E+00

1.00E-01

1.00E-02

1.00E-03

1.00E-04

1.00E-05

1.00E-06

1.00E-07
1.00E-08

1.00E-09

1.00E-10

1.00E-11

1.00E-12

1.00E-13

1.00E-14

1.00E-15

1.00E-16 — : .
1.00E-17 —— : : X
1.00E-18 -t : : Z
1.00E-19 e § § : °

expect failed correction prob
observed failed correction prob
expected miscorrection prob

observed miscorrection prob

1.00E-20 f T i .' T
12 16 20

maxerasures

Figure 9— Graph of expected ver ses obser ved miscorrection probabilities

Page 59

24 28

523/0111:24AM

32

Verification of a Synthes sable Reed-Solomon ECC Core

4 Verification of other Reed-Solomon codes

The verilog source code for the encoder and decoder is fully parameterised, dlowing
encodersand decoders for different Reed-Solomon codesto be generated. This
section outlines the changes that would be needed to verify such encoders and
decoder.

The main code we have verified to date is the RS (160, 128, T=16) code in GF (2.

4.1 Codes in GF (2%

4.1.1 Simulation

Thepar ans. v file needs to be updated with the appropriate parameters for the Reed
Solomon code of interest.

A new gate-levd netlist needs to be generated for encoder and decoder, using
Synopsys.

Simulation vectors can be generated for a different Reed-Solomon code by setting
gopropricte vaues of B and T (using the —B and —T optionsto vect or s).

This, for example, would alow codes like:
RS (152,128, T=12) in GF (&)
RS (144,128,T=8) in GF (28
RS (136,128 T=4) in GF (2°)

to be verified.

Simuation of both longer and shorter codes should be possible

4.1.2 Prototype

It would be feasible to re-synthesize the prototype with a different encoder and
decoder. All of the verilog thet specifies the paitern generator, channd, results
accumulator etc is parameterised, and so should work with different codes.

A new xsymboldday.v file will need to be generated, usng thegenshi ftreg C
program. This needs to match the latency of the new decoder. In addition, the delay
asociated with xdday.v may need to be changed.

The test software currently has several hard-coded congtants, and changes would be
neaded. |dedlly, thiswill be tidied up, alowing options like—B —T and —W to be
given.

4.2 Codes in fields other than GF (2%

421 Simulation

Aswell as supporting different length codesin GF(2), the Smulation supports codes
of different fiedld widths. Thisis because the .raw data file format uses white-space-

separated decima numbers to represent symbols throughout.

Page 60 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

Simulation vectors can be generated for a different fied width by setting appropricte
vaues of W (using the—W and —T optionsto vect or s).

We have (briefly) tested this on the following codes:
RS (484, 456, T=28) in GF(?)
RS (242, 228, T=14) in GF(?)
RS (120, 112, T=7) in GF(

[these were of interest to the Orca program in PSB |

4.2.2 Prototype
There should be no problemsiif the code field width is decreased.

The following problems will need to be addressed if the code field width isincreased:
i. Someof the congantsin t est par ans. v may need increasing. More
specificaly GEN_CWIDTH should be 2 * WIDTH, and GEN_IWIDTH
should be WIDTH + 4 and WWIDTH should be wide enough to hold 3* B.

ii. Thecurrent design uses 99% of the dicesin a X CV1000E Xilinx FPGA. If the
code width were increased, the design would be unlikdly to fit. It may be
possible to find adevelopment board with alarger part. Alternatively, it is
possible to partition the design between two FPGAs. This has been tested
between two Xilinx XCV800 FPGAs using a different development board.

Theteg software currently has several hard-coded congtants, and changes would be

neaded. |dedlly, thiswill be tidied up, alowing options like—B —T and —W to be
given.

Page 61 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

5 References

[1] Design of a Synthesisable ReedSolomon ECC Core, HPL Technical Report
H PL-2001-124, David Banks, May 2001.

[2] A Hypersystolic Reed-Solomon Decoder, Elwyn Berlekamp, Gadid Seroiss
and Po Tong, published as chapter 10 of Reed-Solomon Codes and their
Applicaions, IEEE Press, 1994.

[3] Proposed Reed-Solomon ECC Verification Plan, David Barks, 7" Feb 2001,
(now superseded by this document).

[4] NIST Engineering Statistics Handbook, section 7.2.4:
http:/Amww.nist.gov/itl/div898/handbook/prc/section2/pre24.htm

Page 62 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

6 Appendix A — Miscorrect probabilities

The below table shows the theoretica probabilities of miscorrecting a heavily
corrupted codeword, as the number of flagged erasures increases.

number of erasures

probability of miscorrect

0 1.12117e-17
1 1.12554e-16
2 2. 60956e-16
3 2.48704e-17
4 5.79918e-15
5 5.22466e-16
6 1.22534e-13
7 1.03840e-14
8 2.44982e-12
9 1.94160e-13
10 4.60842e-11
11 3.39267e-12
12 8.10235e-10
13 5.49587e-11
14 1.32081e-8
15 8.17365e-10
16 1.97701e-7
17 1.10262e-8
18 2. 68453e-6
19 1.32851e-7
20 3. 25627e-5
21 1.40097e-6
22 3.45749e-4
23 1.25759e-5
24 3.12543e-3
25 9. 22822e-5
26 2. 30993e-2
27 5.19161e-4
28 1.30907e-1
29 1.99115e-3
30 5. 05844e-1
31 3. 90625e-3
32 1. 00000

These probabilities were generated using the following Mathematic fragment (written

by Jm Davis):

Do[Print["n =", 160 - j, "
"# of erasures =", j, "

", "Mninumdistance =", 33 - j, ,
", "Proportion of randomwords in a bal

N SunjBinomal [160 - j, i] 255°i, {i, O,
16 - Foor[(j + 1)/2]}] 256~(128)/256"(160 - |),

Page 63

101, {i,

0, 32}]

523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

7 Appendix B —cal c_synbol _probs()

voi d cal c_synbol _prob(tchannel cfg *c, int average) {
int sp;
int delta;
int fixed;
int mask;

/* Cal cul ate synbol probability to achi eve average errors */
sp = (average * 128 + 80) / 160;

/* Set delta to the largest power of two that is <= sp */
del ta = | argest_power _of _two(sp);

/* Now, ensure distribution of spis centred on sp */
fixed = sp - delta;
nask = delta + delta - 1;
/* Exanplel: Call with average = 18
* ->gsp =14, nsb = 3, delta =8, fixed = 6, mask = 15
* sp drawn at randomfrom®6..21 -> nean sp = 13.5
* mean #errors is 160 * 13.5 / 128 == 16. 875
* mn #errors is 160 * 6 / 128 == 7.5
* max #errorsis 160 * 21 / 128 == 26.25
*/
/* Exanple2: Call with average = 16
* ->sp =13, nsb = 3, delta =8, fixed =5, nask = 15
* sp drawn at randomfrom5..20 -> nean sp = 12.5
* mean #errors is 160 * 12.5 / 128 == 15.625
* mn #errors is 160 * 5/ 128 == 6.25
* max #errors is 160 * 20 / 128 == 25.00
*/
/* Exanpl €3: Call with average = 6
->sp =5 nsb =2, delta =4, fixed =1, mask = 7
* sp drawn at randomfrom1..8 -> nean sp = 4.5
* mean #errors is 160 * 4.5/ 128 == 5.625
* mn #errors is 160 * 1/ 128 == 1.25
* max #errors is 160 * 9 / 128 == 11.25

/* Exanple4: Call with average = 20
* ->sp =16, nsb = 4, delta = 16, fixed = 0, nmask = 31
* sp drawn at randomfromO..31 -> nean sp = 15.5
* mean #errors is 160 * 15.5 / 128 == 19.373
*mn #errors is 160 * 0/ 128 ==
* max #errors is 160 * 31 / 128 == 38.75
*/
/* Exanpl e5: Call with average = 32
->sp =26, nsh = 4, delta = 16, fixed = 10, mask = 31
* sp drawn at randomfrom10..41 -> nean sp = 25.5
* mean #errors is 160 * 25.5/ 128 == 31.875
* mn #errors is 160 * 10 / 128 == 12.50
* max #errors is 160 * 41 / 128 == 51.25
*/

c->prob_synbol _fixed = fi xed;
c->prob_synbol _mask = nask;

Page 64 523/0111:24AM

Verification of a Synthes sable Reed-Solomon ECC Core

8 Appendic C —channel _fi xed_init()

voi d channel _init_fixed (int n, tconfig *cfg, int eprob, int nun) {
tchannel cfg *c = n ? & cfg->cl) : & cfg->c0);
int stepnask;
int startnask;
int nmnend;
int maxend;
int mnstep;
int maxstep;
int mnstart;
int naxstart;
if (num==1) {
st epnask = O;
} else {
stepmask = | argest_power _of _two(159 / (num- 1)) - 1,

mnstep = 1;
maxstep = 1 + stepnask;
startmask = | argest_power _of _two(160 - ((num- 1) * maxstep)) - 1;
mnstart ;
maxstart = start nmask;
mnend = mnstart + (num- 1) * (ninstep);
nmaxend = nmaxstart + (num - 1) * (maxstep);
if (maxend >= 160) {
printf("there is sonething wong with channel _init_fixed()!\n");
printf("num%al, stepmask=%l, startnask=%l, m nend=%l, nmaxend=%l\n",
num stepnask, startmask, mnend, naxend);
exit(1);

c->prob_enabl e = eprob;

c- >prob_synbol _fixed = 128;
c- >prob_synbol _mask = 0;
c->step_prob = 0;
c->start_fixed = 0O;
c->start_nask = start nask;
c->step0_fixed = 0O;

c- >st ep0_nask = 0;
c->stepl fixed = 1;
c->stepl _nask = stepnask;
C- >naxi num = num

Page 65 523/0111:24AM

