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Abstract

The solution of complex real time tasks is often achieved by pipe-lining. The task is broken up

into several `smaller' blocks which may share both processing and memory resources. When these

block execution times are variable, and consequently diÆcult to schedule, a standard solution

is to execute computational elements concurrently and allow them to `�nd' a good schedule as

a consequence of their interactions. In this paper we examine how long this search may take,

and demonstrate that even in relatively ideal circumstances this time can be comparable with

the total task duration. We then demonstrate a simple technique that reduces the e�ects of this

problem without requiring the imposition of a global schedule.

1 Introduction

In order to achieve a complex computation the task is usually broken up into several smaller stages,
both for ease of comprehension and implementation. One advantage of this approach is that idle
time, with respected to limited resources (such as memory) within the tasks can be exploited to
improve eÆceincy. This is achieved by permitting the tasks to execute in (often pseudo) parallel.
The parallelism requires that the limited resource time is allocated to each of the tasks in order
to maximise the throughput of the system. Equally a solution method widely adopted to cope
with scheduling large complex interacting systems, over shared resources, is to consider them as
concurrent tasks, and allow the concurrency [1] to 'sort it out'. This approach is often adopted
when the job load to individual tasks is highly unpredictable and variable. Whilst over the long
term the system may well achieve a good schedule, in the short term there may well be problems as
the system 'hunts' for a good allocation of the resource time. We are interested in the problem of
how long such a schedule will take to establish given it is feasible (e.g. total resource demands do
not exceed 100% utilisation) and the consequences of variation in the performance of the scheduled
sub-systems. In particular we are interested in the area of jobs which are long, maybe of the order
of hours, but not persistent, they do eventually terminate. So system latency, in this case the time
to achieve the good schedule, could well be a dominant factor in its performance

�This work is supported by A Royal Society Industrial Fellowship and started whilst the author was on leave from

the Department of Computer Science, University of Leeds.
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Each of the tasks needed to complete a job can be considered to behave in the following fashion:

1. get some data to work on taking a period of time;

2. compute on the data taking some time;

3. write the result back, taking some time;

4. start again.

Each of the times above can be considered to be dependent on the actual problem being worked
on, but for a simple model we can consider them to be �xed functions of the computation task. In
a complete system the tasks may be dependent for work on the preceding stage. In other words if
a stage fails to deliver its work then subsequent stages can be starved.

2 Model without Dependence.

In general we can consider our functional units to be described by the following set of processes
(TCCS style)[10] based on Milner's CCS[7, 9]:

Taski
def
= getM:(input timei):putM:TaskiW

TaskiW
def
= (work timei):TaskiO

Taskio
def
= getM:(output timei):putM:Taski

We consider the work time of a stage to be its required compute time, plus any idle time it is
willing to spend to keep the system tuned and running smoothly.

The complete system is described as the following:

Sem
def
= getM:putM:Sem

Sys
def
= (Task0jTask1j:::jTasknjSem)nfgetM; putMg

We would expect the above to be schedulable that is we can arrange the processes so there
are no delays, if 8jwork timej �

P
i(input timei + output timei), however whilst this system can

settle down to this state it will take some time to do so. Possibly a very long time!
Of further interest is the question as to what happens when we extend the times to come from

some probability distributions rather than some �xed values. We might expect the system to run
stably if 8jE(work timej) �

P
i6=j(E(input timei) +E(output timei)),where E(d) is the expected

time of a probability distribution. However, this tells us nothing about the intereference on route
to stability or its persistence as a result of perturning the access schedule.

2.1 Model Implementation

The simplies instatiation of the above model is one where we have N tasks, and each load/save
can be completed in unit time. Then we need a window of 2(N � 1) between the loads and save to
allow other players to complete. This can be modelled as follows (in WSCCS) [12, 14, 15], based
on Milner's SCCS [8]:

*Simple scheduable model 3 tasks

*the work description for the simple task

bs GPE 1@1.gs^-1#ps^-1#memPE:GPE2 + 1.stallPE:GPE

bs GPE2 1.t:GPEa

bs GPEa 1.t:GPEb
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bs GPEb 1.t:GPEc

bs GPEc 1.t:GPE5

bs GPE5 1@1.gs^-1#ps^-1#memPE:GPE + 1.stallPE:GPE5

*next task

bs GDL 1@1.gs^-1#ps^-1#memDL:GDL2 + 1.stallDL:GDL

bs GDL2 1.t:GDLa

bs GDLa 1.t:GDLb

bs GDLb 1.t:GDLc

bs GDLc 1.t:GDL5

*no data growth

bs GDL5 1@1.gs^-1#ps^-1#memDL:GDL + 1.stallDL:GDL5

*Finally the viewer

bs GV 1@1.gs^-1#ps^-1#memV:GV2 + 1.stallV:GV

bs GV2 1.t:GVa

bs GVa 1.t:GVb

bs GVb 1.t:GVc

bs GVc 1.t:GV5

bs GV5 1@1.gs^-1#ps^-1#memV:GV + 1.stallV:GV5

*Only one thing can 'have' the RTC at a time

bs Sem 1.gs:SB + 1.gs#ps:Sem + 1.t:Sem

bs SB 1.ps:Sem + 1.t:SB

basi P stallPE,stallDL,stallV,memPE,memDL,memV

btr Sys GPE|GDL|GV|Sem/P

See [16] for a full explanation of the above syntax. As a quick overview the above describes
interacting automata: bs being a state binding; iteraction by `handshaking' on action name duals
viz gs vs gs-̂1;@ representing priority; # parallel action product; | parallel automata product and /

action permission. This representation was used as there is a substantial toolset allowing analysis
of such prioritised probabiliatic concurrent automata. It should be noted that despite the simplicity
of the problem all of this expressive power is required to present it within a compositional form.

This model can be used as a template for �xed time models with di�ering durations of task. It
can also be trivially extended to include more tasks operating on the same patterns.

2.2 Results

The interesting question is how long does the above take to stabilise given di�ering patterns of
upload and download times for each task? In the table below the settle time is the time that the
system requires to reach its stable cycle where we will see no more stalls. In other words the point
at which the schedule has been established.

All of these results are computed to 99.999% coverage of the probability distribution. I will
describe the system by the pattern of memory usage so [(1; 1); (1; 1); (1; 1)] will denote a three
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Figure 1: Probability distribution of stabilisation time. For series with [(1; 1); (1; 1); (1; 1)],
[(2; 2); (2; 2); (2; 2)], [(3; 3); (3; 3); (3; 3)]. Shows time independence

component system, with each component using the resource for 1 unit of time at the start and
�nish, we assume that these usages are seperated by the total amount of time the other components
require for their transfers. In this case 4.

Work Pattern Average Settle Cycles

[(1; 1); (1; 1); (1; 1)] 26.9973515378 4.5
[(2; 2); (2; 2); (2; 2)] 54.9946932549 4.58
[(3; 3); (3; 3); (3; 3)] 81.9920447927 4.56
[(1; 1); (1; 1); (1; 1); (1; 1)] 61.1932750914 7.65
[(1; 1); (1; 1); (1; 1); (1; 1); (1; 1)] 117.40695874 11.7
[(1; 1); (1; 1); (1; 1); (1; 1); (1; 1); (1; 1)] 208.412535603 17.34
[(1; 1); (1; 1); (1; 1); (1; 1); (1; 1); (1; 1); (1; 1)] 353.8619251 25.28
[(1; 1); (1; 1); (2; 2)] 32.0261161239 4.0
[(1; 1); (1; 1); (3; 3)] 40.5773281519 4.05
[(1; 1); (1; 1); (4; 4)] 49.6312614071 4.13

2.3 Non-atomic transfers

A further consideration is that of block size. In the above models memory transfers were treated
as atomic and uninterruptable once started, no matter what their duration. In this series we treat
the access as interuptable. Obviously the (1,1) types are uninteresting in this view. The model
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Figure 2: Probability distribution of stabilisation time. For series with [(1; 1); (1; 1); (2; 2)],
[(1; 1); (1; 1); (3; 3)], [(1; 1); (1; 1); (4; 4)] Shows time independence again.
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Figure 3: Probability distribution of stabilisation time. For series with [(1; 1); (1; 1); (1; 1)],
[(1; 1); (1; 1); (1; 1); (1; 1)], [(1; 1); (1; 1); (1; 1); (1; 1); (1; 1)], [(1; 1); (1; 1); (1; 1); (1; 1); (1; 1); (1; 1)],
[(1; 1); (1; 1); (1; 1); (1; 1); (1; 1); (1; 1); (1; 1)]. Shows e�ects of introducing more transfers in parallel.
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prototype:

*Simple scheduable model

*the work description for the simple task

*2,2 2,2 2,2 interleaved version

bs GPE 1@1.gs^-1#ps^-1#memPE:GPE1 + 1.stallPE:GPE

bs GPE1 1@1.gs^-1#ps^-1#memPE:GPE2 + 1.stallPE:GPE1

bs GPE2 1.t:GPEa

bs GPEa 1.t:GPEb

bs GPEb 1.t:GPEc

bs GPEc 1.t:GPEd

bs GPEd 1.t:GPEe

bs GPEe 1.t:GPEf

bs GPEf 1.t:GPEg

bs GPEg 1.t:GPE5

bs GPE5 1@1.gs^-1#ps^-1#memPE:GPE6 + 1.stallPE:GPE5

bs GPE6 1@1.gs^-1#ps^-1#memPE:GPE + 1.stallPE:GPE6

*Only one thing can 'have' the Resource at a time

bs Sem 1.gs:SB + 1.gs#ps:Sem + 1.t:Sem

bs SB 1.ps:Sem + 1.t:SB

basi P stallPE,stallDL,stallV,memPE,memDL,memV

btr Sys3 GPE|GPE|GPE|Sem/P

The results for the interleaved model:
Work Pattern Average Settle Cycles

[(2; 2); (2; 2); (2; 2)] 153.057467444 12.67
[(3; 3); (3; 3); (3; 3)] 412.091077322 22.89
[(4; 4); (4; 4); (4; 4)] 822.871615425 34.29
[(5; 5); (5; 5); (5; 5)] 1399.1757078 46.63
[(6; 6); (6; 6); (6; 6)] 2151.76327363 59.77
[(7; 7); (7; 7); (7; 7)] 3045.74432622 72.52
[(8; 8); (8; 8); (8; 8)] 4218.40442886 87.88
[(1; 1); (1; 1); (2; 2)] 56.7548804331 7.09
[(1; 1); (1; 1); (3; 3)] 108.785176272 10.88
[(1; 1); (1; 1); (4; 4)] 191.166229448 15.93

2.3.1 Implications for Peturbation

All of the above models assumed that the stages took a �xed time to perform their actions, and
therefore where eventually schedulable. In a real system there will be variation. If any stage varies
when we have tuned the system then it will impact on the slot of another stage. In particular
we now have a question as to whether the system can reach a smoothly running state at all. If
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we assume that perturbation is rare, then if time to stabilise is much shorter than peturbation
rate the system could be expected to spend the majority of its time running eÆciently. Given a
time to stability t then the system will certainly not tolerate perturbation frequencies of greater
than 1

t
assuming that only one stage is responsible for the peturbation. If n stages contribute to

the peturbation and they have equal probability p of causing a peturbation, then we require that
1

t
> 1� (1� p)n. Which for n > 1 will require that p is very small indeed.

3 Adding perturbation

The simplest perturbation we can add is to permit one of the stages to take one tick longer than
it should (for the schedule to be maintained) with some probability. If it is the �rst stage then we
alter the model above as follows:

*Simple scheduable model 3 tasks

*the work description for the simple task

bs GPE 1@1.gs^-1#ps^-1#memPE:GPE2 + 1.stallPE:GPE

bs GPE2 1.t:GPEa

bs GPEa 1.t:GPEb

bs GPEb 1.t:GPEc

bs GPEc (1-p+pe).t:GPE5 + p-pe.t:GPEd

bs GPEd 1.t:GPE5

bs GPE5 1@1.gs^-1#ps^-1#memPE:GPE + 1.stallPE:GPE5

With these models we get the expected result of no stability, and if the peturbation rate is of
the order calculated above then the system spends essentially no time operating at full capacity.

Function for probability, obtained as in [16], of stalling:

[0.075,0.125]-: ((9.80721562581 * 1.0 + (543.073900111*pe * pe * pe) + (71.4412148578*pe)

- (192.504176011*pe * pe)))/((90.0 * 1.0))

[0.125,0.175]-: ((12.9574300306 * 1.0 + (319.415605751*pe * pe * pe) + (55.605903295*pe)

- (129.833552194*pe * pe)))/((90.0 * 1.0))

[0.175,0.225]-: ((15.4486826836 * 1.0 + (201.338227107*pe * pe * pe) + (44.676836668*pe)

- (91.6648611986*pe * pe)))/((90.0 * 1.0))

[0.225,0.275]-: ((17.4760847264 * 1.0 + (133.955916834*pe * pe * pe) + (36.8297157888*pe)

- (66.9521638903*pe * pe)))/((90.0 * 1.0))

[0.275,0.325]-: ((19.1654658274 * 1.0 + (92.9263876288*pe * pe * pe) + (31.0243143334*pe)

- (50.1773490782*pe * pe)))/((90.0 * 1.0))

[0.325,0.375]-: ((20.6019317553 * 1.0 + (66.9109564888*pe * pe * pe) + (26.6312841964*pe)

- (38.331465786*pe * pe)))/((90.0 * 1.0))

[0.375,0.425]-: ((21.8454327248 * 1.0 + (49.8746229433*pe * pe * pe) + (23.2529674589*pe)

- (29.6595335269*pe * pe)))/((90.0 * 1.0))

[0.425,0.475]-: ((22.9397638366 * 1.0 + (38.4125033764*pe * pe * pe) + (20.6295500751*pe)

- (23.0934808292*pe * pe)))/((90.0 * 1.0))

[0.475,0.525]-: ((23.9180339972 * 1.0 + (30.6040183252*pe * pe * pe) + (18.5869142979*pe)

- (17.9536394516*pe * pe)))/((90.0 * 1.0))

Plotted using central values above in Figure 5.

4 Model with dependence

In this instance the tasks act like an n-place bu�er passing the work between them. We assume
that they are bu�ered by processes and our functional units to be described by the following set of
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processes (TCCS style):

DTaski
def
= geti:getM:(input timei):putM:DTaskiW

DTaskiW
def
= (work timei):DTaskiO

DTaskio
def
= getM:(output timei):putM:puti+1:DTaski

and the complete system is described as the following:

Sem
def
= getM:putM:Sem

BufN(0)
def
= put:BufN(1)

BufN(i)
def
= put:BufN(i+ 1) + get:BufN(i� 1)(0 < i < N)

BufN(N)
def
= get:BufN(i� 1)

Bufi(0)
def
= BufN(0)[geti=get; puti=put]

DSys
def
= (DTask0jBuf1(0)jDTask1j:::BufN�1(0)jDTasknjSem)nfgetM; putM; getig

4.1 Realised Model

Below is the prototype for the model with the base timings:

*Simple scheduable model

*the work description for the simple task

*1,1 1,1 1,1 version

*In this version we model some 1 place queues

*to look at the effects of starvation

bs ST1 1@1.gs^-1#ps^-1#mem1:ST1_2 + 1.stall1:ST1

bs ST1_2 1.t:ST1_a

bs ST1_a 1.t:ST1_b

bs ST1_b 1.t:ST1_c

bs ST1_c 1.t:ST1_5

bs ST1_5 1@1.gs^-1#ps^-1#put1^-1#mem1:ST1 + 1.stall1:ST1_5

*A fast 1 place buffer

bs B1E 1.put1#get1:B1E + 1.put1:B1F + 1.t:B1E

bs B1F 1.get1#put1:B1F + 1.get1:B1E + 1.t:B1F

bs ST2 1@1.gs^-1#ps^-1#get1^-1#mem2:ST2_2 + 1.stall2:ST2

bs ST2_2 1.t:ST2_a

bs ST2_a 1.t:ST2_b

bs ST2_b 1.t:ST2_c

bs ST2_c 1.t:ST2_5

bs ST2_5 1@1.gs^-1#ps^-1#put2^-1#mem2:ST2 + 1.stall2:ST2_5

*A fast 1 place buffer

bs B2E 1.put2#get2:B2E + 1.put2:B2F + 1.t:B2E

bs B2F 1.get2#put2:B2F + 1.get2:B2E + 1.t:B2F

11



bs ST3 1@1.gs^-1#ps^-1#get2^-1#mem3:ST3_2 + 1.stall3:ST3

bs ST3_2 1.t:ST3_a

bs ST3_a 1.t:ST3_b

bs ST3_b 1.t:ST3_c

bs ST3_c 1.t:ST3_5

bs ST3_5 1@1.gs^-1#ps^-1#page#mem3:ST3 + 1.stall3:ST3_5

*Only one thing can 'have' the RTC at a time

bs Sem 1.gs:SB + 1.gs#ps:Sem + 1.t:Sem

bs SB 1.ps:Sem + 1.t:SB

basi P stall1,stall2,stall3,mem1,mem2,mem3,page

btr Sys ST1|B1E|ST2|B2E|ST3|Sem/P

Again this can be considered as a template for a range on investigations...

4.2 Results

When the stages have some depedence:
Work Pattern Average Settle Cycles

[(1; 1); (1; 1); (1; 1)] 65.5872493386 10.91
[(2; 2); (2; 2); (2; 2)] 132.174488746 11.01
[(3; 3); (3; 3); (3; 3)] 197.761738085 10.98

The same models but with interleaved access:
Work Pattern Average Settle Pages

[(2; 2); (2; 2); (2; 2)] 202.690496981 16.89
[(3; 3); (3; 3); (3; 3)]1 599.705759723 33.32

4.3 Dependence and Variation

In this model we allow the �rst stage in the dependent model to vary its excution time in the same
manner as we did before. The model being:

*Simple scheduable model

*the work description for the simple task

*1,1 1,1 1,1 version

*In this version we model some 1 place queues

*to look at the effects of starvation and variation

*gen_fun("Sys","stall","p",0.1,0.75,0.05,500,200,3);

bs ST1 1@1.gs^-1#ps^-1#mem1:ST1_2 + 1.stall:ST1

bs ST1_2 1.t:ST1_a

bs ST1_a 1.t:ST1_b

bs ST1_b 1.t:ST1_c

bs ST1_c (1-(p-pe)).t:ST1_5 + (p-pe).t:ST1_d
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bs ST1_d 1.t:ST1_5

bs ST1_5 1@1.gs^-1#ps^-1#put1^-1#mem1:ST1 + 1.stall:ST1_5

*A fast 1 place buffer

bs B1E 1.put1#get1:B1E + 1.put1:B1F + 1.t:B1E

bs B1F 1.get1#put1:B1F + 1.get1:B1E + 1.t:B1F

bs ST2 1@1.gs^-1#ps^-1#get1^-1#mem2:ST2_2 + 1.stall:ST2

bs ST2_2 1.t:ST2_a

bs ST2_a 1.t:ST2_b

bs ST2_b 1.t:ST2_c

bs ST2_c 1.t:ST2_5

bs ST2_5 1@1.gs^-1#ps^-1#put2^-1#mem2:ST2 + 1.stall:ST2_5

*A fast 1 place buffer

bs B2E 1.put2#get2:B2E + 1.put2:B2F + 1.t:B2E

bs B2F 1.get2#put2:B2F + 1.get2:B2E + 1.t:B2F

bs ST3 1@1.gs^-1#ps^-1#get2^-1#mem3:ST3_2 + 1.stall:ST3

bs ST3_2 1.t:ST3_a

bs ST3_a 1.t:ST3_b

bs ST3_b 1.t:ST3_c

bs ST3_c 1.t:ST3_5

bs ST3_5 1@1.gs^-1#ps^-1#page#mem3:ST3 + 1.stall:ST3_5

*Only one thing can 'have' the RTC at a time

bs Sem 1.gs:SB + 1.gs#ps:Sem + 1.t:Sem

bs SB 1.ps:Sem + 1.t:SB

basi P stall1,stall2,stall,mem1,mem2,mem3,page

btr Sys ST1|B1E|ST2|B2E|ST3|Sem/P

The function expressing the expected number of stalls is:

[0.075,0.125]-: ((34.5442989379 * 1.0 - (1854.7111199*pe * pe * pe) - (250.093881933*pe)

- (639.206366747*pe * pe)))/((208.0 * 1.0))

[0.125,0.175]-: ((45.7668108721 * 1.0 - (1010.6953828*pe * pe * pe) - (196.357982816*pe)

- (435.660124237*pe * pe)))/((208.0 * 1.0))

[0.175,0.225]-: ((54.6684836203 * 1.0 - (637.567449593*pe * pe * pe) - (158.610204375*pe)

- (313.480859261*pe * pe)))/((208.0 * 1.0))

[0.225,0.275]-: ((61.9162149547 * 1.0 - (439.769221405*pe * pe * pe) - (131.148221969*pe)

- (232.256687812*pe * pe)))/((208.0 * 1.0))

[0.275,0.325]-: ((67.9561003341 * 1.0 - (318.561199877*pe * pe * pe) - (110.722717549*pe)

- (174.954542245*pe * pe)))/((208.0 * 1.0))

[0.325,0.375]-: ((73.0968004741 * 1.0 - (238.336050491*pe * pe * pe) - (95.3202069576*pe)

- (132.974330643*pe * pe)))/((208.0 * 1.0))

[0.375,0.425]-: ((77.5598888106 * 1.0 - (183.545844444*pe * pe * pe) - (83.6277502955*pe)
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Figure 7: Ratio of time that some processing element is stalled against a single tick error probability,
for 3 component system.

- (101.259251116*pe * pe)))/((208.0 * 1.0))

[0.425,0.475]-: ((81.5101123724 * 1.0 - (145.69530865*pe * pe * pe) - (74.7642229496*pe)

- (76.5613812393*pe * pe)))/((208.0 * 1.0))

[0.475,0.525]-: ((85.0742769398 * 1.0 - (119.657297432*pe * pe * pe) - (68.1296143466*pe)

- (56.6874399714*pe * pe)))/((208.0 * 1.0))

[0.525,0.575]-: ((88.3535728471 * 1.0 - (102.28878828*pe * pe * pe) - (63.3155145827*pe)

- (40.085022649*pe * pe)))/((208.0 * 1.0))

[0.575,0.625]-: ((91.4320348286 * 1.0 - (91.685625453*pe * pe * pe) - (60.0511280471*pe)

- (25.5913582564*pe * pe)))/((208.0 * 1.0))

[0.625,0.675]-: ((94.3827271402 * 1.0 - (86.8521682759*pe * pe * pe) - (58.1714774733*pe)

- (12.2669145987*pe * pe)))/((208.0 * 1.0))

[0.675,0.725]-: ((97.2726778987 * 1.0 - (87.6811746224*pe * pe * pe) - (57.6013097306*pe)

+ (0.740232438739*pe * pe)))/((208.0 * 1.0))

Plotted using central values above in Figure 7.

5 A Possible Solution

One method which reduces the scope for long term drifting before reaching stability is to 'tie'
together the write back and read phases of the functional unit. Consequently, our system would be
described as follows:
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TTaski
def
= getM:(input timei):putM:TTaskiW

TTaskiW
def
= (work timei):TTaskiO

TTaskio
def
= getM:(output timei):TTaskiN

TTaskiN
def
= (input timei):putM:TTaskiW

and the complete system is described as the following:

Sem
def
= getM:putM:Sem

Sys
def
= (TTask0jTTask1j:::jTTasknjSem)nfgetM; putMg

Which is realised as the following model:

*Simple scheduable model

*with tied write-back read...

*the work description for the simple task

*1,1 1,1 1,1 version

bs GPE 1@1.gs^-1#ps^-1#memPE:GPE2 + 1.stallPE:GPE

bs GPE2 1.t:GPEa

bs GPEa 1.t:GPEb

bs GPEb 1.t:GPEc

bs GPEc 1.t:GPE5

bs GPE5 1@1.gs^-1#memPE:GPER + 1.stallPE:GPE5

bs GPER 1@1.ps^-1#memPE:GPE2 + 1.stallPE:GPE

*Only one thing can 'have' the RTC at a time

bs Sem 1.gs:SB + 1.gs#ps:Sem + 1.t:Sem

bs SB 1.ps:Sem + 1.t:SB

basi P stallPE,stallDL,stallV,memPE,memDL,memV

btr Sys GPE|GPE|GPE|Sem/P

This will stabilise in the time taken to perform one complete cycle, independent on the number
of components. Note that both the read and write are jointly atomic at the point the next task
starts.

5.1 Variation and tying

The e�ect of variation on such systems will be greatly reduced as they always restabilise within 1
cycle, for completeness we present such a model

*Simple scheduable model

*with tied write-back read...

*the work description for the simple task

*1,1 1,1 1,1 version

*and one variable stage to demonstrate neato behaviour

bs GPE 1@1.gs^-1#ps^-1#memPE:GPE2 + 1.stallPE:GPE
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bs GPE2 1.t:GPEa

bs GPEa 1.t:GPEb

bs GPEb 1.t:GPEc

bs GPEc 1.t:GPE5

bs GPE5 1@1.gs^-1#memPE:GPER + 1.stallPE:GPE5

bs GPER 1@1.ps^-1#memPE:GPE2 + 1.stallPE:GPE

bs VS 1@1.gs^-1#ps^-1#mem1:VS2 + 1.stallV:VS

bs VS2 1.t:VSa

bs VSa 1.t:VSb

bs VSb 1.t:VSc

bs VSc (1-p-pe).t:VS5 + (p-pe).t:VSd

bs VSd 1.t:VS5

bs VS5 1@1.gs^-1#mem1:VSR + 1.stallV:VS5

bs VSR 1@1.ps^-1#mem1:VS2 + 1.stallV:VS

*Only one thing can 'have' the RTC at a time

bs Sem 1.gs:SB + 1.gs#ps:Sem + 1.t:Sem

bs SB 1.ps:Sem + 1.t:SB

basi P stallPE,stallDL,stallV,mem1,memPE,memV

btr Sys GPE|GPE|VS|Sem/P

Function for probability of stalling:

[0.075,0.125]-: ((1.27850414294 * 1.0 + (12.8779124654*pe * pe * pe)

- (3.49968577715*pe * pe) + (12.5613215633*pe)))/((39.0 * 1.0))

[0.125,0.175]-: ((1.90243299844 * 1.0 + (18.9732168524*pe * pe * pe)

- (1.56550634794*pe * pe) + (12.3304655633*pe)))/((39.0 * 1.0))

[0.175,0.225]-: ((2.51613385024 * 1.0 - (6.63815417227*pe * pe * pe)

- (0.935011677382*pe * pe) + (12.180659459*pe)))/((39.0 * 1.0))

[0.225,0.275]-: ((3.12000272106 * 1.0 - (12.8085414013*pe * pe * pe)

- (2.17742802525*pe * pe) + (12.0084877485*pe)))/((39.0 * 1.0))

[0.275,0.325]-: ((3.71428708506 * 1.0 + (4.40283776806*pe * pe * pe)

- (2.63904040928*pe * pe) + (11.7858850301*pe)))/((39.0 * 1.0))

[0.325,0.375]-: ((4.2992133606 * 1.0 + (11.4437897463*pe * pe * pe)

- (1.63284312143*pe * pe) + (11.5838147755*pe)))/((39.0 * 1.0))

[0.375,0.425]-: ((4.87500043445 * 1.0 - (2.12037575711*pe * pe * pe)

- (1.05669223035*pe * pe) + (11.4322395186*pe)))/((39.0 * 1.0))

[0.425,0.475]-: ((5.44186056914 * 1.0 - (11.8965134169*pe * pe * pe)

- (1.90012125786*pe * pe) + (11.2741494256*pe)))/((39.0 * 1.0))

[0.475,0.525]-: ((5.99999944602 * 1.0 + (0.265541069844*pe * pe * pe)

- (2.62582986671*pe * pe) + (11.0694666371*pe)))/((39.0 * 1.0))

The stall rates are presented using the central values in Figure 8
The relative advantage of tieing is presented in Figure 9

5.2 Dependence and tyeing

We consider the e�ect of tieing the write/read phases together in the queueing context. The model
examines is a folows:
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Figure 8: The stall rates tieing the write out and read next phases for probability of variation to
0.5
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increase in the number of stalls, for probability of variation from 0.075 to 0.525.
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*Simple scheduable model

*the work description for the simple task

*1,1 1,1 1,1 version

*In this version we model some 1 place queues

*to look at the effects of starvation and variation

*now tie the write back/reads together...if possible.

*gen_fun("Sys","stall","p",0.1,0.75,0.05,500,200,3);

bs ST1 1@1.gs^-1#ps^-1#mem1:ST1_2 + 1.stall:ST1

bs ST1_2 1.t:ST1_a

bs ST1_a 1.t:ST1_b

bs ST1_b 1.t:ST1_c

bs ST1_c (1-(p-pe)).t:ST1_5 + (p-pe).t:ST1_d

bs ST1_d 1.t:ST1_5

bs ST1_5 1@1.gs^-1#put1^-1#mem1:ST1_5b + 1.stall:ST1_5

bs ST1_5b 1.ps^-1#mem1:ST1_2

*A fast 1 place buffer

bs B1E 1.put1#get1:B1E + 1.put1:B1F + 1.t:B1E

bs B1F 1.get1#put1:B1F + 1.get1:B1E + 1.t:B1F

bs ST2 1@1.gs^-1#ps^-1#get1^-1#mem2:ST2_2 + 1.stall:ST2

bs ST2_2 1.t:ST2_a

bs ST2_a 1.t:ST2_b

bs ST2_b 1.t:ST2_c

bs ST2_c 1.t:ST2_5

bs ST2_5 1@1.gs^-1#put2^-1#mem2:ST2_5b + 1.stall:ST2_5

*if the second bit gets stalled then may be waiting on data

bs ST2_5b 1@1.ps^-1#get1^-1#mem2:ST2_2 + 1.ps^-1#stall:ST2

*A fast 1 place buffer

bs B2E 1.put2#get2:B2E + 1.put2:B2F + 1.t:B2E

bs B2F 1.get2#put2:B2F + 1.get2:B2E + 1.t:B2F

bs ST3 1@1.gs^-1#ps^-1#get2^-1#mem3:ST3_2 + 1.stall:ST3

bs ST3_2 1.t:ST3_a

bs ST3_a 1.t:ST3_b

bs ST3_b 1.t:ST3_c

bs ST3_c 1.t:ST3_5

bs ST3_5 1@1.gs^-1#page#mem3:ST3_5b + 1.stall:ST3_5

bs ST3_5b 1@1.ps^-1#get2^-1#mem3:ST3_2 + 1.ps^-1#stall:ST3

*Only one thing can 'have' the RTC at a time

*need quick hand over both types
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bs Sem 1.gs:SB + 1.gs#ps:Sem + 1.t:Sem

bs SB 1.ps:Sem + 1.t:SB

basi P stall1,stall2,stall,mem1,mem2,mem3,page

btr Sys ST1|B1E|ST2|B2E|ST3|Sem/P

Function for probability of stalling:

[0.075,0.125]-: ((3.7694040293 * 1.0 - (28.8762209337*pe * pe * pe) - (10.1735708261*pe * pe)

- (37.0868725663*pe)))/((115.0 * 1.0))

[0.125,0.175]-: ((5.609493871 * 1.0 - (54.8382523631*pe * pe * pe) - (4.51332159559*pe * pe)

- (36.3639588525*pe)))/((115.0 * 1.0))

[0.175,0.225]-: ((7.41931176193 * 1.0 + (19.6379594807*pe * pe * pe) - (2.72740485816*pe * pe)

- (35.9172709897*pe)))/((115.0 * 1.0))

[0.225,0.275]-: ((9.1999951753 * 1.0 + (37.7361292036*pe * pe * pe) - (6.41309038249*pe * pe)

- (35.4093525573*pe)))/((115.0 * 1.0))

[0.275,0.325]-: ((10.9523823044 * 1.0 - (13.0108851412*pe * pe * pe) - (7.78002882898*pe * pe)

- (34.7530660939*pe)))/((115.0 * 1.0))

[0.325,0.375]-: ((12.6771676836 * 1.0 - (33.7628007314*pe * pe * pe) - (4.81479796541*pe * pe)

- (34.157289865*pe)))/((115.0 * 1.0))

[0.375,0.425]-: ((14.3750025584 * 1.0 + (6.24165501646*pe * pe * pe) - (3.11659975737*pe * pe)

- (33.7103793594*pe)))/((115.0 * 1.0))

[0.425,0.475]-: ((16.0465142539 * 1.0 + (35.0760828631*pe * pe * pe) - (5.60414174623*pe * pe)

- (33.2442540966*pe)))/((115.0 * 1.0))

[0.475,0.525]-: ((17.6923095344 * 1.0 - (0.774106823822*pe * pe * pe) - (7.74435829931*pe * pe)

- (32.6407706339*pe)))/((115.0 * 1.0))

[0.525,0.575]-: ((19.3129744707 * 1.0 - (49.3239215182*pe * pe * pe) - (4.86097027699*pe * pe)

- (32.0569974103*pe)))/((115.0 * 1.0))

[0.575,0.625]-: ((20.909074667 * 1.0 - (21.6099097455*pe * pe * pe) - (0.473423695727*pe * pe)

- (31.692723087*pe)))/((115.0 * 1.0))

[0.625,0.675]-: ((22.4811786551 * 1.0 + (69.3220020434*pe * pe * pe) - (2.80093060871*pe * pe)

- (31.4101429721*pe)))/((115.0 * 1.0))

[0.675,0.725]-: ((24.0299713239 * 1.0 + (86.582796753*pe * pe * pe) - (11.8757689631*pe * pe)

- (30.8184002191*pe)))/((115.0 * 1.0))

The stall rates are presented using the central values in Figure 10
The relative advantage of this method is given in Figure 11

6 A general model

In this section we reformulate our system presentation to permit time to be parameterised. Unfor-
tunately, to perform this in a �nite state manner requires that all times within the system come
from a �nitely describable probability distribution (which �x times are not!). One clear conse-
quence is that we cannot get smooth running, but can examine the system over a wider range of
possibilities.

The new system realisation is:

*An atttempt at a general version of the scheduling thingy

*will allow lots of variation so that we can parameterise

*time...

*This version build the Erlangs correctly for greater
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Figure 10: The stall rates tieing the write out and read next phases for probability of variation to
0.5
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Figure 11: Relative Advantage of tieing in a queueing setting.
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*accuracy...

bs GetS 1@1.gs^-1#mem:GetDo3 + 1.stall:GetS

bs GetDo3 (p^3*(1-p)).mem#ps^-1:GetDone6 + (p^2*(1-p)).mem:GetDo1 \

+ (p*(1-p)).mem:GetDo2 + (1-p).mem:GetDo3

bs GetDo2 (p^2*(1-p)).mem#ps^-1:GetDone6 + (p*(1-p)).mem:GetDo1 \

+ (1-p).mem:GetDo2

bs GetDo1 p.mem#ps^-1:GetDone6 + (1-p).mem:GetDo1

*for symmetry reasons use an erlang 6 here...

bs GetDone6 (q^6*(1-q)).t:PutS + (q^5*(1-q)).t:GetDone1 \

+ (q^4*(1-q)).t:GetDone2 \

+ (q^3*(1-q)).t:GetDone3 \

+ (q^2*(1-q)).t:GetDone4 \

+ (q^1*(1-q)).t:GetDone5 \

+ (1-q).t:GetDone6

bs GetDone5 (q^5*(1-q)).t:PutS + (q^4*(1-q)).t:GetDone1 \

+ (q^3*(1-q)).t:GetDone2 \

+ (q^2*(1-q)).t:GetDone3 \

+ (q^1*(1-q)).t:GetDone4 \

+ (1-q).t:GetDone5

bs GetDone4 (q^4*(1-q)).t:PutS + (q^3*(1-q)).t:GetDone1 \

+ (q^2*(1-q)).t:GetDone2 \

+ (q^1*(1-q)).t:GetDone3 \

+ (1-q).t:GetDone4

bs GetDone3 (q^3*(1-q)).t:PutS + (q^2*(1-q)).t:GetDone1 \

+ (q^1*(1-q)).t:GetDone2 \

+ (1-q).t:GetDone3

bs GetDone2 (q^2*(1-q)).t:PutS + (q^1*(1-q)).t:GetDone1 \

+ (1-q).t:GetDone2

bs GetDone1 q.t:PutS + (1-q).t:GetDone1

*and the symmetric return

bs PutS 1@1.gs^-1#mem:PutDo3 + 1.stall:PutS

bs PutDo3 (p^3*(1-p)).mem#ps^-1:GetS + (p^2*(1-p)).mem:PutDo1 \

+ (p*(1-p)).mem:PutDo2 + (1-p).mem:PutDo3

bs PutDo2 (p^2*(1-p)).mem#ps^-1:GetS+ (p*(1-p)).mem:PutDo1 + (1-p).mem:PutDo2

bs PutDo1 p.mem#ps^-1:GetS + (1-p).mem:PutDo1

*Only one thing can 'have' the RTC at a time

bs Sem 1.gs:SB + 1.gs#ps:Sem + 1.t:Sem
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Figure 12: Relative Advantage of tying in the general setting with total utilisation time=60 against
the window time duration probability, as the window narrows, stalls become increasingly common,
and the tying method starts to have minimal advantage.

bs SB 1.ps:Sem + 1.t:SB

basi P stall,mem

btr Sys GetS|GetS|GetS|Sem/P

In this setting the underlying variation, caused by the probabilistic representation of the dura-
tions, dominates the system behaviour. We get performances well less than 100than the resource
utilisation time. However as a check of the e�ectiveness of the tying approach we can see (Figure
12) that even in a context where it's advantage has been minimized. That is there is no `good' set
of states, it does not make matters worse.

7 Problems with Simulation

These tasks with �xed times pose an interesting problem for conventional discrete event simulation
systems. Firstly most of the interesting behaviour is a transient. In which case the classical wait a
while and then gather data approach of simulation is liable to underestimate any problems in the
system. Of far greater interest and potentially far more damaging is the problem of the core of the
simulation approach to concurrent systems. In the core of any simulation engine is an event queuer
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[2, 3, 4]. This maintains a list (tree, hash...) of what events are pending and when they should be
activated. In all of these situations an interesting problem arises when we have to insert an event
at a time equal[6] to that of an event that has already been scheduled. It is usual to assume that
this event should be queued after the one that is already there. This allows accurate shutdown and
statistics gathering to be embedded as part of the event model. One consequence is that if events
occur at regular �xed times, then entities can gain priority as a consequence of when they were
originally enqueued. In the case of our perturbed stable system above this will completely change
the values obtained for the consequences of a single error. The perturbed process will be the �rst
equeued and consequently we will not see the sepreation of its write and read phases induced by
competition and the system will restabilise almost immediately! With no 'knock-on' errors. This
will be a gross underestimate of the consequences of the problem.

8 Conclusions

Relying on concurrency to schedule tasks, other than on a single processor system, can have severe
implications for system performance. Attempting to run these systems close to or at the limits
imposed by shared resources can have major implications for the system performance. The use
of these methods is often advocated to cope with systems where the timing can be variable and
the scheduler cannot know what loads are going to be imposed in advance. In this situation, then
system performance will be very adversely a�ected. In a true parallel system if there are many
interactions with a shared resource, and especially if those interactions are not atomic, then even
though a stable schedule may exist the system can well take an e�ectively in�nite amount of time
to �nd it. Even if this time is relatively short any variation will can lead to the system having to
restart the hunt for the stable schedule. The values we obtained for this seek time imply that with
even extremely low probabilities of variation the system may well never achieve its smooth running
state.

All of the above can certainly be eased by tying together the write out and read back of the
functional blocks into a single atomic action. This has the e�ect of establishing the stable cycle
in the shortest possible (and deterministic) time. In the presence of variation this has major
implications for this approach to scheduling. In this case the variation simple costs the delay time
of the varying functional block, with no 'knock-on' consequences.

When the functional stages are mutually dependent as in a processing pipeline, then the situa-
tion is substantially worse. The stability time increases, and the consequences of stalls also include
the ability to stall dependent stages. This could be reduced, for non-persistent processing, such
as printing (there are no in�nite documents) by pre-loading the pipe to ensure downstream stages
will not be starved. Further this has the e�ect of permitting stages that 'miss' their window in the
schedule to wait for the next window, and hence not induce a thrash on the shared resource. The
calculation of preload is very complex, involving the length of the total task, and the anticipated
amount of variation in the stages, but approximations for this function may well be cheap, and
standard queue methods should give insights as to the depths required.

A further observation is the temptation to use sink processes to absorb free-time on the shared
resource, when other users are active, if this is the only shared resource in a system this may well
be a good idea. However, if the sink process is exploiting any other shared resource then it may
well unbalance the system further by over claiming it. For example, computing results in advance
requires memory to store them, this memory may well be needed by the overuuning process whose
time slot is being exploited and consequently cause it to perform even more poorly.
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Finally as a general observation. Even if the system is not tuned then making the write back
and read next phases of the system atomic will still be bene�cial. Simply, at the point of a write
back, it is unlikely that any more work can be undertaken locally until a read is completed. In
comparison, the period before a write includes that for any computational work and does not
therefore necessarily constitute a waste of system resources.
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