

Verification of a Synthesisable Reed-Solomon
ECC Core

David Banks
Publishing Systems and Solutions Laboratory
HP Laboratories Bristol
HPL-2001-125

E-mail: dmb@hplb.hpl.hp.com

Reed-Solomon,
error correction,
verilog,
synthesis,
synthesisable,
hardware, ECC,
Galois field

In this report we describe the verification of a Reed-Solomon
error correction core that supports errors and erasures
decoding. In a second report HPL-2001-124 we describe the
design of this core.

The verification was performed using both simulation and
prototyping.

The simulation environment consisted of automatic test vector
(codeword) generation for a variety of tests, unit delay
simulation of a gate-level netlist in Verilog-XL, and comparison
of the simulation results against an independently developed
Reed-Solomon ECC model written in C. The prototyping
environment consisted of a Xilinx FPGA containing the ECC
block with a flexible pattern generator, together with circuitry
for adding errors and erasures, and circuitry for accumulating
test results. Tests were configured using a C program (running
under Linux), which communicated with the hardware under
test using a standard parallel port interface.

Overall, we ran 1,147,000 vectors through the simulation, and
10,176,000,000 random vectors through the prototype. No
failures were detected.

 Copyright Hewlett-Packard Company 2001 Approved for External Publication

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 2 5/23/01 11:24 AM

1 INTRODUCTION..4

2 VERILOG SIMULATION ...5

2.1 METHODOLOGY .. 5
2.1.1 Overall block diagram...5
2.1.2 Vector generation...6
2.1.3 Verilog simulation..9
2.1.4 Gadiel’s reference encoder and decoder .. 11
2.1.5 Status codes... 12
2.1.6 Comparing results... 13
2.1.7 Top level shell script ... 15
2.1.8 File system organization... 16

2.2 SPECIFIC TESTS ... 17
2.2.1 Test A - Random error and erasure combinations (32)...................... 18
2.2.2 Test A - Random errors and erasure combinations (20) 19
2.2.3 Test B - Realistic data (32) ... 20
2.2.4 Test C - All error and erasure combinations (32).............................. 21
2.2.5 Test C - All error and erasure combinations (20).............................. 22
2.2.6 Test D - Uncorrectable error detection (32)....................................... 23
2.2.7 Test D - Uncorrectable error detection (20)....................................... 24
2.2.8 Test E - Sensitivity to erasure positions (32)...................................... 25
2.2.9 Test F - Sensitivity to gaps between codewords (32).......................... 26

3 FPGA PROTOTYPE.. 27

3.1 METHODOLOGY .. 27
3.1.1 Overall prototype block diagram.. 27
3.1.2 Hardware design... 28
3.1.3 Hardware implementation .. 41
3.1.4 Test software ... 45

3.2 SPECIFIC TESTS ... 50
3.2.1 Test A – Random error and erasure combinations............................. 50
3.2.2 Test B – Realistic data .. 52
3.2.3 Test C – All error and erasure combinations..................................... 53
3.2.4 Test D – Uncorrectable error detection.. 54
3.2.5 Test E – Sensitivity to erasure positions... 56
3.2.6 Test F – Random error and erasure combinations (limited
maxerasures)... 57

4 VERIFICATION OF OTHER REED-SOLOMON CODES 60

4.1 CODES IN GF (28).. 60
4.1.1 Simulation ... 60
4.1.2 Prototype... 60

4.2 CODES IN FIELDS OTHER THAN GF (28) ... 60
4.2.1 Simulation ... 60
4.2.2 Prototype... 61

5 REFERENCES.. 62

6 APPENDIX A – MISCORRECT PROBABILITIES.................................... 63

7 APPENDIX B – CALC_SYMBOL_PROBS()... 64

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 3 5/23/01 11:24 AM

8 APPENDIC C – CHANNEL_FIXED_INIT() .. 65

Figure 1 – Overall simulation block diagram .. 5
Figure 2 – Overall prototype block diagram .. 27
Figure 3 - FPGA block diagram... 28
Figure 4 - Clumped erasures – number of erasures distribution.................................. 35
Figure 5 - Clumped erasures - symbol error distribution ... 35
Figure 6 - The EVALXC2SVE-HQ240 prototyping poard... 42
Figure 7 - The PWR3 power module ... 42
Figure 8 – Custom parallel cable construction .. 44
Figure 9 – Graph of expected verses observed miscorrection probabilities 59

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 4 5/23/01 11:24 AM

1 Introduction
This document describes the verification of the Reed-Solomon ECC block designed
by HP Labs Bristol. For further details on the design of the ECC block, please refer to
[1]. The verification was performed using both simulation and prototyping.

The simulation environment consisted of automatic test vector generator for a variety
of tests, unit delay simulation of a gate-level netlist in Verilog-XL, and comparison of
the simulation results against an independently developed Reed-Solomon ECC model
written in C.

The prototyping environment consisted of an FPGA containing the ECC block with a
flexible pattern generator, together with circuitry for adding errors and erasures, and
circuitry for accumulating test results. Tests are configured by a C program (running
under Linux), which communicates with the hardware under test using a standard
parallel port interface.

The remainder of this document is structured as follows. Section 2 describes in detail
the simulation methodology and the specific tests run. Section 3 describes in detail the
prototyping methodology and the specific tests run. Finally, in section 4 we discuss
the issues that may arise in re-using this verification infrastructure for Reed-Solomon
codes other than the RS(160,128,t=16) code of interest to us.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 5 5/23/01 11:24 AM

2 Verilog simulation

2.1 Methodology

2.1.1 Overall block diagram

Vector
Generation
(C code)

Verilog Simulation
(top.v)

encoder.raw

errors.raw
erasures.raw

decoder.raw

generate_data
task

generate_errors
task

encoder (gate
level netlist)

decoder (gate
level netlist)

Gadiel's
reference
decoder
(C code)

messagedata.v

errordata.v

compare
(C code)

cut and
paste corrupt.raw

cut

our_decoder.raw

ref_decoder.raw

Gadiel's
reference
encoder
(C code)

compare
(C code)

cut

our_encoder.raw

ref_encoder.raw

message_data.raw

FULLSIMLOG and
FULLSIM shell scripts co-

ordinate the execution of several
tests

Figure 1 – Overall simulation block diagram

The overall simulation methodology is illustrated in Figure 1. The vectors C
program can generate test vectors for several tests (testa, testb, … etc), detailed later
in this section. The file names shown in Figure 1 are actually prefixed with the test
name, so that the results of previous simulations are not overwritten.

For each named test, a verilog simulation is run which includes two external files
(test_messagedata.v and test_errordata.v) generated by the vectors C program; one
specifies the 128-byte information blocks to be encoded (and the gaps between them).
The other specifies the 160-byte error patterns to apply to the encoded data. The

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 6 5/23/01 11:24 AM

simulation generates four files: the output of the encoder (encoder.raw) the corrupted
data and erasures positions (errors.raw and erasures.raw) and finally the output of the
decoder (decoder.raw).

The results of the verilog simulation are checked against an independently coded
Reed-Solomon encoder and decoder, provided by Gadiel Seroussi of HP Labs Palo
Alto (for more details on this design see [2], which is also available directly from
Gadiel). The same data set is run through Gadiel’s encoder and decoder, and a simple
C program is used to compare the output status codes and corrected data.

In order to simplify the execution of several back-to-back tests, we have provided a
simple shell script (FULLSIM), which iterates through the different tests, renaming
files where necessary, etc.

On a Pentium III 700 MHz Linux box, running Cadence’s Verilog-XL 3.11.p001, we
achieve a simulation performance of one vector every two seconds. We found gate-
level simulation considerably (3x-6x) faster than RTL simulation, as long as it was
done in unit delay mode (the +delay_mode_unit) flag. This was also considerably
faster (3x-6x) than using ModelSim 3.4a on the same platform.

The remainder of this sub-section describes each of the components of the simulation
environment in greater detail, giving specific examples where these are helpful.

2.1.2 Vector generation
The vector generation phase generates a specified number of vectors for each of six
possible tests (testa, testb, testc, testd, teste and testf), which are detailed in the next
section. To generate a set of vectors, the vectors C program must be run. The
command line option syntax for vectors is:

 vectors [–a <num>] [-b <num>] [-c <base num>]

 [-d <base num>] [-e <num>] [-f <num>]
 [-s <scale factor>] [-r <random seed>] [-v <verbosity>]
 [-B <code block size>]
 [-T <code correction capability>]
 [-W <code symbol width>]

-a The number of vectors to generate for testa (default 100).

-b The number of vectors to generate for testb (default 100).

-c The base number of vectors to generate for testc. The actual number of vectors

will be 289 times the base for the RS (160,128,t=16) code, since this test
iterates through every correctable combination of errors and erasures (default
1).

-d The base number of vectors to generate for testd. The actual number of vectors

will be 45.8 times the base for the RS (160,128,t=16) code, since this test
iterates through all possible numbers of erasures (default 10).

-e The number of vectors to generate for teste (default 100).

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 7 5/23/01 11:24 AM

-f The number of vectors to generate for testf (default 100).

Thus, the default number of vectors generated is:
100 + 100 + 289 + 458 + 100 + 100 = 1,147

A typical simulation run of this length will take about 40 minutes.

-s A scale factor to apply to the number of vectors for each test (default 1).

Thus, if –s1000 was used, a total of 1,147,000 vectors would be generated. A
simulation run of this length would take about a week.

-r A random seed, so that (if required) different vector sets can be generated
(default 21011967).

-v The verbosity (0,1,2 or 3) when generating vectors (default 1)

The Reed Solomon code to be tested is specified using the following options:

-B The block size of the Reed-Solomon code to be tested (default 160).

-T The number of errors the Reed-Solomon code can correct (default 16).

-W The symbol width (in bits) of the Reed-Solomon code (default 8). Currently

only values of 4 and 8 are supported.

The default code is an RS (160, 128, T=16) in GF (2^8).

The result of executing the vectors (with all the default options) would be the
following files written to the current directory

% ./vectors
Running testa for 100 vectors
Running testb for 100 vectors
Running testc for 1 vectors per combination
Running testd for 10 vectors per erasure
Running teste for 100 vectors
Running testf for 100 vectors
Total number of vectors = 1147
% ls -l test*
-rw-r--r-- 1 dmb users 952 Mar 8 11:41 testa.log
-rw-r--r-- 1 dmb users 51100 Mar 8 11:41 testa_errordata.v
-rw-r--r-- 1 dmb users 51300 Mar 8 11:41 testa_messagedata.raw
-rw-r--r-- 1 dmb users 28200 Mar 8 11:41 testa_messagedata.v
-rw-r--r-- 1 dmb users 941 Mar 8 11:41 testb.log
-rw-r--r-- 1 dmb users 51100 Mar 8 11:41 testb_errordata.v
-rw-r--r-- 1 dmb users 51300 Mar 8 11:41 testb_messagedata.raw
-rw-r--r-- 1 dmb users 28200 Mar 8 11:41 testb_messagedata.v
-rw-r--r-- 1 dmb users 2973 Mar 8 11:41 testc.log
-rw-r--r-- 1 dmb users 147679 Mar 8 11:41 testc_errordata.v
-rw-r--r-- 1 dmb users 148257 Mar 8 11:41 testc_messagedata.raw
-rw-r--r-- 1 dmb users 81498 Mar 8 11:41 testc_messagedata.v
-rw-r--r-- 1 dmb users 5805 Mar 8 11:41 testd.log
-rw-r--r-- 1 dmb users 234038 Mar 8 11:41 testd_errordata.v
-rw-r--r-- 1 dmb users 234954 Mar 8 11:41 testd_messagedata.raw
-rw-r--r-- 1 dmb users 129156 Mar 8 11:41 testd_messagedata.v
-rw-r--r-- 1 dmb users 890 Mar 8 11:41 teste.log
-rw-r--r-- 1 dmb users 51100 Mar 8 11:41 teste_errordata.v
-rw-r--r-- 1 dmb users 51300 Mar 8 11:41 teste_messagedata.raw

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 8 5/23/01 11:24 AM

-rw-r--r-- 1 dmb users 28200 Mar 8 11:41 teste_messagedata.v
-rw-r--r-- 1 dmb users 1090 Mar 8 11:41 testf.log
-rw-r--r-- 1 dmb users 51100 Mar 8 11:41 testf_errordata.v
-rw-r--r-- 1 dmb users 51300 Mar 8 11:41 testf_messagedata.raw
-rw-r--r-- 1 dmb users 28341 Mar 8 11:41 testf_messagedata.v

To understand what is in each file, we can use vectors to generate a very short run
comprising of just three vectors for testa:

./vectors -a 3 -b 0 -c 0 -d 0 -e 0 -f 0
Running testa for 3 vectors
Total number of vectors = 3

The “.log” file comprises:
 <vector number> <nerrors> <nerasures> <gap following this vector>

dbanks:dmb:[180] % cat testa.log
0 0 38 0
1 1 0 0
2 0 0 0

The “_messagedata.v” file is intended to be included directly in the verilog simulation
using the ìnclude directive. This file specifies the input to the encoder, and consists
of a call to the task generate_data (<message>, <gap>) for each vector. In the
below example, each vector is 1024 bits (i.e. 128 symbols) and there are no gaps
between vectors.

dbanks:dmb:[181] % cat testa_messagedata.v
generate_data(1024'h9516f4223bc535bf7b4c8d18179d458bd43717bf4f1cf59999ba49c3ab16f9402c
ed6267b297262de4b345fb508a8624c19ee311bad8aa5393f3173e09107e35fde09caf77c2dc5b762257c6
acddeb6e7bce7f36a729893a1da07826b0f65cadd6f85c4dbb39a9315b00f707dde27559b1f48f581e1892
3bb90a616900bd17d6, 0);
generate_data(1024'hd4581ad411cea2ec7453bdc05ca925697c438203b5b5e7f7872b357162f40a364c
240b5ef2ad4a660007275db14cc62d8f483045fd173c844371f5a565ffdcb223e71016945a7c9461a3f112
efb8407f0070c4fe880082cb717870d6774c889b3398b1c7f22d5c54d14d66c005a63f061703049f03866a
74feda4b7627d3115a, 0);
generate_data(1024'hef7eb2c0cb1981d1bfc0d7d6c4db75c761df3c60ba87d6e15ae73bc6a95d2598db
d759a7f0da78b09a4f865e2afc268bdb62eb95e9c17643a8b20a510f2feaeb064392f71d0aa7b7592d1683
293c0e059efa9a87bb11ca64c3d4b5d2039fbd0ae24f01ff59a8b7b2d5cd35ff094404a73e9e2ef9aff85d
72cd1345d0b202da95, 0);

The “_errordata.v” file is also intended to be included in the verilog simulation. This
file specifies how data is corrupted between the encoder and decoder, and consists of
a call to the task generate_error (<error pattern>, <erasure flags>). The
error pattern field specifies the magnitude of errors and erasures, and the erasure flags
field contains a single bit erasure flag for each symbol position. In the below example,
each error pattern is 1280 bits (i.e. 160 symbols).

dbanks:dmb:[182] % cat testa_errordata.v
generate_error(1280'hfcf10000e7b10000000000000000009f000000530000000000001800000000000
0af00710300000000000000000000000000331e00007300000000000098000000d20000000000000000000
000000000000000cd000000d286000b000000ea0000000721f700000000007c00cc790000004c850000000
0aa00b4000000000000000000000d00005700ec000000da00000000000000000000f20f5d0000000000,
160'b110011000000000100010000001000000101100000000000001100100000010001000000000000000
0010001101000100011100000101100011000010100000001001001010001000000000011100000);
generate_error(1280'h000
00
00
000c200000000000000000000000000000000000000,
160'b000
000);
generate_error(1280'h000
00
00
000,

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 9 5/23/01 11:24 AM

160'b000
000);

The final file generated is the “_messagedata.raw” file, which contains the same
message data as the “_messagedata.v” file, but in a format suitable for Gadiel’s
reference Reed-Solomon encoder. In the below example, which contains three
vectors, each vector consists of 128 decimal values. There is no explicit separator
between vectors; instead symbols are simply read in blocks of 128.

dbanks:dmb:[183] % cat testa_messagedata.raw
149 22 244 34 59 197 53 191 123 76 141 24 23 157 69 139 212 55 23 191 79
28 245 153 153 186 73 195 171 22 249 64 44 237 98 103 178 151 38 45 228 179 69
251 80 138 134 36 193 158 227 17 186 216 170 83 147 243 23 62 9 16 126 53
253 224 156 175 119 194 220 91 118 34 87 198 172 221 235 110 123 206 127 54 167
41 137 58 29 160 120 38 176 246 92 173 214 248 92 77 187 57 169 49 91 0 247
7 221 226 117 89 177 244 143 88 30 24 146 59 185 10 97 105 0 189 23 214
212 88 26 212 17 206 162 236 116 83 189 192 92 169 37 105 124 67 130 3 181
181 231 247 135 43 53 113 98 244 10 54 76 36 11 94 242 173 74 102 0 7
39 93 177 76 198 45 143 72 48 69 253 23 60 132 67 113 245 165 101 255 220 178
35 231 16 22 148 90 124 148 97 163 241 18 239 184 64 127 0 112 196 254 136 0
130 203 113 120 112 214 119 76 136 155 51 152 177 199 242 45 92 84 209 77 102
192 5 166 63 6 23 3 4 159 3 134 106 116 254 218 75 118 39 211 17 90
239 126 178 192 203 25 129 209 191 192 215 214 196 219 117 199 97 223 60 96 186
135 214 225 90 231 59 198 169 93 37 152 219 215 89 167 240 218 120 176 154 79
134 94 42 252 38 139 219 98 235 149 233 193 118 67 168 178 10 81 15 47 234
235 6 67 146 247 29 10 167 183 89 45 22 131 41 60 14 5 158 250 154 135
187 17 202 100 195 212 181 210 3 159 189 10 226 79 1 255 89 168 183 178 213
205 53 255 9 68 4 167 62 158 46 249 175 248 93 114 205 19 69 208 178 2
218 149

In all of the above files, the standard Reed-Solomon convention of presenting the
most significant symbol first is followed.

2.1.3 Verilog simulation
The verilog simulation comprises a top-level test harness (top.v) that instantiates an
encoder and a decoder, using the gate-level netlists generated from Synopsys. The test
harness also defines and implements two tasks: generate_data and generate_error.

2.1.3.1 Generate_data task
The definition of the generate_data task is listed below:

task generate_data;
input [WIDTH * (B - 2 * T) - 1 : 0]
 dinval;
input [31 : 0]
 gap;
integer
 i,
 j;
begin
 for (i = B - 2 * T - 1; i >= 0; i = i - 1) begin
 @(posedge clock && clocken);
 for (j = 0; j < WIDTH; j = j + 1)
 din[j] <= dinval[WIDTH * i + j] ;
 if (i == (B - 2 * T - 1)) begin
 load <= 1;
 end else begin
 load <= 0;
 end
 end
 @(posedge clock && clocken);
 din <= 'bx;
 for (i = 0; i < 2 * T + gap - 1; i = i + 1)
 @(posedge clock && clocken);
end
endtask

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 10 5/23/01 11:24 AM

This task takes two parameters: dinval, which specifies the message to be encoded,
and gap, which specifies the number of extra idle clock cycles to append to the
codeword. Note that a minimum of 2T idle clocks must be appended, to allow space
for the 2T check symbols. During this idle period, din to the encoder is set to the
“don’t care” state, consequently if we ever mistakenly use this data, the simulation
will rapidly fail.

2.1.3.2 Generate_error task
The definition of the generate_error task is listed below:

task generate_error;
input [WIDTH * B - 1 : 0]
 errorvals;
input [B - 1 : 0]
 erasurevals;
integer
 i,
 j;
reg [WIDTH - 1 : 0]
 errorval;
begin
 while (encsob != 1) begin
 errorerasure <= 'bx;
 errordout <= 'bx;
 @(posedge clock && clocken);
 end
 for (i = B - 1; i >= 0; i = i - 1) begin
 for (j = 0; j < WIDTH; j = j + 1)
 errorval[j] = errorvals[WIDTH * i + j] ;
 errorerasure <= erasurevals[i];
 errordout <= encdout ^ errorval;
 @(posedge clock && clocken);
 end
end
endtask

This task takes two parameters: errorvals, which specifies the corruption to be added
to the codeword, and erasurevals, which specifies which symbols will be tagged as
erasures. The task synchronizes itself with the output of the encoder using the encsob
signal, which is asserted with the first symbol of the encoded codeword. The task
writes to the errorerasure and errordout global registers, which are used as the input to
the decoder. During the idle period between codewords, errorerasure and errordout are
set to the “don’t care” state, consequently if we ever mistakenly use this data, the
simulation will rapidly fail.

2.1.3.3 Initialising the simulation
The simulation is initialised in a very conservative way, using the following verilog
initial block:

initial
 begin
 ... stuff deleted ...
 // Start by letting everything get into a bad state
 din <= 'bx;
 load <= 'bx;
 reset <= 'bx;
 maxerasures <= 'bx;

 // Wait for it to get really bad
 for (i = 0; i < 50; i = i + 1)
 @(posedge clock && clocken);

 // Blip reset for a single clock cycle
 @(posedge clock && clocken);

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 11 5/23/01 11:24 AM

 reset <= 1;
 @(posedge clock && clocken);
 reset <= 0;

 // Take load to something sensible as well
 load <= 0;
 maxerasures <= `MAXERASURES;

 // Wait one more clock before starting
 @(posedge clock && clocken);

 `include "test_messagedata.v"

 for (i = 0; i < 1000; i = i + 1)
 @(posedge clock && clocken);

 theend <= 1;

 for (i = 0; i < 10; i = i + 1)
 @(posedge clock && clocken);

 $finish;
 end

The most important thing to note is that the input signals to the simulation will be in
the worst possible state (the don’t care state) for many cycles prior to the reset, and
that reset is asserted for a single cycle. This validates that a single cycle reset is
sufficient to reset both the encoder and decoder.

2.1.3.4 Simulation input and output files
The input to the simulation is the following two files:

i. test_messages.v – a list of calls to generate_data, as generated by vectors.
ii. test_errordata.v – a list of calls to generate_error, as generated by vectors.

The output from the simulation is the following four files:

i. encoder.raw – containing the output of the encoder.
ii. errors.raw – containing the corrupted codewords.
iii. erasures.raw – containing the erasure positions.
iv. decoder.raw – containing the output of the decoder.

2.1.4 Gadiel’s reference encoder and decoder
Gadiel Seroussi, of HP Labs Palo Alto, wrote the reference Read-Solomon encoder
and decoder. This code has been well used in HP over a number of years.

Slight modifications to the outer “wrapper” of this code have been made in the
following areas:

i. The format in which the data files are read and written has been changed. In
the original code the data files were binary. Each symbol was represented by a
single byte, limiting the maximum symbol size to 8 bits. We have instead
adopted the above (.raw) format, where a white-space-separated decimal
number represents each symbol. This, in principle, allows codes with symbols
larger than 8 bits to be supported.1

ii. Although the original code fully implemented erasure decoding, this
functionality was not supported in the outer “wrapper”. We have modified the
wrapper such that the input to the decoder comprises B symbols (the corrupted

1 The original code was retained, and can be enabled by #defining BINARY in file rs.c.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 12 5/23/01 11:24 AM

data) followed by a further B symbols flagging erasures (0 = no erasure, 1 =
erasure).2

iii. In the original code, the decoder output the corrected data only and not the
additional check symbols. We have modified the wrapper to output the
complete decoded codeword (data and check symbols) plus one additional
symbol to indicate whether decoding was successful (0 = OK, 1 = fail).

iv. A –V option was added to allow the maximum number of erasures to be
reduced from the code’s maximum (the default) to a smaller value. This
mimics the behaviour of our decoder.

For the RS (160, 128, t = 16) code, the following command must be executed to run
the reference encoder:

rs –n160 –r32 <input_file.raw> <output_file.raw>

The file <input_file.raw> should contain the messages to be encoded (128 decimal
symbols per message). The resulting codewords will be written to the file
<output_file.raw> (160 decimal symbols per codeword). An example of the output
is:

Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
100 blocks processed, 12800 symbols in, 16000 symbols out

For the RS (160, 128, t = 16) code, the following command must be executed to run
the reference decoder:

rs –d –n160 –r32 –V20 <input_file.raw> <output_file.raw>

The file <input_file.raw> should contain the corrupted codewords to be decoded
(160 decimal symbols per codeword). The resulting corrected codewords will be
written to the file <output_file.raw> (160 decimal symbols plus one status symbol
per codeword). An example of the output is:

Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
100 blocks processed, 63 OK, 37 failed
Chien searches: 75
12800 symbols out, 16000 symbols in, 543 corrected

2.1.5 Status codes
Gadiel’s reference decoder uses the following status codes:

0 Correctable.
1 Uncorrectable.

Our decoder uses the following basic status codes:

0 Correctable, no errors, no erasures.
1 Correctable, no errors, some erasures.
2 Correctable, some errors, no erasures.
3 Correctable, some errors, some erasures.
4 Uncorrectable, no erasures.
5 Uncorrectable, some erasures.

2 This new erasures functionality is enabled by #defining WITHERASURES in file rs.c.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 13 5/23/01 11:24 AM

Due to the internal architecture of the decoder, the status code is generated after the
decoder has attempted to correct the corrupted codeword, and is available when the
final symbol of the corrected codeword is being output. This minimises latency. Thus,
regardless of whether the error pattern is correctable, or not, the decoder will always
attempt to correct it.

As an additional check, the decoder re-calculates the syndromes over each sequence
of symbols output by the decoder. This check is performed by the final pipeline stage
within the decoder, called the monitor block.

If the status code was 0 to 3, the sequence of symbols output by the decoder should
always correspond to a valid codeword (i.e. the syndromes will be zero). If this is not
the case, the status code is replaced with 6.

If the status code was 4 or 5, the sequence of symbols output by the decoder is
unlikely to be a valid codeword (i.e. one or more of the syndromes should be non-
zero). If this is not the case, the status code is replaced with 7.

The status codes 6 and 7 should always be treated as uncorrectable.

More specifically:

6 Uncorrectable, special case 1. This represents the case where the status
code going in to the monitor block was 0 to 3 (i.e. correctable), yet for some
reason the syndrome of the sequence of symbols output by the decoder was
non-zero, indicating an invalid codeword. This could indicate a design error in
the decoder. It could also indicate that hardware is not operating reliably, say
due to incorrect power supply voltages, or excessive system noise.

7 Uncorrectable, special case 2. This represents the case where the status
code going in to the monitor block was 4 or 5 (i.e. uncorrectable), yet for some
reason the syndrome of the sequence of symbols output by the decoder was
zero, indicating a valid codeword. This event does occur in practise,
particularly if the weight of the error pattern is 2T + 1 (i.e. just above what is
correctable). Usually the codeword, whilst valid, is the wrong one. The only
reason we expose this behaviour outside of the decoder is because it may help,
in the future, us to design more effective decoders.

2.1.6 Comparing results
The final simulation step for each test is to compare the results of our verilog
simulation with that of Gadiel’s reference encoder and decoder. We have written a
small C program, compare, for this purpose. The syntax for compare is:

compare <test.log> <ref_file.raw> <our_file.raw>
 [<encoder flag> [<T> <maxerasures>]]

<test.log> should be the log file generated from vectors for this test.

<ref_file.raw> should be the output generated from Gadiel’s reference encoder or
decoder.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 14 5/23/01 11:24 AM

<our raw file> should be the output generated from the verilog simulation.

When checking the encoding process, an <encoder flag> of 1 must be specified,
informing compare that the input files contain no status code, otherwise compare
expects a status code to be appended.

 should match the block size of the code (e.g. 160).

<T> should be the error correction capability of the code (e.g. 16).

<maxerasures> should be the maximum number of allowable erasures (e.g. 20 or 32)

The following checks are performed:

i. Encoder data check – the codewords output from our encoder should match
the codewords output from the reference encoder for all messages.

ii. Decoder data check – the corrected codewords from our decoder should match
the corrected codewords from the reference decoder, for all the codewords that
the reference decoder was able to correctly decode (i.e. this step is omitted for
uncorrectable error patterns, since in this case the data output is undefined).

iii. Decoder status check – the following checks are applied to the status codes

generated by the decoders.
− a status code in the range 0..3 from our decoder should match a 0 status

code from the reference.
− a status code in the range 4..7 from our decoder should match a 1 status

code from the reference decoder.

iv. Decoder sanity check – using the log file generated by vectors we perform
some sanity checks on both the reference decoder and our decoder. This is an
attempt to check there is no defect that affects both the reference decoder and
our decoder. More specifically,

− if an error pattern has 2 * nerrors + nerasures ≤ 2T and nerasures ≤
maxerasures, then it should be declared correctable. We check this is
the case.

− if an error patterns has 2 * nerrors + nerasures > 2T and nerasures ≤
maxerasures, then it may be miscorrected. We track the number of
times this happens.

− if an error pattern has nerasures > maxerasures, it should always be
declared uncorrectable. We check this is the case.

An example run of compare for the encoder is illustrated below:

processed 1000 blocks
checking encoders against each other
 dcheckcount=1000 dfailcount=0

The status and data for all 1000 vectors was checked, no failures were detected.

An example run of compare for the decoder is illustrated below:

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 15 5/23/01 11:24 AM

processed 1000 blocks
checking reference decoder against expected behaviour:
 #failures to correct=0, #miscorrects=6
 refstatus=0 occurred 727 times
 refstatus=1 occurred 273 times
 miscorrect table:
 nerasures=32 occurred 14 times, miscorrected 6 times
checking our decoder against expected behaviour:
 #failures to correct=0, #miscorrects=6
 ourstatus=0 occurred 103 times
 ourstatus=1 occurred 164 times
 ourstatus=2 occurred 177 times
 ourstatus=3 occurred 283 times
 ourstatus=4 occurred 55 times
 ourstatus=5 occurred 217 times
 ourstatus=6 occurred 0 times
 ourstatus=7 occurred 1 times
 miscorrect table:
 nerasures=32 occurred 14 times, miscorrected 6 times
checking decoders against each other
 scheckcount=1000 sfailcount=0 dcheckcount=727 dfailcount=0

The status of all 1000 vectors was checked, no failures were detected. The data for the
727 codewords with correctable errors according to the reference decoder were
compared against our decoder. Again, no failures were detected. The miscorrect table
details where miscorrects occurred. All of the miscorrects correspond to the case
where nerasures was 32, which is as expected.

2.1.7 Top level shell script
A simple top-level shell script (FULLSIM) is provided to run all six tests (testa-testf):

#!/bin/csh

set BLOCK=160
set R=32
set T=16

foreach name (testa_32 testa_20 testb_32 testc_32 testc_20 testd_32 testd_20 teste_32
testf_32)

set test=`echo $name | cut -d_ -f1`
set maxerasures = `echo $name | cut -d_ -f2`

echo "**"
echo "Running $test with maxerasures $maxerasures"
echo "**"

Input files to the simulation
rm -f test_messagedata.v
rm -f test_errordata.v

Output files from the simulation
rm -f encoder.raw
rm -f errors.raw
rm -f erasures.raw
rm -f decoder.raw

ln -s vectors/${test}_messagedata.v ./test_messagedata.v
ln -s vectors/${test}_errordata.v ./test_errordata.v

#verilog top.v encoder.v decoder.v symboldelay.v erasurelist.v delay.v expander.v
scaler.v syndrome.v euclid.v polyeval.v fourney.v monitor.v

verilog +define+GATE_LEVEL +define+MAXERASURES="$maxerasures" +delay_mode_unit top.v
gatelevel/encoder.vg gatelevel/decoder.vg +libext+.v -y ~/reedsolomon/libs/perf/veri

mv verilog.log vectors/${name}_verilog.log
mv encoder.raw vectors/${name}_encoder.raw
mv errors.raw vectors/${name}_errors.raw
mv erasures.raw vectors/${name}_erasures.raw
mv decoder.raw vectors/${name}_decoder.raw

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 16 5/23/01 11:24 AM

echo "Running reference encoder"
cut -d"#" -f1 < vectors/${name}_encoder.raw > vectors/${name}_ourencoder.raw
./bin/rs -n${BLOCK} -r${R} vectors/${test}_messagedata.raw
vectors/${name}_refencoder.raw
./bin/compare vectors/${test}.log vectors/${name}_refencoder.raw
vectors/${name}_ourencoder.raw 1 ${BLOCK} ${T} ${maxerasures}

if ($? == 0) then
 echo "Check successful, the encoder passed the test."
else
 echo "Check failed, the encoder failed the test."
endif

echo
echo "Running reference decoder"

cut -d"#" -f1 < vectors/${name}_decoder.raw > vectors/${name}_ourdecoder.raw

cut -d"#" -f1 < vectors/${name}_errors.raw > vectors/1
cut -d"#" -f1 < vectors/${name}_erasures.raw > vectors/2
paste vectors/1 vectors/2 | tr -d "\t" > vectors/${name}_corrupted.raw

./bin/rs -d -n${BLOCK} -r${R} -V${maxerasures} vectors/${name}_corrupted.raw
vectors/${name}_refdecoder.raw
./bin/compare vectors/${test}.log vectors/${name}_refdecoder.raw
vectors/${name}_ourdecoder.raw 0 ${BLOCK} ${T} ${maxerasures}

if ($? == 0) then
 echo "Check successful, the decoder passed the test."
else
 echo "Check failed, the decoder failed the test."
endif

end

The only point of note is that this shell script also controls the value of maxerasures
into both the reference decoder and our decoder. Generally all simulation is done with
maxerasures set to 32. We do however re-run three of the tests with maxerasures set
to 20.

2.1.8 File system organization
The following files and directory hierarchy is required for the simulation:

bin/rs
bin/compare
gatelevel/decoder.vg
gatelevel/encoder.vg
vectors
vectors/testa_errordata.v
vectors/testa.log
vectors/testa_messagedata.raw
vectors/testa_messagedata.v
vectors/testb_errordata.v
vectors/testb.log
vectors/testb_messagedata.raw
vectors/testb_messagedata.v
vectors/testc_errordata.v
vectors/testc.log
vectors/testc_messagedata.raw
vectors/testc_messagedata.v
vectors/testd_errordata.v
vectors/testd.log
vectors/testd_messagedata.raw
vectors/testd_messagedata.v
vectors/teste_errordata.v
vectors/teste.log
vectors/teste_messagedata.raw
vectors/teste_messagedata.v
vectors/testf_errordata.v
vectors/testf.log
vectors/testf_messagedata.raw

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 17 5/23/01 11:24 AM

vectors/testf_messagedata.v
vectors/testjim_errordata.v
vectors/testjim.log
vectors/testjim_messagedata.raw
vectors/testjim_messagedata.v
top.v
params.v

2.2 Specific tests
The tests described in this section were first described in [3].

The overall process for vector generation is common to all of the tests. A single vector
comprises three elements:

i. A randomly generated message (e.g. 128 random bytes).
ii. A randomly generated gap following the message.
iii. A randomly generated pattern of errors and erasures, whose characteristics

differ between the different tests.

A further point worth noting is that an error (by definition) must have a non-zero
magnitude, or it would not be an error. An erasure, however, may be flagged on a
symbol that is actually correct. Thus, when generating an erasure we do not exclude
this possibility.

In the below descriptions, B refers to the block size of the code, and T to it’s error
correcting capability. For example, an RS (160, 128, t=16) code would yield a value
of 160 for B and 16 for T.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 18 5/23/01 11:24 AM

2.2.1 Test A - Random error and erasure combinations (32)
The purpose of this test is to validate the decoder operates correctly when successive
vectors contain wildly different error characteristics.

We generate successive vectors ensuring the no errors case, the errors only case, the
erasures only case and the errors and erasures case each occurring frequently. We also
want include some uncorrectable codewords, to validate uncorrectable error pattern
detection. Randomly selected valid codewords will be corrupted according to the
following error distribution:

1/10 no errors
 2/10 errors only
 2/10 erasures only
 5/10 errors and erasures

The weight (nerrors * 2 + nerasures) of the error pattern in each case will be chosen at
random from the range 0 to 3T. Error patterns with a weight > 2T are generally
uncorrectable. However, there is a small probability that some of these corrupted
codewords will be "within the ball" of a different codeword, and thus will miscorrect.
The proportion of these heavily corrupted codewords that miscorrect should
correspond to the mathematical model (see table in Appendix A)

The following results were obtained for the run generated from vectors -s10:

Running reference encoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
1000 blocks processed, 128000 symbols in, 160000 symbols out
processed 1000 blocks
checking encoders against each other
 dcheckcount=1000 dfailcount=0
Check successful, the encoder passed the test.
Running reference decoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
1000 blocks processed, 690 OK, 310 failed
Chien searches: 717
128000 symbols out, 160000 symbols in, 7122 corrected
processed 1000 blocks
checking reference decoder against expected behaviour:
 #failures to correct=0, #miscorrects=8
 refstatus=0 occurred 690 times
 refstatus=1 occurred 310 times
 miscorrect table:
 nerasures=26 occurred 11 times, miscorrected 1 times
 nerasures=30 occurred 6 times, miscorrected 3 times
 nerasures=32 occurred 8 times, miscorrected 4 times
checking our decoder against expected behaviour:
 #failures to correct=0, #miscorrects=8
 ourstatus=0 occurred 111 times
 ourstatus=1 occurred 137 times
 ourstatus=2 occurred 160 times
 ourstatus=3 occurred 282 times
 ourstatus=4 occurred 64 times
 ourstatus=5 occurred 245 times
 ourstatus=6 occurred 0 times
 ourstatus=7 occurred 1 times
 miscorrect table:
 nerasures=26 occurred 11 times, miscorrected 1 times
 nerasures=30 occurred 6 times, miscorrected 3 times
 nerasures=32 occurred 8 times, miscorrected 4 times
checking decoders against each other
 scheckcount=1000 sfailcount=0 dcheckcount=690 dfailcount=0
Check successful, the decoder passed the test.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 19 5/23/01 11:24 AM

Within this run, 8 miscorrects occurred, generally when the number of erasures was
large. This correlates well with the expected probabilities.

2.2.2 Test A - Random errors and erasure combinations (20)
This is identical to the previous test, except that maxerasures has been reduced to 20.
This causes some (previously) correctable error patterns to be declared uncorrectable,
but has the advantage of reducing the probability of miscorrection.

For the run generated from vectors -s10, the following results were obtained:

Running reference encoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
1000 blocks processed, 128000 symbols in, 160000 symbols out
processed 1000 blocks
checking encoders against each other
 dcheckcount=1000 dfailcount=0
Check successful, the encoder passed the test.
Running reference decoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
1000 blocks processed, 613 OK, 387 failed
Chien searches: 616
128000 symbols out, 160000 symbols in, 5088 corrected
processed 1000 blocks
checking reference decoder against expected behaviour:
 #failures to correct=0, #miscorrects=0
 refstatus=0 occurred 613 times
 refstatus=1 occurred 387 times
checking our decoder against expected behaviour:
 #failures to correct=0, #miscorrects=0
 ourstatus=0 occurred 111 times
 ourstatus=1 occurred 80 times
 ourstatus=2 occurred 160 times
 ourstatus=3 occurred 262 times
 ourstatus=4 occurred 64 times
 ourstatus=5 occurred 245 times
 ourstatus=6 occurred 0 times
 ourstatus=7 occurred 78 times
checking decoders against each other
 scheckcount=1000 sfailcount=0 dcheckcount=613 dfailcount=0
Check successful, the decoder passed the test.

It can be seen that reducing maxerasures from 32 to 20 has removed eliminated the
miscorrected codewords, but at the expense of failing to correct some previously
correctable error patterns. In particular, 77 codewords that were previously corrected
are now declared as uncorrectable (these 77 are now declared as status code 7,
implying a valid codeword was still output).

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 20 5/23/01 11:24 AM

2.2.3 Test B - Realistic data (32)
The purpose of this test is to exercise the decoder with error patterns similar to those
expected in the target application.

For each vector, the number of erasures is randomly selected from the range 0 to 2T *
5/8 - 1, and the number of errors is selected randomly from the range 0 to T * 3/8 - 1.
For T=16, this corresponds to 0 to 20 and 0 to 6 respectively. All error patterns should
be corrected.

The following results were obtained for the run generated from vectors -s10:

Running reference encoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
1000 blocks processed, 128000 symbols in, 160000 symbols out
processed 1000 blocks
checking encoders against each other
 dcheckcount=1000 dfailcount=0
Check successful, the encoder passed the test.
Running reference decoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
1000 blocks processed, 1000 OK, 0 failed
Chien searches: 991
128000 symbols out, 160000 symbols in, 13073 corrected
processed 1000 blocks
checking reference decoder against expected behaviour:
 #failures to correct=0, #miscorrects=0
 refstatus=0 occurred 1000 times
 refstatus=1 occurred 0 times
checking our decoder against expected behaviour:
 #failures to correct=0, #miscorrects=0
 ourstatus=0 occurred 9 times
 ourstatus=1 occurred 131 times
 ourstatus=2 occurred 44 times
 ourstatus=3 occurred 816 times
 ourstatus=4 occurred 0 times
 ourstatus=5 occurred 0 times
 ourstatus=6 occurred 0 times
 ourstatus=7 occurred 0 times
checking decoders against each other
 scheckcount=1000 sfailcount=0 dcheckcount=1000 dfailcount=0
Check successful, the decoder passed the test.

Every codeword was declared correctable, and no data mis-matches between the
decoders were observed.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 21 5/23/01 11:24 AM

2.2.4 Test C - All error and erasure combinations (32)
The purpose of this test is to exhaustively test every correctable combination of
number of erro rs and number of erasures .

More specifically, we check all combinations where nerrors * 2 + nerasures = weight,
where weight varies between 0 and 2T. For each weight value, nerrors can range from
0 to (weight/2). For the RS (160, 128, t=16) code, the number of combinations works
out at 289. For each combination we generate <base_num> vectors. All error patterns
should be corrected.

The following results were obtained for the run generated from vectors -s10:

Running reference encoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
2890 blocks processed, 369920 symbols in, 462400 symbols out
processed 2890 blocks
checking encoders against each other
 dcheckcount=2890 dfailcount=0
Check successful, the encoder passed the test.
Running reference decoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
2890 blocks processed, 2890 OK, 0 failed
Chien searches: 2880
369920 symbols out, 462400 symbols in, 46240 corrected
processed 2890 blocks
checking reference decoder against expected behaviour:
 #failures to correct=0, #miscorrects=0
 refstatus=0 occurred 2890 times
 refstatus=1 occurred 0 times
checking our decoder against expected behaviour:
 #failures to correct=0, #miscorrects=0
 ourstatus=0 occurred 10 times
 ourstatus=1 occurred 320 times
 ourstatus=2 occurred 160 times
 ourstatus=3 occurred 2400 times
 ourstatus=4 occurred 0 times
 ourstatus=5 occurred 0 times
 ourstatus=6 occurred 0 times
 ourstatus=7 occurred 0 times
checking decoders against each other
 scheckcount=2890 sfailcount=0 dcheckcount=2890 dfailcount=0
Check successful, the decoder passed the test.

Every codeword was declared correctable, and no data mis-matches between the
decoders were observed.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 22 5/23/01 11:24 AM

2.2.5 Test C - All error and erasure combinations (20)
This is identical to the previous test, except that maxerasures has been reduced to 20.
This causes some (previously) correctable error patterns to be declared uncorrectable,
but has the advantage of reducing the probability of miscorrection.

Running reference encoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
2890 blocks processed, 369920 symbols in, 462400 symbols out
processed 2890 blocks
checking encoders against each other
 dcheckcount=2890 dfailcount=0
Check successful, the encoder passed the test.
Running reference decoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
2890 blocks processed, 2470 OK, 420 failed
Chien searches: 2460
369920 symbols out, 462400 symbols in, 35110 corrected
processed 2890 blocks
checking reference decoder against expected behaviour:
 #failures to correct=0, #miscorrects=0
 refstatus=0 occurred 2470 times
 refstatus=1 occurred 420 times
checking our decoder against expected behaviour:
 #failures to correct=0, #miscorrects=0
 ourstatus=0 occurred 10 times
 ourstatus=1 occurred 200 times
 ourstatus=2 occurred 160 times
 ourstatus=3 occurred 2100 times
 ourstatus=4 occurred 0 times
 ourstatus=5 occurred 0 times
 ourstatus=6 occurred 0 times
 ourstatus=7 occurred 420 times
checking decoders against each other
 scheckcount=2890 sfailcount=0 dcheckcount=2470 dfailcount=0
Check successful, the decoder passed the test.

Compared to the previous run, 420 codewords are now declared as uncorrectable.
This should be the number of codewords with between 21 and 32 erasures. This turns
out to be the case.3

3 60 + 60 + 50 + 50 + 40 + 40 +30 + 30 + 20 + 20 + 10 + 10 = 420

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 23 5/23/01 11:24 AM

2.2.6 Test D - Uncorrectable error detection (32)
The purpose of this test is to confirm that the observed probability of miscorrection,
given a specific number of erasures, correlates with the mathematical model. The
expected probabilities derived from the model are listed in Appendix A.

As it is only feasible to simulate a relatively small number of vectors, the results will
be statistically significant only in the cases where the probability of miscorrection is
large. This same test can be performed on the FPGA prototype with more than 10^5
times as many vectors in a given time. Thus, more statistically significant results can
be obtained in this way.

A large number (B) of errors will be added, to essentially randomise the codeword.
Following this, the number of erasures is varied from 0 to B. For nerasures ≤ 2T we
run 10x as many vectors as for nerasures > 2T.

The following results were obtained for the run generated from vectors -s10:

Running reference encoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
4580 blocks processed, 586240 symbols in, 732800 symbols out
processed 4580 blocks
checking encoders against each other
 dcheckcount=4580 dfailcount=0
Check successful, the encoder passed the test.
Running reference decoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
4580 blocks processed, 166 OK, 4414 failed
Chien searches: 1704
586240 symbols out, 732800 symbols in, 5223 corrected
processed 4580 blocks
checking reference decoder against expected behaviour:
 #failures to correct=0, #miscorrects=166
 refstatus=0 occurred 166 times
 refstatus=1 occurred 4414 times
 miscorrect table:
 nerasures=26 occurred 100 times, miscorrected 1 times
 nerasures=28 occurred 100 times, miscorrected 21 times
 nerasures=30 occurred 100 times, miscorrected 43 times
 nerasures=31 occurred 100 times, miscorrected 1 times
 nerasures=32 occurred 100 times, miscorrected 100 times
checking our decoder against expected behaviour:
 #failures to correct=0, #miscorrects=166
 ourstatus=0 occurred 0 times
 ourstatus=1 occurred 101 times
 ourstatus=2 occurred 0 times
 ourstatus=3 occurred 65 times
 ourstatus=4 occurred 100 times
 ourstatus=5 occurred 4300 times
 ourstatus=6 occurred 0 times
 ourstatus=7 occurred 14 times
 miscorrect table:
 nerasures=26 occurred 100 times, miscorrected 1 times
 nerasures=28 occurred 100 times, miscorrected 21 times
 nerasures=30 occurred 100 times, miscorrected 43 times
 nerasures=31 occurred 100 times, miscorrected 1 times
 nerasures=32 occurred 100 times, miscorrected 100 times
checking decoders against each other
 scheckcount=4580 sfailcount=0 dcheckcount=166 dfailcount=0
Check successful, the decoder passed the test.

Comparing these results to the probabilities in appendix A shows a good match.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 24 5/23/01 11:24 AM

2.2.7 Test D - Uncorrectable error detection (20)
This is identical to the previous test, except that maxerasures has been reduced to 20.

The following results were obtained for the run generated from vectors -s10:

Running reference encoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
4580 blocks processed, 586240 symbols in, 732800 symbols out
processed 4580 blocks
checking encoders against each other
 dcheckcount=4580 dfailcount=0
Check successful, the encoder passed the test.
Running reference decoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
4580 blocks processed, 0 OK, 4580 failed
Chien searches: 1102
586240 symbols out, 732800 symbols in, 0 corrected
processed 4580 blocks
checking reference decoder against expected behaviour:
 #failures to correct=0, #miscorrects=0
 refstatus=0 occurred 0 times
 refstatus=1 occurred 4580 times
checking our decoder against expected behaviour:
 #failures to correct=0, #miscorrects=0
 ourstatus=0 occurred 0 times
 ourstatus=1 occurred 0 times
 ourstatus=2 occurred 0 times
 ourstatus=3 occurred 0 times
 ourstatus=4 occurred 100 times
 ourstatus=5 occurred 4300 times
 ourstatus=6 occurred 0 times
 ourstatus=7 occurred 180 times
checking decoders against each other
 scheckcount=4580 sfailcount=0 dcheckcount=0 dfailcount=0
Check successful, the decoder passed the test.

It can be seen all codewords are declared uncorrectable, and that no miscorrections
are observed.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 25 5/23/01 11:24 AM

2.2.8 Test E - Sensitivity to erasure positions (32)
The purpose of this test is to validate the operation of the erasurelist block within the
decoder.

We generate codewords where the erasures are clustered at the beginnings and ends of
codewords. This is a particularly stressful case for the erasurelist block; the test in
effect checks that erasures are always associated with the correct codeword. All error
patterns should be corrected. More specifically:
 3/10 of the time a codeword will have 0, 1 or 2 erasures
 4/10 of the time a codeword will have between 3 and 2T-3 erasures
 3/10 of the time a codeword will have 2T-2, 2T-1 or 2T erasures

The erasures be will distributed within the codeword as follows:
 3/10 of time clustered at the start
 3/10 of time clustered at the end
 4/10 of time clustered at the start and end

The clustering algorithm will set an erasure in a location with a probability of 0.9,
moving in from the start or end of the codeword until the required number of erasures
has been marked.

The following results were obtained for the run generated from vectors -s10:

Running reference encoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
1000 blocks processed, 128000 symbols in, 160000 symbols out
processed 1000 blocks
checking encoders against each other
 dcheckcount=1000 dfailcount=0
Check successful, the encoder passed the test.
Running reference decoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
1000 blocks processed, 1000 OK, 0 failed
Chien searches: 896
128000 symbols out, 160000 symbols in, 15721 corrected
processed 1000 blocks
checking reference decoder against expected behaviour:
 #failures to correct=0, #miscorrects=0
 refstatus=0 occurred 1000 times
 refstatus=1 occurred 0 times
checking our decoder against expected behaviour:
 #failures to correct=0, #miscorrects=0
 ourstatus=0 occurred 104 times
 ourstatus=1 occurred 896 times
 ourstatus=2 occurred 0 times
 ourstatus=3 occurred 0 times
 ourstatus=4 occurred 0 times
 ourstatus=5 occurred 0 times
 ourstatus=6 occurred 0 times
 ourstatus=7 occurred 0 times
checking decoders against each other
 scheckcount=1000 sfailcount=0 dcheckcount=1000 dfailcount=0
Check successful, the decoder passed the test.

Every codeword was declared correctable, and no data mis-matches between the
decoders were observed.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 26 5/23/01 11:24 AM

2.2.9 Test F - Sensitivity to gaps between codewords (32)
The purpose of this test is to verify that gaps between codewords are of no
significance to the operation of the encoder or decoder.

This test replicates test A, but adds gaps between the codewords. The length of the
gap is chosen at random from between 1 and 4B clock cycles from the following
distribution:
 4/10 between 1 and 2T
 3/10 between 2T + 1 and B
 1/10 between B + 1 and 2B
 1/10 between 2B + 1 and 3B
 1/10 between 3B + 1 and 4B

The following results were obtained for the run generated from vectors -s10:

Running reference encoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
1000 blocks processed, 128000 symbols in, 160000 symbols out
processed 1000 blocks
checking encoders against each other
 dcheckcount=1000 dfailcount=0
Check successful, the encoder passed the test.
Running reference decoder
Field params: m = 8 poly = 11d
RS code params: n = 160 r = 32 k = 128 L = 1 redund = 25.00% over k
1000 blocks processed, 727 OK, 273 failed
Chien searches: 743
128000 symbols out, 160000 symbols in, 7550 corrected
processed 1000 blocks
checking reference decoder against expected behaviour:
 #failures to correct=0, #miscorrects=6
 refstatus=0 occurred 727 times
 refstatus=1 occurred 273 times
 miscorrect table:
 nerasures=32 occurred 14 times, miscorrected 6 times
checking our decoder against expected behaviour:
 #failures to correct=0, #miscorrects=6
 ourstatus=0 occurred 103 times
 ourstatus=1 occurred 164 times
 ourstatus=2 occurred 177 times
 ourstatus=3 occurred 283 times
 ourstatus=4 occurred 55 times
 ourstatus=5 occurred 217 times
 ourstatus=6 occurred 0 times
 ourstatus=7 occurred 1 times
 miscorrect table:
 nerasures=32 occurred 14 times, miscorrected 6 times
checking decoders against each other
 scheckcount=1000 sfailcount=0 dcheckcount=727 dfailcount=0
Check successful, the decoder passed the test.

These results show the operation of the encoder and decoder is independent of gaps
between codewords. The reason the results are not identical to test A is that drawing
additional random numbers to determine the length of gap affects the precise error
patterns.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 27 5/23/01 11:24 AM

3 FPGA prototype

3.1 Methodology

3.1.1 Overall prototype block diagram

FPGA Evaluation Board
(Erst Electronic GbmH - EVALXC2SVE)

(configured with XChecker cable)

IBM PC running
RedHat Linux 6.1

Centronics parallel
port cable

Power Supply
(Erst Electronic GbmH - PWR3)

GND 1.8V 3.3V

GND 6V-12V

Bench Power Supply

Test Software
written in C

running as root

Parallel port
controller
hardware

direct
hardware
access

Xilinx XCV1000E-6

16 MHz

encoder

decoder

parallel
interface

download
test configuration

(368 bits)

upload
test results
(1240 bits)

Figure 2 – Overall prototype block diagram

At the core of the prototype are the Reed-Solomon encoder and decoder, surrounded
by some hardware for generating test messages, adding error and erasure patterns, and
capturing results. All of this functionality is implemented using an off-the-shelf FPGA
prototyping board containing a single Xilinx XCV1000E FPGA. Also implemented in
this FPGA is a parallel port interface. This allows test configurations to be
downloaded and test results to be uploaded. An individual test comprises up to 2^32
vectors, and with a 16 MHz clock 10^5 vectors can be run every second.

The hardware is controlled from a PC running Linux. The controlling test software is
written in C, and is able to access the hardware registers of the parallel port controller
directly. The advantage of this approach is that no kernel drivers are required; the
disadvantage is that the test software must be run as root.

The default behaviour of the test software is to first validate the connection to the
hardware (using some simple loopback modes implemented by the parallel port
interface in the FPGA). Once this is done, a large number of individual tests are run
sequentially. For each test, a configuration is downloaded which specifies the type
and number of messages and the required distribution of errors and erasures. The test
is started, and the hardware polled for until a done flag is seen. Once the test is
complete, the results are uploaded and compared against the expected results.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 28 5/23/01 11:24 AM

3.1.2 Hardware design

3.1.2.1 FPGA block diagram

Pattern Generator

Encoder

Channel0

Channel1

Decoder

Results Counters

Parallel
Port

Interface

Strobe

DataIn[7:0]

DataOut[3:0]

C
on

fig
ur

at
io

n
S

hi
ft

R
eg

is
te

r
R

es
ul

ts
 S

hi
ft

 R
eg

is
te

r

CRC D

CRC C

CRC B

CRC A

F
ix

ed
 D

el
ay

 (
em

be
dd

ed
 R

A
M

)

maxerasures

Clock

nReset

LED0

LED1

Start

Done

F
ix

ed
D

el
ay

(r
eg

is
te

r)

C0 + C1
error weight

C0 error
weight

ClockEnable

Figure 3 - FPGA block diagram

The FPGA contains the encoder and decoder, together with a number of additional
blocks that are required to generate messages, add corruptions, and accumulate
statistics on the results. These blocks will be described in detail in subsequent
sections.

The general approach for validating the decoder is to check that output of the decoder
matches the original output from the encoder. The purpose of the fixed delay block is
to delay the encoded data, to allow such a comparison to be done. As an extra

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 29 5/23/01 11:24 AM

precaution, we also compute signatures (CRCs) on the symbol data at four strategic
points. As long as there are no unrecoverable errors, the value in CRCD at the end of
a test run should match the value in CRCA.

The following global configuration registers exist:
name width description
r_seed 33 The seed for the random number generators. Within the

FPGA there are several random number generators. The
seed for each of them is derived from this value.

n 32 The number of codewords to run the test for.
erasureinX 1 The value to apply to the erasurein input of the decoder

between codewords.
maxerasures 8 The value to apply to the maxerasures input of the decoder.

The following global results registers exist:

name width description
code_signatureA 32 The output of CRCA, which calculates a signature

over the symbol data after the encoder.
code_signatureB 32 The output of CRCB, which calculates a signature

over the symbol data after channel 0 has added
corruptions.

code_signatureC 32 The output of CRCB, which calculates a signature
over the symbol data after channel 1 has added
corruptions.

code_signatureD 32 The output of CRCD, which calculates a signature
over the symbol data after the decoder

3.1.2.2 Pattern generator
The purpose of the pattern generator block is to generate 128 byte messages followed
by variable length gaps, to use as test data to be encoded.

Within the pattern generator, the following configuration registers exist:

name width description
pg_mode 1 The message data source (i.e. what each 8-bit symbol is)

 0: random – bits 7 to 0 of a random number generator.
 1: counter – bits 15 to 8 of the counter.

pg_cstart 16 The start value for the counter.
pg_climit 16 The limit value for the counter.
pg_cincrement 16 The increment value for the counter.
pg_i0fixed 12 The fixed part of interval i0.
pg_i0mask 12 The random interval mask for i0.
pg_i1fixed 12 The fixed part of interval i1.
pg_i1mask 12 The random interval mask for i1.
pg_iprob 8 The probability of selecting the interval between codewords

from i0 rather than i1 (0 to 128).

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 30 5/23/01 11:24 AM

The value for each 8-bit symbol of the message is taken either from bits 7 to 0 of a
random number generator or from bits 15 to 8 of the counter, based on the pg_mode
register.

At the beginning of a test run, the counter is initialised with pg_cstart .

With each symbol of each message, the counter is updated as follows:

if (counter + pg_cincrement < pg_climit)
 counter <= counter + pg_cincrement
else
 counter <= counter + pg_cincrement – (pg_climit – pg_cstart)

After a 128 byte message, 32 idle are always inserted to allow time for the encoder to
append the 32 check symbols.

After this, a further gap is inserted whose length is selected using the following
formulae:

if (prbs7() < pg_iprob)
 gap <= pg_i0fixed + (prbs12() & pg_i0mask)
else
 gap <= pg_i1fixed + (prbs12() & pg_i1mask)

where prbsN() returns a random number in the range 0 to 2N-1, and

In the test software, some specific configurations of the pattern generator are used.

This configuration (called random_nogaps) results in a gap of zero:

pg_mode = 0
 pg_i0fixed = 0
 pg_i0mask = 0
 pg_iprob = 128

This configuration (called random_smallgaps) results in a gap in the range 0 to 15:
 pg.mode = 0
 pg_i0fixed = 0
 pg_i0mask = 15
 pg_iprob = 128

This configuration (called random_largegaps) results in a gap in the range 0 to 511:
 pg_mode = 0
 pg_i0fixed = 0
 pg_i0mask = 511
 pg_iprob = 128

This configuration (called random_variablegaps) results in a small (0 to 15) gap 75%
of the time, and a large (0 to 511) gap 25 % of the time:
 pg_mode = 0
 pg_i0fixed = 0
 pg_i0mask = 511
 pg_i1fixed = 0
 pg_i1mask = 15
 pg_iprob = 32

The pattern generator does not contain any results registers.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 31 5/23/01 11:24 AM

3.1.2.3 Channel model
The purpose of the channel model block is to corrupt the encoded data, by adding
either errors or erasures according to a programmable distribution.

An instance of the channel model block can be configured to add either errors or
erasures. The channel model block is replicated twice, thus allowing both errors and
erasures to be added.

Within each instance of the channel model, the following configuration registers exist:

name width description
mode 2 0 – add errors, but add only if erasurein = 0.

1 – add errors regardless.
2 – add erasures, but add only if erasurein = 0.
3 – add erasures regardless.

prob_enable 8 The probability of the block being enabled for a given
codeword (0 – 128).

prob_symbol_fixed 8 The fixed part of the prob_symbol distribution.
prob_symbol_mask 8 The random mask for the prob_symbol distribution.
start_fixed 8 The fixed part of the start distribution.
start_mask 8 The random mask for start distribution.
step_prob 8 The probability of selecting the step value from step0

rather than step1 (0 to 128).
step0_fixed 8 The fixed part of the step0 distribution.
step0_mask 8 The random mask for the step0 distribution.
step1_fixed 8 The fixed part of the step1 distribution.
step1_mask 8 The random mask for the step1 distribution.
maximum 8 The maximum number of corruptions in any one

codeword.

Bit 1 of the mode register determines the type of corruption this channel model block
will add. If bit 1 is 0 then errors will be added, otherwise erasures will be added.

Bit 0 of the mode register determines whether the block avoids erasures added by the
previous channel model block. If bit 0 is 0 then corruptions will only be added in
positions not already marked as erasures. If bit 0 is 1 then corruptions may be added
anywhere.

The prob_enable register determines the probability that this block will be enabled
for a given codeword. The probability value can range from 0 to 128, with 0
corresponding to “never enabled” and 128 corresponding to “always enabled”:

/* Choose whether to corrupt this codeword */
if (rand7() < prob_enabled)
 enabled = 1
else
 enabled = 0

Corruptions are added using the following algorithm:

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 32 5/23/01 11:24 AM

/* Initialization at the start of a codeword */
prob_symbol = prob_symbol_fixed + (rand() & prob_symbol_mask);
target = start_fixed + (rand() & start_mask);
count = 0;

/* Iterate through the symbols in the codeword */
for (i = 0; i < 160; i = i + 1) {
 /* Choose whether to corrupt this symbol */
 if ((count < maximum) &&
 (target == i) &&
 (RAND7 < prob_symbol) &&
 ((mode & 1) || (erasure[i] == 0)) &&
 (enabled == 1)) {
 /* Choose corruption value, exclude 0 from errors */
 corruption = RAND8;
 if ((corruption == 0) && ((mode & 2) == 0))
 corruption = 255;
 /* Do the corruption, flagging erasure if required */
 symbol[i] = symbol[i] ^ corruption;
 if (mode & 2)
 erasure[i] = 1;
 /* Increment count of corruptions added */
 count = count + 1;
 }
 /* Select the next corruption target */
 if (target == i) {
 if (RAND7 < step_prob)
 target = target + step0_fixed + (rand() & step0_mask);
 else
 target = target + step1_fixed + (rand() & step1_mask);
 }
}

At the start of a codeword, prob_symbol is chosen from the distribution specified by
prob_symbol_fixed and prob_symbol_mask. This represents the probability that a
candidate location will be corrupted.

The start_fixed , start_mask, step0_fixed, step0_mask, step1_fixed,
step1_mask and step_prob registers are then used to select a sequence of candidate
locations within the codeword, for possible corruption.

At each candidate location, the probability of actually adding a corruption is
determined by prob_symbol. In certain modes, locations that are already flagged as
erasures will be avoided. This will skew the probability distribution slightly, which
we do not correct for. An upper bound on the number of corruptions is provided by
maximum.

In the test software, some specific configurations of the channel model are used:

This configuration (called off) prevents the channel model from adding corruptions:
 mode = 0
 prob_enable = 0
 prob_symbol_fixed = 0
 prob_symbol_mask = 0
 step_prob = 0
 start_fixed = 0
 start_mask = 0

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 33 5/23/01 11:24 AM

 step0_fixed = 0
 step0_mask = 0
 step1_fixed = 0
 step1_mask = 0
 maximum = 0

This configuration (called randomize) causes every symbol to be corrupted as an
error:
 mode = 0
 prob_enable = 128
 prob_symbol_fixed = 128
 prob_symbol_mask = 0
 step_prob = 0
 start_fixed = 0
 start_mask = 0
 step0_fixed = 0
 step0_mask = 0
 step1_fixed = 1
 step1_mask = 0
 maximum = 160

This configuration (called random errorss) causes on average max / 2, and at most
max, errors to be added to a codeword. See Appendix B for a definition of the
calc_symbol_prob() function.
 mode = 0
 prob_enable = 128
 symbol_prob_fixed = calculated by calc_symbol_prob(max / 2)
 symbol_prob_mask = calculated by calc_symbol_prob(max / 2
 step_prob = 0
 start_fixed = 0
 start_mask = 0
 step0_fixed = 0
 step0_mask = 0
 step1_fixed = 1
 step1_mask = 0
 maximum = max

This configuration (called random erasures) causes on average max / 2 , and at most
max, erasures to be added to a codeword. See Appendix B for a definition of the
calc_symbol_prob() function.
 mode = 3
 prob_enable = 128
 symbol_prob_fixed = calculated by calc_symbol_prob(max / 2)
 symbol_prob_mask = calculated by calc_symbol_prob(max / 2)
 step_prob = 0
 start_fixed = 0
 start_mask = 0
 step0_fixed = 0
 step0_mask = 0
 step1_fixed = 1
 step1_mask = 0
 maximum = max

This configuration (called fixed errors) causes exactly num errors to be added. The
distribution of these errors throughout the codeword is fairly random. See Appendix C
for a definition of the channel_init_fixed() function.
 mode = 0
 prob_enable = 128

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 34 5/23/01 11:24 AM

 prob_symbol_fixed = 128
 prob_symbol_mask = 0
 step_prob = 0
 start_fixed = 0
 start_mask = calculated by channel_init_fixed()
 step0_fixed = 0
 step0_mask = 0
 step1_fixed = 1
 step1_mask = calculated by channel_init_fix ed()
 maximum = num

This configuration (called fixed erasures) causes exactly num erasures to be added.
The distribution of these erasures throughout the codeword is fairly random. See
Appendix C for a definition of the channel_init_fixed() function:
 mode = 3
 prob_enable = 128
 prob_symbol_fixed = 128
 prob_symbol_mask = 0
 step_prob = 0
 start_fixed = 0
 start_mask = calculated by channel_init_fixed()
 step0_fixed = 0
 step0_mask = 0
 step1_fixed = 1
 step1_mask = calculated by channel_init_fixed()
 maximum = num

This configuration (called clumped erasures) causes at most 32
erasures to be added, in such a way that they more likely to occur at
the start or end of the codeword than in the middle.
 mode = 3
 prob_enable = 112
 prob_symbol_fixed = 1
 prob_symbol_mask = 127
 step_prob = 4
 start_fixed = 0
 start_mask = 3
 step0_fixed = 128
 step0_mask = 7
 step1_fixed = 1
 step1_mask = 0
 maximum = 32

The distributions obtained for clumped erasures are illustrated below:

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 35 5/23/01 11:24 AM

Probability distribution of number of erasures

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

number of erasures

Series1

Figure 4 - Clumped erasures – number of erasures distribution

Probability distribution of symbol errors

0

0.1

0.2

0.3

0.4

0.5

position within codeword

Series1

Figure 5 - Clumped erasures - symbol error distribution

Within each instance of the channel model, the following results registers exist:

name width description
total_errors 40 A cumulative total of the number of corruptions

added.
total_framingerrors 40 A cumulative total of the number of framing errors

detected.

The total_errors register counts the number of corruptions added by this block
during the test run.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 36 5/23/01 11:24 AM

The total_framingerrors register counts the number of times the SOB (start of
block), EOB (end of block) and ACTIVE control signals are incorrectly generated by
the encoder.

3.1.2.4 Results counters
The purpose of th e results counters block is to accumulate statistics from the decoder
during a test run.

Within the results counters block, the following configuration register exists:

name width description
matchn 8 The value of number of erasures for which the

matchn_status0123 and matchn_status4567 registers will
accumulate results.

Within each instance of the results counters block, the following results registers
exist:

name width description
total_erasures 40 A cumulative total of the number of erasure counted

by the decoder.
total_errors 40 A cumulative total of the number of errors counted

by the decoder.
total_diffs 32 The number of codewords where there were some

differences between the symbols output from the
encoder and the symbols output from the decoder,
over all codewords.

significant_diffs 32 The number of codewords where there were some
differences between the symbols output from the
encoder and the symbols output from the decoder,
for codewords where the error pattern had weight
2T or less, and which decoder claimed as
correctable.

framingerrors 40 A cumulative total of the number of decoder
framing errors detected.

status0_diff0 32 The number of codewords for which the decoder
output a status of 0, and for which no symbol
differences between the encoder and decoder were
detected.

status0_diffN0 32 The number of codewords for which the decoder
output a status of 0, and for which some symbol
differences between the encoder and decoder were
detected.

status1_diff0 32 The number of codewords for which the decoder
output a status of 1, and for which no symbol
differences between the encoder and decoder were
detected.

status1_diffN0 32 The number of codewords for which the decoder

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 37 5/23/01 11:24 AM

output a status of 1, and for which some symbol
differences between the encoder and decoder were
detected.

status2_diff0 32 The number of codewords for which the decoder
output a status of 2, and for which no symbol
differences between the encoder and decoder were
detected.

status2_diffN0 32 The number of codewords for which the decoder
output a status of 3, and for which some symbol
differences between the encoder and decoder were
detected.

status3_diff0 32 The number of codewords for which the decoder
output a status of 3, and for which no symbol
differences between the encoder and decoder were
detected.

status3_diffN0 32 The number of codewords for which the decoder
output a status of 3, and for which some symbol
differences between the encoder and decoder were
detected.

status4_diff0 32 The number of codewords for which the decoder
output a status of 4, and for which no symbol
differences between the encoder and decoder were
detected.

status4_diffN0 32 The number of codewords for which the decoder
output a status of 4, and for which some symbol
differences between the encoder and decoder were
detected.

status5_diff0 32 The number of codewords for which the decoder
output a status of 5, and for which no symbol
differences between the encoder and decoder were
detected.

status5_diffN0 32 The number of codewords for which the decoder
output a status of 5, and for which some symbol
differences between the encoder and decoder were
detected.

status6_diff0 32 The number of codewords for which the decoder
output a status of 6, and for which no symbol
differences between the encoder and decoder were
detected.

status6_diffN0 32 The number of codewords for which the decoder
output a status of 6, and for which some symbol
differences between the encoder and decoder were
detected.

status7_diff0 32 The number of codewords for which the decoder
output a status of 7, and for which no symbol
differences between the encoder and decoder were
detected.

status7_diffN0 32 The number of codewords for which the decoder
output a status of 7, and for which some symbol

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 38 5/23/01 11:24 AM

differences between the encoder and decoder were
detected.

overall_cc 32 The number of codewords with an error pattern of
weight 2T or less, for which the decoder output a
status of 0, 1, 2 or 3.

overall_cu 32 The number of codewords with an error pattern of
weight 2T or less, for which the decoder output a
status of 4, 5, 6 or 7. This can occur routinely if
maxerasures is less than 2T.

overall_uc 32 The number of codewords with an error pattern of
weight 2T + 1 or more, for which the decoder
output a status of 0, 1, 2 or 3. This represents a
miscorrection.

overall_uu 32 The number of codewords with an error pattern of
weight 2T + 1 or more, for which the decoder
output a status of 4, 5, 6 or 7.

matchn_status0123 32 The number of codewords for which the decoder
output a status of 0, 1, 2 or 3, and for which the
number of erasures matched matchn.

matchn_status4567 32 The number of codewords for which the decoder
output a status of 0, 1, 2 or 3, and for which the
number of erasures matched matchn.

first_diff 32 The codeword number where the total_diffs was
first incremented.

last_diff 32 The codeword number where the total_diffs was
last incremented.

3.1.2.5 Parallel Port Interface
The purpose of the parallel port interface block is to allow the configuration and
results registers d escribed in the preceding sections to be accessed using a standard
PC equipped with a centronics parallel port. In addition, this interface is used to start
a test running, and to poll for completion.

The parallel port interface implements a command based interface, where a command
is sent by placing an 8-bit value on signals D0 to D7 and then taking STROBE low
and back high again. The command value is latched shortly after the rising edge of
STROBE. The following commands are implemented:

command
opcode

command
name

description value of DOUT when
command complete

00 STOP Stop the current test run. undefined
01 START Start a new test run. undefined
02 TRANSFER Transfer test results to the results

register.
undefined

03 SHIFT RESULTS Shift the results register left 4 by bits. Top 4 bits of the results
register prior to shift

04 POLL Poll for test completion. 0 if test still running
1 if test completed

05 LOOPBACK Copy the configuration register directly
to the results register.

undefined

10-1F ECHO Echo opcode[3:0] to DOUT. opcode[3:0]

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 39 5/23/01 11:24 AM

20-2F

SHIFT CONFIG Shift the configuration register left 4
bits so that opcode[3:0] is loaded into
the bottom 4 bits..

undefined

30-3F LED Load opcode[3:0] into the LED
register.

undefined

40-4F CEPROB Defines the probability of ClockEnable
being asserted on a given cycle. The
probability is (opcode[3:0] + 1) / 16.
For example, opcode 40 would set the
probability to 1/16, opcode 4F would
set it to 16/16.

undefined

Some commands return 4 bit results (DOUT) using the following parallel port status
signals:
 ~DOUT[3] returned on signal BusyAck (inversion transparent to software).
 DOUT[2] returned on signal Acknowledge.
 DOUT[1] returned signal PaperOut.
 DOUT[0] returned signal Select.

A test is configured by downloading a configuration into the configuration register (4
bits at a time) using the SHIFT CONFIG command. The test can then be started using
the START command. Periodically, the completion status of the test can be polled
using the POLL command. Once the test is complete, the TRANSFER command is
used to load the results register with the test results. Finally the results of the test are
uploaded (again, 4 bits at a time) using the SHIFT RESULTS command.

The individual configuration registers described in the preceding sections are mapped
into the 368-bit configuration register in the following sequence:

name width start position

in
configuration
register

pg_mode 1 367
c0_mode 2 365
c1_mode 2 363
erasureinX 1 362
spare 1 361
r_seed 33 328
n 32 296
pg_cstart 16 280
pg_climit 16 264
pg_cincrement 16 248
pg_i0fixed 12 236
pg_i0mask 12 224
pg_i1fixed 12 212
pg_i1mask 12 200
pg_iprob 8 192
c0_prob_enable 8 184
c0_prob_symbol_fixed 8 176
c0_prob_symbol_mask 8 168
c0_step_prob 8 160
c0_start_fixed 8 152
c0_start_mask 8 144
c0_step0_fixed 8 136

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 40 5/23/01 11:24 AM

c0_step0_mask 8 128
c0_step1_fixed 8 120
c0_step1_mask 8 112
c0_maximum 8 104
c1_prob_enable 8 96
c1_prob_symbol_fixed 8 88
c1_prob_symbol_mask 8 80
c1_step_prob 8 72
c1_start_fixed 8 64
c1_start_mask 8 56
c1_step0_fixed 8 48
c1_step0_mask 8 40
c1_step1_fixed 8 32
c1_step1_mask 8 24
c1_maximum 8 16
matchn 8 8
maxerasures 8 0

The SHIFT CONFIG command shifts the configuration register left 4 bits and then
replaces the LS 4 bits with opcode[3:0].

The first 4-bit chunk to be shifted in would set:

pg_mode = opcode[3]
c0_mode[1] = opcode[2]
c0_mode[0] = opcode[1]
c1_mode[1] = opcode[0]

The final 4-bit chunk to be shifted in would set:

maxerasure[3] = opcode[3]
maxerasure[2] = opcode[2]
maxerasure[1] = opcode[1]
maxerasure[0] = opcode[0]

The individual results registers described in the preceding sections are mapped into
the 1240-bit results register in the following sequence:

name width start position

in results
register

code_signatureA 32 1208
code_signatureB 32 1176
code_signatureC 32 1144
code_signatureD 32 1112
c0_totalerrors 40 1072
c0_framingerrors 40 1032
c1_totalerrors 40 992
c1_framingerrors 40 952
total_erasures 40 912
total_errors 40 872
total_diffs 32 840
significant_diffs 32 808
framingerrors 40 768
status0_diff0 32 736
status0_diffN0 32 704
status1_diff0 32 672
status1_diffN0 32 640

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 41 5/23/01 11:24 AM

status2_diff0 32 608
status2_diffN0 32 576
status3_diff0 32 544
status3_diffN0 32 512
status4_diff0 32 480
status4_diffN0 32 448
status5_diff0 32 416
status5_diffN0 32 384
status6_diff0 32 352
status6_diffN0 32 320
status7_diff0 32 288
status7_diffN0 32 256
overall_cc 32 224
overall_cu 32 192
overall_uc 32 160
overall_uu 32 128
matchn_status0123 32 96
matchn_status4567 32 64
first_diff 32 32
last_diff 32 0

The SHIFT RESULTS command shifts sets DOUT to the MS 4 bits of the results
register, then shifts the results register left 4 bits

The first 4-bit chunk to be shifted out would have:

DOUT[3] = code_signatureA[31]
DOUT[2] = code_signatureA[30]
DOUT[1] = code_signatureA[29]
DOUT[0] = code_signatureA[28]

The final 4-bit chunk to be shifted out would have:
DOUT[3] = last_diff[3]
DOUT[2] = last_diff[2]
DOUT[1] = last_diff[1]
DOUT[0] = last_diff[0]

3.1.3 Hardware implementation

3.1.3.1 Prototyping board
The prototype is implemented using an off-the-shelf development board from ErSt
Electronic GmbH (their website is http://www.erst.ch). The board used was the
EVALXC2SVE-HQ240 containing a single Xilinx XCV1000E-HQ240-6 FPGA.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 42 5/23/01 11:24 AM

Figure 6 - The EVALXC2SVE-HQ240 prototyping poard

More information on the prototyping board can be found at:
http://www.erst.ch/english/evalxc2sve/evalxc2sve.html

The board is supplied with a power supply called the PWR3 power module, which
generates the 1.8V and 3.3V supplies required by the Xilinx FPGA using switching
regulators. The PWR3 power module requires a single DC supply of between 6V and
12V.

Figure 7 - The PWR3 power module

More information on the power module can be found at:
http://www.erst.ch/english/evalxcv/evalxcvhq240.html#pwr3

The prototyping board and power module together cost $2,500.

3.1.3.2 Jumper configuration
The prototype board is highly configurable using jumpers. As some of these jumpers
select power supply voltages, incorrect settings may cause permanent damage. Check
everything carefully before applying power!!

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 43 5/23/01 11:24 AM

The jumper settings used for our design are listed below:

jumper ID jumper name jumper position
J1 M 0 off
J2 M 1 off
J3 M 2 off
J4 Connector for Xchecker cable n/a
J5 Connector for JTAG cable n/a
J6 Connector for SelectMap cable n/a
J7 LED D9 on
J8 LED D8 on
J9-J14 LEDs D7-D2 off
J15-J18 Connectors for external clocks n/a
J19-J22 Ground Points n/a
J23 Reset link 1-2
J24 VCCO selection link 2-3
J25 Connector for daisy chain n/a
J26 GCLK0_SEL link 2-3
J27 GLCK1_SEL link 2-3
J28 GCLK2_SEL off
J29 GCLK3_SEL off
J30 VCO0 off
J31 VCO1 off
J32 promsel off
J33 connector for external power n/a
J34 solder bridge factory set
J35-J101 VREF selection off
J102-J105 VREF selection link 2-3
J106-J109 VREF selection link 1-2
J110-J111 VREF Measurement points n/a
J112-J113 Ground Points n/a
J114-J121 VCCO selection on
J122 Linear Burst off
J123 Connector for SRAM JTAG n/a
J124 FPGA Clock off

3.1.3.3 Download cable
To download the FPGA PROM file to the FPGA we used a Xilinx Xchecker serial
download cable, connected to a Windows PC running the Xilinx software. A
download speed of 115 Kbps works reliably. The Xchecker cable is connected to J4
on the prototyping board as follows:

Xchecker signal colour J4 pin num J4 pin name
VCC red 6 3.3V
GND black 7 GND
CCLK yellow 4 CCLK
D/P blue 2 DONE
DIN green 5 DATA
PROG orange 1 PROG
INIT white 3 INIT
RST purple n/c n/c

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 44 5/23/01 11:24 AM

Note that the old Xchecker cables use a 5V VCC, but will generally run perfectly well
from 3.3V.

3.1.3.4 Parallel cable
A custom cable needs to be constructed to connect the parallel port on the PC to the
development board. The diagram below illustrates how this cable is made up.

1 13

101

25

25 way male IDC D
type connector

looking into pins

40 way female IDC
connector looking from
the rear, connects to

ST4 on prototype board

remove black pins:

14

51

113

62

Figure 8 – Custom parallel cable construction

3.1.3.5 FPGA Usage
The development board contains a XCV1000E Xilinx FPGA. The utilization of this
part (as reported by the Xilinx mapper) is shown below:

Target Device : xv1000e
Target Package : hq240
Target Speed : -6
Mapper Version : virtexe -- D.26
Mapped Date : Wed Mar 28 14:48:08 2001

Design Summary

 Number of errors: 0
 Number of warnings: 84
 Number of Slices: 12,286 out of 12,288 99%
 Number of Slices containing
 unrelated logic: 38 out of 12,286 1%
 Number of Slice Flip Flops: 10,662 out of 24,576 43%
 Total Number 4 input LUTs: 19,076 out of 24,576 77%
 Number used as LUTs: 18,843
 Number used as a route-thru: 73
 Number used as Shift registers: 160
 Number of bonded IOBs: 16 out of 158 10%
 Number of GCLKs: 1 out of 4 25%
 Number of GCLKIOBs: 1 out of 4 25%
Total equivalent gate count for design: 230,312
Additional JTAG gate count for IOBs: 816

It can be seen that the current design occupies approx 99% of the available slices.
This figure is slightly misleading, since that mapper does not start placing unrelated
logic within the same slice until the whole device has been occupied. However, we

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 45 5/23/01 11:24 AM

are still pretty close to the limit. It would not be feasible to prototype a longer code in
within this device.

3.1.4 Test software
The test software is written in C, and is designed to run under Linux. It will not, in its
current form, run under HP-UX or Windows. This is because it uses a Linux specific
system call - ioperm() - to map the PC’s parallel port interface register into user
space, thus enabling direct access to the hardware without a driver. The name of test
software executable is tester. The software is currently compiled for a parallel port
at IO address 0x378, which is the default for LPT1.

3.1.4.1 Command line options
The command line option syntax for tester is:

 tester [–a <base num>] [-b <base num>] [-c <base num>]

 [-d <base num>] [-e <base num>] [-f <base num>]
 [-x <num>] [-y <num>] [-z <num>]
 [-s <scale factor>] [-r <random seed>] [-v <verbosity>]
 [-C <clock enabble probability>]

-a The base number of vectors to execute testa for. The actual number of vectors

will be four times the base, since this test is run with four different pattern
generator configurations (default 1,000,000).

-b The base number of vectors to execute testb for. The actual number of vectors

will be 132 times the base, since this test is run for four different pattern
generator configurations and 33 different error and erasure combinations
(default 100,000).

-c The base number of vectors to execute testc for. The actual number of vectors

will be 1156 times the base, since this test is run for four different pattern
generator configurations and 289 different error and erasure combinations
(default 10,000).

-d The base number of vectors to execute testd for. The actua l number of vectors

will be 33 times the base, since this test is run for 33 different erasure
combinations (default 1,000,000).

-e The base number of vectors to execute teste for. The actual number of vectors

will be 8 times the base, since this test is run for four different pattern
generator configurations and 2 different erasureinX combinations (default
1,000,000).

-f The base number of vectors to execute testf for. The actual number of vectors

will be 33 times the base, since this test is run for 33 different erasure
combinations (default 1,000,000).

Thus, the default number of vectors generated is:

4 * 1000000 + 132 * 100000 + 1156 * 10000
33 * 1000000 + 8 * 100000 + 33 * 1000000 = 101,760,000

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 46 5/23/01 11:24 AM

A typical run of this length will take about 22 minutes.

-s A scale factor to apply to the number of vectors for each test (default 1).

Thus, if just –s 100 was given, a total of 10,176,000,000 vectors would be
generated. A run of this length would take about 37 hours.

-r A random seed, so that (if required) different vector sets can be generated
(default 21011967).

-v The verbosity (0 to 15) when generating vectors (default 1).

-x The number of iterations of the flashing LED test (default 10).

-y The number of iterations of the parallel port echo test (default 1000).

-z The number of iterations of the parallel port loopback test (default 1000).

-C The probability of asserting clock enable (0 – 15), with 0 equating to a
probability of 1/16th, and 15 equating to a probability of 16/16th (i.e. 1). The results of
a run should be identical, regardless of the clock enable probability, at the complete
test system is stalled when clock enable is low.

3.1.4.2 Results checking
After each iteration of each test, the test software applies several checks to the results
counters to check for correct operation of the encoder and decoder.

There are two checking modes: CHK_DIFFS and CHK_NORMAL.

The CHK_DIFFS mode is the most conservative, and should be used when all error
patterns are expected to be correctable. This mode will only pass if every codeword is
corrected back to the original.

The CHK_NORMAL mode is a sub-set of CHK_DIFFS, and should be used where
some of the error patterns are expected to be uncorrectable.

In the CHK_NORMAL mode, the following checks are made:

name description return

code
failure
bit

framing The c0_framingerrors, c1_framingerrors and
framing_errors counters should be zero. A failure
implies the position of the SOB, EOB and ACTIVE
signals from the encoder or decoder is incorrect.

0

status6 The status6_diff0 and status6_diffN0 counters
should be zero. A failure implies the monitor block has
trapped a case where the decoder claims to have corrected

1

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 47 5/23/01 11:24 AM

a codeword, yet the resultant codeword is invalid.
missing
codewords

The sum of the values of the sixteen status counters
should equal n. The sum of the values of the four overall
counters should equal n. A failure implies the decoder has
silently discarded a codeword, or (somehow) generated
extra ones.

2

significant
diffs

The significant_diffs counter should be zero. A
failure implies the input to the decoder was correctable,
the decoder output a status of correctable, then failed to
correct properly.

3

failure to
correct

If maxerasures = 32, then the overall_cu counter should
be zero A failure implies the input to the decoder was
correctable, yet the decoder output a status of
uncorrectable. If maxerasures is reduced below 32, this
case may occur, hence we only perform this check if
maxerasures is 32.

4

miscorrection
consistency

The overall_uc counter should equal the sum of the four
status[0123]_diffN0 counters. A failure implies
something other than a miscorrection caused the decoder
to output a status of correctable then failed to correct
properly.

5

correction
consistency

The overall_cc counter should equal the sum of the four
status[0123]_diff0 counters. A failure implies one of
two things:
1) The input to the decoder was correctable, the decoder
output a status of correctable, yet failed to correct
properly. This will also be recorded in the
significant_diffs counter.
2) The input to the decoder was uncorrectable, yet
somehow (magic?) the decoder managed to correct back to
the original codeword.

6

C0 erasures If channel 0 is set to add erasures, then total_erasures
should equal c0_total_errors. A failure implies the
decoder has incorrectly counted the number of erasures.

12

C1 erasures If channel 1 is set to add erasures, then total_erasures
should equal c1_total_errors . A failure implies the
decoder has incorrectly counted the number of erasures.

13

In the CHK_DIFFS mode, the following additional checks are made:

name description return

code
failure
bit

all correctable The sum of the overall_cc and overall_cu counters
should equal n. A failure implies the test included some
uncorrectable error patterns, and the CHK_DIFFS mode
should not be used. This is a failure of the test software,

7

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 48 5/23/01 11:24 AM

not the decoder.
all corrected The sum of the four status[0123]_diff0 counters

should be n. The overall_cc counter should equal n. A
failure implies some codewords were not properly
corrected.

8

some diffs The total_diffs counter should be zero. A failure
implies some codewords were not properly corrected.

9

incorrect
signature

The code_signatureD register should equal the
code_signatureA register. A failure implies some
codewords were not properly corrected.

10

 undefined 11
C0 errors If channel 0 is set to add errors, then total_errors

should equal c0_total_errors . A failure implies the
decoder has incorrectly counted the number of errors.

14

C1 errors If channel 1 is set to add errors, then total_errors
should equal c1_total_errors . A failure implies the
decoder has incorrectly counted the number of errors.

15

3.1.4.3 Expected miscorrection probability
With Reed-Solomon codes, if the weight of the error pattern exceeds the error
correction capability of the code, there is a finite probability that the corrupted
codeword will lie within the ball of a different codeword. In this case, the decoder will
correct to the different codeword, and a miscorrection is said to have occurred.

Miscorrection can happen with any Reed-Solomon decoder, regardless of how it is
implemented. Without prior knowledge of the error pattern, it is not detectable by the
decoder. Hence, it is a serious failure mode.

 The probability of miscorrection depends heavily on the number of erasures; as the
number of erasures approaches 2T, the probability of miscorrection approaches unity.
Appendix A lists the probability of miscorrection for a RS (160,120,T=16) code, as
the number of erasures varies from 0 to 32.

It is possible to trade off correction capability for detection capability, by placing an
explicit limit of the number of erasures that may occur. If this limit is exceeded, the
codeword is declared uncorrectable. Some otherwise correctable codewords will now
be declared as uncorrectable. However, the probability of miscorrection is reduced,
since this decreases with number of erasures.

If a particular test contains just uncorrectable error patterns with a fixed number of
erasures, the expected probability of miscorrection can be obtained directly from the
table in Appendix A.

If, however, the test contains either a mixture of correctable and uncorrectable error
patterns, or a variable number of erasures, then the probabilities listed in Appendix A
must be weighted, according to the distributions of error and erasures.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 49 5/23/01 11:24 AM

Determining the precise distributions of error and erasure for a given channel
configuration is hard to do analytically. Instead, the test software runs a short
simulation of the channel, using the calibrate_miscorrects() function.

The simulation models the errors and erasures added by channel 0 and channel 1 over
a run of 1,000,000 codewords. Counts are maintained (by number of erasures) for the
number of correctable and uncorrectable error patterns. These are scaled using the
probabilities listed in Appendix A, to give the expected probability of miscorrection
for this specific configuration as a whole. A table is generated, showing the how the
expected probabilities reduce as maxerasures is reduced.

This approach is used to derive the expected miscorrection probabilities for tests A
and F.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 50 5/23/01 11:24 AM

3.2 Specific tests

3.2.1 Test A – Random error and erasure combinations
The purpose of this test is to validate the decoder operates correctly when successive
vectors contain wildly different error characteristics.

The test iterates through the four gap configurations: nogaps, smallgaps, largegaps
and variablegaps. This checks for any sensitivity to gaps between codewords.
Maxerasures is set to 32.

The pattern generator is configured to generate randomly selected valid codewords.

Channel 0 is configured such that 50% of the codewords have an average of 18 and a
maximum of 36 erasures added (the random erasures configuration).

Channel 1 is configured such that 50% of the codewords have an average of 9 and a
maximum of 18 errors added (the random errors configuration).

The test includes some uncorrectable error patterns, and so the checking mode is set to
CHK_NORMAL.

The test was run using tester –s100 –v15, which generates a total of:

4 * 1,000,000 * 100 = 400,000,000 vectors.

All checks defined in CHK_NORMAL mode passed.

The calibrate_miscorrects() function generated the following table:

maxerasures prob(cu) prob(uc)
32 0.000000e+00 3.677533e-03
31 1.540000e-03 2.037533e-03
30 3.880000e-03 2.029369e-03
29 6.720000e-03 6.888828e-04
28 1.052000e-02 6.819536e-04
27 1.600000e-02 1.465440e-04
26 2.215000e-02 1.438288e-04
25 2.976000e-02 2.278844e-05
24 3.869000e-02 2.220337e-05
23 4.969000e-02 2.669433e-06
22 6.209000e-02 2.586809e-06
21 7.581000e-02 2.288010e-07
20 9.090000e-02 2.195126e-07
19 1.085300e-01 1.599571e-08
18 1.264200e-01 1.517070e-08
17 1.447200e-01 9.695390e-10
16 1.640000e-01 9.128643e-10
15 1.841300e-01 5.484194e-11
14 2.047500e-01 5.150709e-11
13 2.258600e-01 2.372961e-12
12 2.461500e-01 2.187200e-12

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 51 5/23/01 11:24 AM

11 2.670300e-01 1.048965e-13
10 2.869200e-01 9.498990e-14
9 3.078800e-01 3.282340e-15
8 3.275200e-01 2.928969e-15
7 3.459400e-01 6.267958e-17
6 3.602500e-01 5.239942e-17
5 3.715700e-01 9.351424e-19
4 3.787400e-01 7.784026e-19
3 3.830300e-01 8.250100e-20
2 3.849100e-01 8.051137e-20
1 3.855400e-01 7.007313e-20
0 3.856700e-01 7.007313e-20

The observed probability of miscorrections ranged from 0.00354 to 0.00357. This
correlated well with the theoretical probability of 0.003678, as maxerasures is set to
32.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 52 5/23/01 11:24 AM

3.2.2 Test B – Realistic data
The purpose of this test is to exercise the decoder with error patterns similar to those
expected in the target application.

The test iterates through nerasures values from 0 to 32. For each value of nerasures,
nerrors is calculated so that nerrors + 2 * nerasures = 32. This ensures the error
pattern is always correctable. For each nerrors-nerasures combination, the test
iterates through the four gap configurations: nogaps, smallgaps, largegaps and
variablegaps. This checks for any sensitivity to gaps between codewords.

The pattern generator is configured to generate randomly selected valid codewords.

Channel 0 is configured such that 50% of the codewords have an average of nerasures
/ 2 and a maximum of nerasures erasures added (the random erasures configuration).

Channel 1 is configured such that 50% of the codewords have an average of nerrors /
2 and a maximum of nerro rs errors added (the random errors configuration).

The test includes no uncorrectable error patterns, and so the checking mode is set to
CHK_DIFFS.

The test was run with tester –s100 –v15, which generates a total of:

4 * 33 * 100,000 * 100 = 1,320,000,000 vectors.

All checks defined in CHK_NORMAL and CHK_DIFFS modes passed.

There were no miscorrections, since all error patterns were correctable.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 53 5/23/01 11:24 AM

3.2.3 Test C – All error and erasure combinations
The purpose of this test is to exhaustively test every correctable combination of
number of errors and number of erasures .

In the previous test, the number of errors and erasures in a particular codeword was
chosen randomly from a specific distribution. In this test, the number of errors and
erasures are fixed for a particular iteration of the test.

The test iterates through all combinations of nerrors and nerasures where nerrors * 2
+ nerasures = weight, where weight is between 0 and 32. For each weight value,
nerrors can range from 0 to (weight / 2). There are 289 such nerrors-nerasures
combinations. For each combination, the test iterates through the four gap
configurations: nogaps, smallgaps, largegaps and variablegaps. This checks for any
sensitivity to gaps between codewords. Maxerasures is set to 32.

The pattern generator is configured to generate randomly selected valid codewords.

Channel 0 is configured such that all of the codewords have an exactly nerasures
erasures added (the fixed erasures configuration).

Channel 1 is configured such that all of the codewords have an exactly nerrors errors
added (the fixed errors configuration).

The test includes no uncorrectable error patterns, and so the checking mode is set to
CHK_DIFFS.

The test was run with tester –s100 –v15, which generates a total of:

4 * 289 * 10,000 * 100 = 1,156,000,000 vectors.

All checks defined in CHK_NORMAL and CHK_DIFFS modes passed.

There were no miscorrections, since all error patterns were correctable.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 54 5/23/01 11:24 AM

3.2.4 Test D – Uncorrectable error detection
The purpose of this test is to confirm that the observed probability of miscorrection,
given a specific number of erasures, correlates with the mathematical model. The
expected probabilities derived from the model are listed in appendix A.

The test iterates through nerasures values from 0 to 32. Maxerasures is set to 32.

The pattern generator is configured to generate randomly selected valid codewords
with no gaps between codewords (the random nogaps configuration).

Channel 0 is configured such that all of the codewords have 160 errors added,
effectively replacing the codeword with random data (the randomize configuration).

Channel 1 is configured such that all of the codewords have a nerasures erasures
added (the fixed erasures configuration).

The test includes just uncorrectable error patterns, and so the checking mode is set to
CHK_NORMAL.

The test was run using tester –s100 –v15, which generates a total of:

33 * 1,000,000 * 100 = 3,300,000,000 vectors.

All checks defined in CHK_NORMAL mode passed.

The observed probability of miscorrection is calculated by dividing the overall_uc
counter by the N, the number of vectors per iteration.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 55 5/23/01 11:24 AM

The results are shown below:

number
of
erasures

expected
number of
miscorrects

observed
number of
miscorrects

expected
probability of
miscorrects

observed
probability of
miscorrects

Z

0 0 0 1.121170e-17 0.000000e+00 -0.00
1 0 0 1.125540e-16 0.000000e+00 -0.00
2 0 0 2.609560e-16 0.000000e+00 -0.00
3 0 0 2.487040e-17 0.000000e+00 -0.00
4 0 0 5.799180e-15 0.000000e+00 -0.00
5 0 0 5.224660e-16 0.000000e+00 -0.00
6 0 0 1.225340e-13 0.000000e+00 -0.00
7 0 0 1.038400e-14 0.000000e+00 -0.00
8 0 0 2.449820e-12 0.000000e+00 -0.00
9 0 0 1.941600e-13 0.000000e+00 -0.00

10 0 0 4.608420e-11 0.000000e+00 -0.02
11 0 0 3.392670e-12 0.000000e+00 -0.01
12 0 0 8.102350e-10 0.000000e+00 -0.09
13 0 0 5.495870e-11 0.000000e+00 -0.02
14 0 0 1.320810e-08 0.000000e+00 -0.36
15 0 0 8.173650e-10 0.000000e+00 -0.09
16 2 3 1.977010e-07 3.000000e-07 0.73
17 0 0 1.102620e-08 0.000000e+00 -0.33
18 27 26 2.684530e-06 2.600000e-06 -0.16
19 1 0 1.328510e-07 0.000000e+00 -1.15
20 326 302 3.256270e-05 3.020000e-05 -1.31
21 14 14 1.400970e-06 1.400000e-06 -0.00
22 3457 3342 3.457490e-04 3.342000e-04 -1.96
23 126 130 1.257590e-05 1.300000e-05 0.38
24 31254 31583 3.125430e-03 3.158300e-03 1.86
25 923 920 9.228220e-05 9.200000e-05 -0.09
26 230993 230558 2.309930e-02 2.305580e-02 -0.92
27 5192 5196 5.191610e-04 5.196000e-04 0.06
28 1309070 1306989 1.309070e-01 1.306989e-01 -1.95
29 19912 20015 1.991150e-03 2.001500e-03 0.73
30 5058440 5058529 5.058440e-01 5.058529e-01 0.06
31 39062 39272 3.906250e-03 3.927200e-03 1.06
32 10000000 10000000 1.000000e+00 1.000000e+00 0.00

*** data is actually from –s10, replace with –s100 ***

THE Z COLUMN IS CALCULATED USING THE EXPECTED AND
OBSERVED PROBABILITIES WITH FOLLOWING STATISTICAL TEST:

Z = OBSERVED – EXPECTED

 √(expected * (1 – expected) / n)

The observed probability of miscorrections is within 95% confidence bounds given by
–1.96 ≤ Z ≤ +1.96.

For further details on this statistical test, see [4].

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 56 5/23/01 11:24 AM

3.2.5 Test E – Sensitivity to erasure positions
The purpose of this test is to validate the operation of the erasurelist block within the
decoder.

The test iterates through the four gap configurations: nogaps, smallgaps, largegaps
and variablegaps. This checks for any sensitivity to gaps between codewords. For
each gap configuration, the test iterates through erasureinX = 0 and erasureinX = 1.
Maxerasures is set to 32.

Channel 0 is disabled (the off configuration).

CHANNEL 1 IS CONFIGURED TO ADD AT MOST 32 ERASURES, WITH
MOST OF THE ERASURES ARE THE START AND END OF THE
CODEWORDS (THE CLUMPED ERASURES CONFIGURATION).

The test includes no uncorrectable error patterns, and so the checking mode is set to
CHK_DIFFS.

The test was run with tester –s100 –v15, which generates a total of:

4 * 2 * 1,000,000 * 100 = 800,000,000 vectors.

All checks defined in CHK_NORMAL and CHK_DIFFS modes passed.

There were no miscorrections, since all error patterns were correctable.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 57 5/23/01 11:24 AM

3.2.6 Test F – Random error and erasure combinations (limited
maxerasures)

The purpose of this test is to validate that reducing maxerasures reduces the
probability of miscorrection, at the cost of failing to correct some previously
correctable error patterns

The test iterates through maxerasures values from 0 to 32.

The pattern generator is configured to generate randomly selected valid codewords
with no gaps between codewords (the random nogaps configuration).

Channel 0 is configured such that 50% of the codewords have an average of 18 and a
maximum of 36 erasures added (the random erasures configuration).

Channel 1 is configured such that 50% of the codewords have an average of 9 and a
maximum of 18 errors added (the random errors configuration).

The test includes some uncorrectable error patterns, and so the checking mode is set to
CHK_NORMAL.

The test was run using tester –s100 –v15, which generates a total of:

33 * 1,000,000 * 100 = 3,300,000,000 vectors.

All checks defined in CHK_NORMAL mode passed.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 58 5/23/01 11:24 AM

The expected an observed probabilities of failed correction and miscorrection are
shown in the below table.

maxerasures expected
probability of
failed
correction

observed
probability of
failed
correction

expected
probability of
miscorrection

observed
probability of
miscorrection

32 0.000000e+00 0.000000e+00 3.666729e-03 3.561400e-03
31 1.570000e-03 1.508000e-03 2.016729e-03 2.059400e-03
30 3.920000e-03 3.547000e-03 2.008761e-03 2.065300e-03
29 6.770000e-03 6.304900e-03 6.834492e-04 6.963000e-04
28 1.054000e-02 9.827200e-03 6.764404e-04 6.861000e-04
27 1.607000e-02 1.448780e-02 1.462670e-04 1.473000e-04
26 2.227000e-02 2.022720e-02 1.435310e-04 1.535000e-04
25 2.990000e-02 2.745770e-02 2.272171e-05 2.280000e-05
24 3.884000e-02 3.616400e-02 2.213295e-05 2.490000e-05
23 4.975000e-02 4.671360e-02 2.661517e-06 2.500000e-06
22 6.221000e-02 5.855750e-02 2.579899e-06 2.600000e-06
21 7.594000e-02 7.245200e-02 2.288060e-07 4.000000e-07
20 9.102000e-02 8.735220e-02 2.195035e-07 2.000000e-07
19 1.084400e-01 1.040750e-01 1.598666e-08 0.000000e+00
18 1.262400e-01 1.214285e-01 1.516298e-08 0.000000e+00
17 1.445600e-01 1.402720e-01 9.618153e-10 0.000000e+00
16 1.638600e-01 1.594642e-01 9.055817e-10 0.000000e+00
15 1.839300e-01 1.796524e-01 5.546738e-11 0.000000e+00
14 2.046700e-01 2.000611e-01 5.215705e-11 0.000000e+00
13 2.257800e-01 2.214465e-01 2.362512e-12 0.000000e+00
12 2.460900e-01 2.424941e-01 2.179500e-12 0.000000e+00
11 2.670700e-01 2.640226e-01 1.052982e-13 0.000000e+00
10 2.869400e-01 2.856715e-01 9.542553e-14 0.000000e+00
9 3.080200e-01 3.074614e-01 3.257125e-15 0.000000e+00
8 3.275900e-01 3.277059e-01 2.905696e-15 0.000000e+00
7 3.461200e-01 3.461859e-01 6.390467e-17 0.000000e+00
6 3.605100e-01 3.614618e-01 5.362451e-17 0.000000e+00
5 3.717800e-01 3.728243e-01 9.348937e-19 0.000000e+00
4 3.789000e-01 3.801331e-01 7.781539e-19 0.000000e+00
3 3.831700e-01 3.844080e-01 8.225229e-20 0.000000e+00
2 3.850200e-01 3.861152e-01 8.051137e-20 0.000000e+00
1 3.856500e-01 3.863464e-01 7.007313e-20 0.000000e+00
0 3.858000e-01 3.866950e-01 7.007313e-20 0.000000e+00

*** data is actually from –s10, replace with –s100 ***

Drawn graphically, this data shows an excellent match between observed and
expected probabilities:

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 59 5/23/01 11:24 AM

1.00E-20
1.00E-19
1.00E-18
1.00E-17
1.00E-16
1.00E-15
1.00E-14
1.00E-13
1.00E-12
1.00E-11
1.00E-10
1.00E-09
1.00E-08
1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

0 4 8 12 16 20 24 28 32

maxerasures

pr
ob

ab
ili

ty

expect failed correction prob

observed failed correction prob

expected miscorrection prob

observed miscorrection prob

Figure 9 – Graph of expected verses observed miscorrection probabilities

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 60 5/23/01 11:24 AM

4 Verification of other Reed-Solomon codes
The verilog source code for the encoder and decoder is fully parameterised, allowing
encoders and decoders for different Reed-Solomon codes to be generated. This
section outlines the changes that would be needed to verify such encoders and
decoder.

The main code we have verified to date is the RS (160, 128, T=16) code in GF (28).

4.1 Codes in GF (28)

4.1.1 Simulation
The params.v file needs to be updated with the appropriate parameters for the Reed-
Solomon code of interest.

A new gate-level netlist needs to be generated for encoder and decoder, using
Synopsys.

Simulation vectors can be generated for a different Reed-Solomon code by setting
appropriate values of B and T (using the –B and –T options to vectors).

This, for example, would allow codes like:

RS (152,128,T=12) in GF (28)
RS (144,128,T=8) in GF (28)
RS (136,128,T=4) in GF (28)

to be verified.

Simulation of both longer and shorter codes should be possible.

4.1.2 Prototype
It would be feasible to re-synthesize the prototype with a different encoder and
decoder. All of the verilog that specifies the pattern generator, channel, results
accumulator etc is parameterised, and so should work with different codes.

A new xsymboldelay.v file will need to be generated, using the genshiftreg C
program. This needs to match the latency of the new decoder. In addition, the delay
associated with xdelay.v may need to be changed.

The test software currently has several hard-coded constants, and changes would be
needed. Ideally, this will be tidied up, allowing options like –B –T and –W to be
given.

4.2 Codes in fields other than GF (2 8)

4.2.1 Simulation
As well as supporting different length codes in GF(28), the simulation supports codes
of different field widths. This is because the .raw data file format uses white-space-
separated decimal numbers to represent symbols throughout.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 61 5/23/01 11:24 AM

Simulation vectors can be generated for a different field width by setting appropriate
values of W (using the –W and –T options to vectors).

We have (briefly) tested this on the following codes:
 RS (484, 456, T=28) in GF(29)
 RS (242, 228, T=14) in GF(29)
 RS (120, 112, T=7) in GF(29)
[these were of interest to the Orca program in PSB]

4.2.2 Prototype
There should be no problems if the code field width is decreased.

The following problems will need to be addressed if the code field width is increased:

i. Some of the constants in testparams.v may need increasing. More
specifically GEN_CWIDTH should be 2 * WIDTH, and GEN_IWIDTH
should be WIDTH + 4 and WWIDTH should be wide enough to hold 3 * B.

ii. The current design uses 99% of the slices in a XCV1000E Xilinx FPGA. If the
code width were increased, the design would be unlikely to fit. It may be
possible to find a development board with a larger part. Alternatively, it is
possible to partition the design between two FPGAs. This has been tested
between two Xilinx XCV800 FPGAs using a different development board.

The test software currently has several hard-coded constants, and changes would be
needed. Ideally, this will be tidied up, allowing options like –B –T and –W to be
given.

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 62 5/23/01 11:24 AM

5 References

[1] Design of a Synthesisable Reed-Solomon ECC Core, HPL Technical Report
HPL-2001-124, David Banks, May 2001.

[2] A Hypersystolic Reed-Solomon Decoder, Elwyn Berlekamp, Gadiel Seroissi
and Po Tong, published as chapter 10 of Reed-Solomon Codes and their
Applications, IEEE Press, 1994.

[3] Proposed Reed-Solomon ECC Verification Plan, David Banks, 7th Feb 2001,
(now superseded by this document).

[4] NIST Engineering Statistics Handbook, section 7.2.4:
http://www.nist.gov/itl/div898/handbook/prc/section2/prc24.htm

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 63 5/23/01 11:24 AM

6 Appendix A – Miscorrect probabilities

The below table shows the theoretical probabilities of miscorrecting a heavily
corrupted codeword, as the number of flagged erasures increases.

number of erasures probability of miscorrect
0 1.12117e-17
1 1.12554e-16
2 2.60956e-16
3 2.48704e-17
4 5.79918e-15
5 5.22466e-16
6 1.22534e-13
7 1.03840e-14
8 2.44982e-12
9 1.94160e-13
10 4.60842e-11
11 3.39267e-12
12 8.10235e-10
13 5.49587e-11
14 1.32081e-8
15 8.17365e-10
16 1.97701e-7
17 1.10262e-8
18 2.68453e-6
19 1.32851e-7
20 3.25627e-5
21 1.40097e-6
22 3.45749e-4
23 1.25759e-5
24 3.12543e-3
25 9.22822e-5
26 2.30993e-2
27 5.19161e-4
28 1.30907e-1
29 1.99115e-3
30 5.05844e-1
31 3.90625e-3
32 1.00000

These probabilities were generated using the following Mathematic fragment (written
by Jim Davis):

Do[Print["n = ", 160 - j, " ", "Minimum distance = ", 33 - j, " ",
 "# of erasures = ", j, " ", "Proportion of random words in a ball = ",
 N[Sum[Binomial[160 - j, i] 255^i, {i, 0,
 16 - Floor[(j + 1)/2]}] 256^(128)/256^(160 - j), 10]], {j, 0, 32}]

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 64 5/23/01 11:24 AM

7 Appendix B – calc_symbol_probs()
void calc_symbol_prob(tchannelcfg *c, int average) {
 int sp;
 int delta;
 int fixed;
 int mask;

 /* Calculate symbol probability to achieve average errors */
 sp = (average * 128 + 80) / 160;

 /* Set delta to the largest power of two that is <= sp */
 delta = largest_power_of_two(sp);

 /* Now, ensure distribution of sp is centred on sp */
 fixed = sp - delta;
 mask = delta + delta - 1;

 /* Example1: Call with average = 18
 * -> sp = 14, msb = 3, delta = 8, fixed = 6, mask = 15
 * sp drawn at random from 6..21 -> mean sp = 13.5
 * mean #errors is 160 * 13.5 / 128 == 16.875
 * min #errors is 160 * 6 / 128 == 7.5
 * max #errors is 160 * 21 / 128 == 26.25
 */
 /* Example2: Call with average = 16
 * -> sp = 13, msb = 3, delta = 8, fixed = 5, mask = 15
 * sp drawn at random from 5..20 -> mean sp = 12.5
 * mean #errors is 160 * 12.5 / 128 == 15.625
 * min #errors is 160 * 5 / 128 == 6.25
 * max #errors is 160 * 20 / 128 == 25.00
 */
 /* Example3: Call with average = 6
 * -> sp = 5, msb = 2, delta = 4, fixed = 1, mask = 7
 * sp drawn at random from 1..8 -> mean sp = 4.5
 * mean #errors is 160 * 4.5 / 128 == 5.625
 * min #errors is 160 * 1 / 128 == 1.25
 * max #errors is 160 * 9 / 128 == 11.25
 */
 /* Example4: Call with average = 20
 * -> sp = 16, msb = 4, delta = 16, fixed = 0, mask = 31
 * sp drawn at random from 0..31 -> mean sp = 15.5
 * mean #errors is 160 * 15.5 / 128 == 19.373
 * min #errors is 160 * 0 / 128 == 0
 * max #errors is 160 * 31 / 128 == 38.75
 */
 /* Example5: Call with average = 32
 * -> sp = 26, msb = 4, delta = 16, fixed = 10, mask = 31
 * sp drawn at random from 10..41 -> mean sp = 25.5
 * mean #errors is 160 * 25.5 / 128 == 31.875
 * min #errors is 160 * 10 / 128 == 12.50
 * max #errors is 160 * 41 / 128 == 51.25
 */

 c->prob_symbol_fixed = fixed;
 c->prob_symbol_mask = mask;
}

Verification of a Synthesisable Reed-Solomon ECC Core

 Page 65 5/23/01 11:24 AM

8 Appendic C – channel_fixed_init()

void channel_init_fixed (int n, tconfig *cfg, int eprob, int num) {
 tchannelcfg *c = n ? &(cfg->c1) : &(cfg->c0);
 int stepmask;
 int startmask;
 int minend;
 int maxend;
 int minstep;
 int maxstep;
 int minstart;
 int maxstart;
 if (num == 1) {
 stepmask = 0;
 } else {
 stepmask = largest_power_of_two(159 / (num - 1)) - 1;
 }
 minstep = 1;
 maxstep = 1 + stepmask;
 startmask = largest_power_of_two(160 - ((num - 1) * maxstep)) - 1;
 minstart = 0;
 maxstart = startmask;
 minend = minstart + (num - 1) * (minstep);
 maxend = maxstart + (num - 1) * (maxstep);
 if (maxend >= 160) {
 printf("there is something wrong with channel_init_fixed()!\n");
 printf("num=%d, stepmask=%d, startmask=%d, minend=%d, maxend=%d\n",
 num, stepmask, startmask, minend, maxend);
 exit(1);
 }
 c->prob_enable = eprob;
 c->prob_symbol_fixed = 128;
 c->prob_symbol_mask = 0;
 c->step_prob = 0;
 c->start_fixed = 0;
 c->start_mask = startmask;
 c->step0_fixed = 0;
 c->step0_mask = 0;
 c->step1_fixed = 1;
 c->step1_mask = stepmask;
 c->maximum = num;
}

