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Abstract

Codes which reduce the peak-to-average power (PAPR) in multi-code code division multiple access (MC-CDMA)
communications systems are systematically studied. The problem of designing such codes is reformulated as a new
coding-theoretic problem: codes with low PAPR are ones in which the codewords are far from the �rst-order Reed-
Muller code. Bounds on the trade-o� between rate, PAPR and error-correcting capability of codes for MC-CDMA
follow. The connections between the code design problem, bent functions and algebraic coding theory (in particular,
the Kerdock codes and Delsarte-Goethals codes) are exploited to construct code families with exible parameters for
the small values of n of practical interest. In view of their algebraic structure, these codes enjoy e�cient encoding and
decoding algorithms. The paper concludes by listing open problems in algebraic coding theory and Boolean functions
motivated by the paper.
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I. Introduction

Code-Division Multiple-Access (CDMA) in one form or another is likely to be at the heart of future cellular
wireless communications systems, third generation and beyond: eight out of ten proposals that have been
made for IMT-2000 are based on Direct Sequence CDMA (DS-CDMA) [34]. Already, some second-generation
systems using DS-CDMA have been deployed, especially in North America, for example systems based upon
the IS-95 standard [13].
A challenge for DS-CDMA systems is to support rate adaptation for users who demand widely varying

data rates for di�erent applications. For voice applications, a few kbits per second on both the forward (base
station to mobile) and the reverse (mobile to base station) links su�ce. But internet access, �le transfer,
streaming video and multimedia applications will demand much higher rates, of the order of hundreds of kbits
per second and up, in both directions.
Several methods for rate adaptation in CDMA systems have already been proposed [19], including variable

spreading factor CDMA, where the number of chips per data bit is reduced for users who require higher data
rates, time-slotting methods and multi-code CDMA, [12]. Multi-code CDMA, the focus of this paper, is a
very simple, backwards-compatible technique in which a mobile user who wishes to transmit at a higher data
rate is simply assigned additional channels, and appears to the base station as multiple users. Implementation
requires only replication of the appropriate hardware. We note that the abbreviation MC-CDMA has been
widely used for both multi-carrier CDMA, where characteristics of OFDM and CDMA systems are combined
[10], and multi-code CDMA. Here we use it to abbreviate the latter.
In e�ect, the transmitted signal in an MC-CDMA system is a sum of some number n of basic rate signals,

where n is the rate multiple required by a user. As we shall see below, this means that the peak signal power
in an MC-CDMA system can be as large as n times the average signal power. Typically n = 2m where m
lies between 2 and 6. Thus an MC-CDMA signal can have a signi�cantly higher peak-to-average power ratio
(PAPR) than a basic rate signal. So to transmit MC-CDMA signals without distortion requires either a
more expensive power ampli�er that is linear across a wider range of amplitudes, or a power ampli�er which
is operated only in its linear region, where conversion of DC to RF power is ine�cient [12], [24]. As with
OFDM, this is a signi�cant barrier to the adoption of MC-CDMA in practice. The problem is particularly
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acute on reverse links where low cost components and low power consumption are vital [24] but it is also an
important consideration on forward links [2], [15].
In order to avoid self-interference due to the use of multiple spreading codes in MC-CDMA, subcode con-

catenation has been proposed [11]. Here, a user is assigned n orthogonal channels and n bits in parallel from
n di�erent data streams (usually already coded for error correction and scrambled) are used to modulate the
spreading sequences on these channels. The transmitted signal is the sum of the n orthogonal signals on the
individual channels and the user's rate is n times the basic data rate. Typically, the channel orthogonalisation
is achieved by using length n = 2m Walsh-Hadamard sequences as synchronous spreading sequences on the n
channels, see Section II. In this case, the transmitted signal is e�ectively the Walsh-Hadamard transform of
the vector of n data bits.
In MC-CDMA with subcode concatenation, coding across the n channels can be used to reduce the PAPR

of the transmitted signals [23], [24], [30], [31], [32]. With coding, the user's rate is reduced to nR times the
basic rate for some R < 1: nR bits at a time from nR parallel data streams are encoded onto n bits using a
specially chosen rate R block code. These n bits are in turn used to modulate the Walsh-Hadamard sequences.
Thus the block encoder is inserted between the user's data streams and the Walsh-Hadamard transform. The
block code is selected to produce MC-CDMA signals with low PAPR and the approach trades transmission
rate for reduced PAPR. This is analogous to coding methods that have recently been developed for OFDM
[6], [7], [14], [20], [22], [25]. In [31], ad hoc methods were used to produce constant amplitude MC-CDMA
codes (i.e. codes with best possible PAPR of 1) for n = 4 and n = 16. In [30], it is shown that using bent
functions to de�ne codewords gives constant amplitude signals. In [23], [24], heuristic search methods for
constructing codes were introduced. These are based on a connection between the PAPR of a codeword and
its Hamming distance to chip vectors. (The work in [23], [24] does not restrict attention to Walsh-Hadamard
sequences and so a larger set of values of n can be considered.) In [24], analytic expressions for the codewords
of some of the codes are derived. These expressions are however rather unwieldy. It has been pointed out
in [32] and demonstrated by simulation in [24] that the redundancy introduced by coding can be exploited
for error-correction. The technique also introduces some additional complexity at the transmitter (encoding
circuitry) and at the receiver (decoding circuitry).
In this paper, we make a thorough study of codes which reduce PAPR in MC-CDMA. We introduce a simple

model for MC-CDMA which captures the key features of an MC-CDMA reverse link in Section II. We re-
formulate the problem of designing codes as a new coding-theoretic problem in Section III, showing that codes
with low PAPR are ones in which the codewords are far from the �rst-order Reed-Muller code RM(1;m). This
allows us to prove in Section IV bounds on the trade-o� between rate, PAPR and error-correcting capability
of codes for MC-CDMA (c.f. the work in [27] for OFDM). We also show that asymptotically good families of
codes exist with PAPR growing only as O(log n). More pragmatically, in Section V, we exploit the connections
between the code design problem, bent functions and algebraic coding theory (in particular, the Kerdock codes
and Delsarte-Goethals codes) to systematically develop families of codes with exible parameters for the small
values of n of practical interest. In view of their algebraic structure, these codes enjoy e�cient encoding and
decoding algorithms. This represents a signi�cant advance over previous work in [24], [31], [32].
Our focus is on codes with PAPR equal to 1, but we also consider constructions for codes with higher

PAPR. We conclude in Section VI by stating some problems in algebraic coding theory and the theory of
Boolean functions which are motivated by this work.
This paper develops a theory of coding for MC-CDMA that parallels the theory for OFDM developed in [6],

[7], [14], [20], [22], [25], [27]. Indeed, since the Walsh-Hadamard transform is a discrete version of the Fourier
transform inherent in OFDM, our work on MC-CDMA can be seen as a discrete-time analogue of the OFDM
theory. For further discussion on the similarities and di�erences between the two approaches, see Section VI.

II. Communication Model

In this section we describe our model of the reverse link of an MC-CDMA system. Our model is a simpli�ed
version of the model given in [23]. Throughout the paper n will be a power of two. We write n = 2m.



The Walsh-Hadamard matrix WHn can be de�ned recursively by WH1 = (1) and

WH2j =

�
WH2j�1 WH2j�1

WH2j�1 �WH2j�1

�

This matrix is a f+1;�1g-matrix and is symmetric and orthogonal, so that:

WHn �WHn = nIn

where In denotes the n � n identity matrix. Thus the rows (or columns) of WHn are orthogonal vectors of
length n, called Walsh-Hadamard sequences.
Our model of the reverse link of an MC-CDMA system is a discrete-time one. We begin by considering an

MC-CDMA system without coding. We have n parallel streams of bits and the signal transmitted by a user
on the reverse link corresponding to a vector c = (c0; c1; : : : ; cn�1) of data bits (one bit ci 2 f0; 1g from each
stream) is the time-domain vector of real values S(c) = (S(c)0; S(c)1; : : : S(c)n�1) where

S(c)t =
n�1X
j=0

(�1)cj (WHn)jt: (1)

Writing (�1)c = ((�1)c0 ; (�1)c1 ; : : : ; (�1)cn�1), we have

S(c) = (�1)c �WHn:

We can now see that each data bit cj is used to modulate a Walsh-Hadamard sequence (a row of the matrix
WHn) and the time-domain signal is the sum of these modulated spreading sequences: we have

S(c) =

n�1X
j=0

(�1)cjaj

where aj denotes the j-th row of WHn. Thus a user acts like n basic rate users transmitting in parallel in a
synchronous CDMA system, each such user spreading a single bit cj.
In a real MC-CDMA system, the power required to transmit a signal is proportional to the square of the

signal value. Since we are interested only in ratios of powers, we de�ne the instantaneous power of the signal
S(c) at time t to be P (c)t = S(c)2t . From (1), the peak (i.e. largest) value of P (c)t can be as large as n2.
An easy calculation using the orthogonality of the matrix WHn shows that the average value of P (c)t over
0 � t < n is equal to n. Therefore we de�ne the peak-to-average power ratio of the vector of data bits c (and
the corresponding signal S(c)) to be

PAPR(c) =
1

n
max
0�t<n

P (c)t:

From the above discussion we know that 1 � PAPR(c) � n.
We note that our model omits many important features of the transmit chain of the reverse link of an MC-

CDMA system, including the use of long user-speci�c spreading codes (called primary codes in [12]), pulse-
shaping of chip waveforms and the spreading of user data by Gray mapping over both I and Q components.
However, these features do not have a major impact on PAPR, the key parameter that we study here.
Now we consider coding for MC-CDMA. We let C be an arbitrary binary code of length n and rate R,

that is a set of 2nR binary length n vectors. An encoder for C maps k = nR information bits at a time onto
vectors c 2 C. In MC-CDMA with coding, we have k parallel data streams which are fed into an encoder for
C and thence to a Walsh-Hadamard transform. Thus only codewords c in C are selected for transmission,
though (1) still describes the transmitted signal. The rate of a user in an MC-CDMA scheme with precoding
is k = nR times that of a basic rate user.



We de�ne the PAPR of the code C to be

PAPR(C) = max
c2C

PAPR(c):

A code C with PAPR(C) = 1 is called a constant amplitude code. Such a code attains the lowest and therefore
best possible value of PAPR. We reiterate that [24], [32] have already shown that the redundancy in C can be
used for additional error correction. The two main problems that we study in this paper can now be stated
as:
� How can we construct codes for MC-CDMA with small PAPR, large R (so as to maintain high data rates)
and large minimum Hamming distance d that are practical, i.e. e�ciently encodable and decodable?
� what are the trade-o�s between the parameters R, d and PAPR(C) for MC-CDMA codes?

III. A Coding-Theoretic Formulation

In this and the following sections, we assume the reader has a basic familiarity with the Reed-Muller codes
and we draw heavily on results in [17, Chaps. 13 { 15]. In particular, we assume that every length n = 2m word
c can be identi�ed with a Boolean function c(x0; x1; : : : ; xm�1) in variables x0; x1; : : : ; xm�1 (where we note
our change from the standard numbering of these variables) and that component i of c = (c0; c1; : : : ; cn�1) can
be obtained by evaluating the corresponding Boolean function at (i0; i1; : : : ; im�1). We will denote both the
codeword and the associated Boolean function by the same symbol. Indeed we will not distinguish between
the two objects. We recall the code RM(r;m) consisting of all those words whose Boolean functions have
non-linear order at most r has minimum distance 2m�r and is linear of dimension 1 +

�m
1

�
+ � � �+ �mr �. To be

explicit, 2
666664

1111 1111 � � � 1111
0101 0101 � � � 0101
0011 0011 � � � 0011
...

...
...

0000 0000 � � � 1111

3
777775

1
x0
x1
...

xm�1

denotes a generator matrix for RM(1;m).

We assert that the matrix WHn has t-th row (and column) equal to the vector (�1)
Pm�1

k=0
tkxk where t =Pm�1

k=0 tk2
k. Thus the rows (and columns) of WHn are related to codewords of RM(1;m), i.e. linear functions.

This can be proved by comparing the recursive de�nition of WHn with the fact that words of RM(1;m) all
have the form (c; c) or (c; c) where c 2 RM(1;m � 1).
Now let c 2 C be a codeword for transmission. Then we have

S(c)t =
n�1X
j=0

(�1)cj (WHn)jt

=
n�1X
j=0

(�1)cj+(
Pm�1

k=0 tkxk)j

= n� 2dH(c;

m�1X
k=0

tkxk)

where dH(x; y) denotes the Hamming distance between vectors x and y. Therefore

PAPR(c) =
1

n
max
t

 
n� 2dH(c;

m�1X
k=0

tkxk)

!2

:



Notice that if P (c)t equals PAPR(c) but dH(c;
Pm�1

k=0 tkxk) � 2m�1 then 2dH(c; 1 +
Pm�1

k=0 tkxk) = 2n �
2dH(c;

Pm�1
k=0 tkxk) and

P (c)t =

 
n� 2dH(c;

m�1X
k=0

tkxk)

!2

=

 
n� 2dH(c; 1 +

m�1X
k=0

tkxk)

!2

where 1 +
Pm�1

k=0 tkxk 2 RM(1;m) and dH(c; 1 +
Pm�1

k=0 tkxk) � 2m�1. Hence we have proved
Lemma 1: For any word c of length n,

PAPR(c) = n

�
1� 2d�(c)

n

�2

;

where d�(c) := minfdH(c; w) : w 2 RM(1;m)g denotes the minimum Hamming distance between c and the
�rst-order Reed-Muller code of length 2m.
Because RM(1;m) is closed under complementation, it is clear that d�(c) � n=2, so the quantity 1�2d�(c)=n

above is always non-negative.
If we write d�(C) = minfd�(c) : c 2 Cg, then we have PAPR(C) = n(1 � 2d�(C)

n )2. Thus codes which are
far from RM(1;m) will have small PAPR, and our �rst problem can be restated as constructing good codes
having this property.
Occasionally it will be useful to write d�(C) in terms of PAPR(C). We have:

d�(C) =
n

2

 
1�

�
PAPR(C)

n

�1=2
!
: (2)

IV. Bounds on Codes

In this section, we use the connection between PAPR and Hamming distance developed above to prove
bounds relating the rate and a minimum distance of a code C with PAPR(C). We prove analogues of the
Gilbert-Varshamov and Hamming bounds for MC-CDMA codes. We perform an asymptotic analysis of the
former bound and exhibit a code that is (almost) non-trivial and `perfect' with respect to the latter. Our
analysis is analogous to that carried out for OFDM in [27], but simpli�ed because here we work in Hamming
space rather than in an n-dimensional complex Euclidean space.

A. A Gilbert-Varshamov-style lower bound

For any 0 � r � n, let H(r) denote the number of words in a Hamming sphere of radius r in dimension n,
so H(r) =

Pr
k=0

�n
k

�
.

We have:
Lemma 2: Suppose that 0 � d� < n=2 and that

2n �H(d�) + 2nR �H(d) � 2n:

Then there exists a code C of length n, rate R and minimum distance d with

PAPR(C) � n

�
1� 2d�

n

�2

:

Proof: Any set of words with each word lying at least distance d� from RM(1;m) and each pair of words
lying at least distance d from each other will have PAPR at most n(1 � 2d�

n )2 by Lemma 1. Such a set C
of size 2nR can be chosen provided 2nH(d�) + 2nRH(d) � 2n, by �rstly removing from Hamming space of
dimension n the 2n disjoint spheres of radius d� about RM(1;m) and then sequentially chosing codewords
and removing spheres of radius d around these codewords in the remaining space.

We note that the left-hand side of the bound in Lemma 2 contains a term 2nRH(d) appearing in the
standard Gilbert-Varshamov bound, c.f. [16, Thm. 5.1.7], and a term 2nH(d�) in which d� determines the
resulting PAPR of the code. It is instructive to examine the asymptotic behaviour of our bound. We have:



Theorem 3: Suppose that 0 � R < 1 and 0 � � < 1=2 satisfy

R < 1�H2(�)

where H2(x) = �x log2 x� (1�x) log2(1�x) denotes the binary entropy function. Then there exists a length
n code of rate R and minimum distance �n satisfying PAPR(C) � 2 log(2n) for all su�ciently large n.

Proof: By Lemma 2, it su�ces to show that for all su�ciently large n,

2�n � 2n �H
�n
2
(1� y)

�
+ 2n(R�1) �H(�n) � 1 (3)

where

y =

�
2 log(2n)

n

�1=2

:

For R and � satisfying the hypothesis in the theorem the second term in left-hand side of this expression tends
to zero as n ! 1, c.f. the proof of the asymptotic form of the standard Gilbert-Varshamov bound in [16,
Thm. 5.1.9]. Next we consider the logarithm of the �rst term. We note that 0 � y < 1 for large n. Then

log2 2
�n � 2n �H

�n
2
(1� y)

�
= �n+ log2(2n) + log2H

�n
2
(1� y)

�
� �n+ log2(2n) +H2

�
1

2
(1� y)

�
by [16, Thm. 1.4.5]

= �n+ log2(2n) + n

 
1� (log2 e)

1X
s=1

y2s

2s(2s� 1)

!

where we have used the expansion

H2

�
1

2
(1� y)

�
= (log2 e)

1X
s=1

y2s

2s(2s� 1)
; jyj < 1

obtained from the Taylor series for log(1� y) and log(1 + y). Extracting the �rst term in this series, we can
write

log2 2
�n � 2n �H(

n

2
(1� y)) � log2(2n)� (log2 e)

ny2

2
�O(ny4):

Replacing y by (2 log(2n)n )1=2 and simplifying, we see that the error term O(ny4) tends to 1 as n!1 and we
deduce that

log2 2
�n � 2n �H(

n

2
(1� y))! �1 as n!1:

This establishes that the �rst term in (3) tends to zero for large n and completes the proof.

B. A Hamming-style upper bound

Theorem 4: Suppose that there exists a length n code C with rate R and minimum distance d. Then

2�n � 2n �H
�
d� � bd+ 1

2
c
�
+ 2n(R�1) �H

�
bd� 1

2
c
�
� 1

where

d� =
n

2

 
1�

�
PAPR(C)

n

�1=2
!
:



Proof: The 2nR Hamming spheres of radius bd�1
2 c around codewords of C must be mutually disjoint.

Moreover, it follows from Lemma 1 that none of these spheres can intersect any of the 2n spheres of radius
d� � bd+1

2 c around words in RM(1;m). These 2n spheres are disjoint because the minimum distance of
RM(1;m) is 2m�1 � d�.

No asymptotic analysis of the above bound can yield a condition connecting R, d and PAPR(C): the �rst
term is the only one depending on PAPR(C) and is essentially a Hamming bound term for a code with only
2n codewords. So it grows so slowly with n that even for PAPR(C) = 1, the term converges to zero. Indeed
the bound does not preclude the existence of an asymptotically good sequence of codes (i.e. one with both rate
and d=n bounded away from zero as n!1) with PAPR equal to 1. However, the bound can be interesting
at small values of n, as the following example shows.
Example 5: Consider the length 4 code x0x1 +RM(1; 2), a coset of the �rst-order Reed-Muller code which

consists of all odd weight words of length 4. It is an easy exercise to check that this code has minimum
distance 2, rate 3=4 and PAPR equal to 1. It also meets the bound in Theorem 4 with equality. Therefore it
can be regarded as a `perfect' code. This code has the same parameters as the length 4 code of [31].
We will consider generalisations of the code in this example in the next section.

V. Families of Codes

Here, we develop the connections between codes for MC-CDMA with low PAPR, bent functions and Reed-
Muller codes. Our objective is to produce families of codes and a large number of coding options trading-o�
R, d and PAPR(C) for small values of n.

A. Walsh-Hadamard Transforms and Bent Functions

Given a Boolean function f in m variables, the Walsh-Hadamard transform of f (or the binary vector
corresponding to f , or the real vector (�1)f ) is de�ned in [17, p. 414] to be the function f̂ where

f̂(u) =
X

v2f0;1gm

(�1)f(v)+Lu(v); u 2 f0; 1gm

where

Lu =

m�1X
k=0

ukxk 2 RM(1;m):

Comparing this de�nition with those in Section II, we see that

S(c)t = ĉ(t0; t1; : : : ; tm�1); t =

m�1X
k=0

tk2
k

so that the vector S(c) corresponding to the transmitted signal has components that are Walsh-Hadamard
transform components of c. From Lemma 1, we also have

ĉ(t0; t1; : : : ; tm�1) = S(c)t = n� 2dH(c;
m�1X
k=0

tkxk)

so that the Walsh-Hadamard transform coe�cients of c give us information about d�(c), c.f. [17, p. 415, Thm.
1].
It is an easy exercise ([17, p. 416, Cor. 3] to show that

P
u2f0;1gm ĉ(u)2 = n2. The following lemma is now

immediate:
Lemma 6: Let c be a word of length n = 2m. Then

PAPR(c) =
1

n
max
u

jĉ(u)j2:



Moreover c has PAPR equal to 1 if and only if jĉ(u)j = p
n for every u 2 f0; 1gm.

We also have the following lemma, useful in constructing codes:
Lemma 7: Every codeword in a coset c+RM(1;m) has the same PAPR.
Proof: Let w 2 RM(1;m). Then

\(c+ w)(u) =
X

v2f0;1gm

(�1)c(v)+Lw(v)+Lu(v) = ĉ(w + u)

so that c and c+ w have the same Walsh-Hadamard transform spectrum.

A bent function is de�ned to be a Boolean function all of whose Walsh-Hadamard transform coe�cients
are equal in magnitude to 2m=2 =

p
n. Clearly m must be even for such a function to exist. A bent

function corresponds to a word with PAPR equal to 1. From the preceding discussion, such a word satis�es
d�(c) =

1
2(n�

p
n) = 2m�1 � 2

m
2
�1 and is maximally distant from RM(1;m). Thus:

Theorem 8: C is a constant amplitude code if and only if every codeword of C is a bent function. In

particular, constant amplitude codes of length n = 2m exist only for m even.

We note that Wada [30] has also recently recognised the connection between bent functions and PAPR
reduction in MC-CDMA. Bent functions have received a good deal of attention, see for example [1], [4], [5],
[8], [28], [29], [33], and a brief overview can be found in [17, Chap. 14, Sec. 5]. It is known that any bent
function has non-linear order at most m=2, that is, lies in the code RM(m=2;m). The following construction
of bent functions is attributed to Maiorana and McFarland in [21]. The same set of functions are called
linear-based bent sequences in [1].
Result 9: Let � be a permutation on f0; 1gt and let g be any Boolean function in t variables. Then

f(x0; : : : ; x2t�1) = �(x0; : : : ; xt�1) � (xt; : : : ; x2t�1) + g(x0; : : : ; xt�1)

is a bent function of 2t variables. (Note that we interpret � as a vector of t Boolean functions in t variables).
Of importance to us will be bent functions in RM(2;m). The codewords of RM(2;m) can be identi�ed

with quadratic functions in m variables, and each coset of RM(1;m) inside RM(2;m) is represented by a
quadratic form in m variables. According to results of [17, Chap. 15, Sec. 2], with each such form Q can
be associated an even number, called the rank of the form, denoted rank(Q). This number determines the
weight distribution of the coset Q+RM(1;m), [17, p. 441, Thm. 5]. Moreover, for m even, a quadratic form
in m variables is bent if and only if it has full rank m. More generally, we have:
Lemma 10: Let Q be a quadratic form in m variables of rank 2h. Then the codewords of the coset Q +

RM(1;m) have PAPR equal to 2m�2h.
Proof: From [17, p. 441, Thm. 5], the coset Q + RM(1;m) has codewords of weights 2m�1 and

2m�1� 2m�h�1. Hence d�(Q) = 2m�1� 2m�h�1 and so PAPR(Q) = n
�
1� 2d�(c)

n

�2
= 2m�2h. The result now

follows from Lemma 7.

According to [17, p. 436, Thm. 2], the quadratic forms of rank 2h are in 1-1 correspondence with m�m
symplectic matrices of rank 2h over GF(2) and their number is equal to

N(m; 2h) =
(2m � 1)(2m�1 � 1) � � � (2m�2h+1 � 1)

(22h � 1)(22h�2 � 1) � � � (22 � 1)
� 2h(h�1):

Much less is known about Boolean functions that are `approximately bent' in the case where m is odd.
From Lemma 10, for m odd, the smallest PAPR that a codeword of RM(2;m) can have is 2. For higher
non-linear orders, the problem of determining the `attest' possible Walsh-Hadamard spectrum is an open
problem related to the determination of the covering radius of RM(1;m). We refer the reader to [3] for recent
results on this problem.

B. Families of Constant Amplitude Codes from Bent Functions

We know that constant amplitude codes consist of bent functions. In this section, we construct some families
of codes with this property. Our aim is to construct families which are practical for small (necessarily even)



m. In view of Lemma 7, all of our codes will consist of cosets of RM(1;m). For pragmatic reasons, we restrict
to codes in which the number of cosets is a power of 2, so that the codes encode an whole number of data
bits. The codes can all be conveniently encoded and decoded using techniques similar to those developed for
OFDM codes in [7] and [26].
Construction 11: A �rst family of constant amplitude codes can be obtained by generalising the code of

Example 5. We let m be even and let Q be any bent function on m variables, for example Q = x0x1+x2x3+
� � � + xm�2xm�1 ([17, p. 429, Cor. 11]). Then we take as our code the coset Q + RM(1;m). This code has
rate (m+ 1)=2m, minimum distance 2m�1 and PAPR 1.

Construction 12: A second family of constant amplitude codes is obtained by taking as the code at length
n = 2m, m even, a union of many second-order cosets corresponding to quadratic forms of full rank m. Such
a code has minimum distance at least 2m�2 as it is a subcode of RM(2;m). For m = 4, the total number of
full rank forms is N(4; 4) = 28, and a pictorial list of the forms can be found on [17, p. 429]. Selecting any
16 of these forms gives a code of rate 9=16, minimum distance 4 and PAPR equal to 1. This code has the
same parameters as length 16 codes in [24], [31]. For m = 6, the number of full rank quadratic forms is equal
to N(6; 6) = 217 � 26, yielding a code of rate 20=64, minimum distance 16 and PAPR equal to 1. Generally,

N(m;m) � 2m(m
2
�1) and we obtain a code of rate at least

m(m
2
+1)

2m , minimum distance 2m�2 and PAPR 1.
In order to make these codes practical for larger values of m, it would be useful to have an algorithm for
encoding data bits directly onto full rank forms.

Construction 13: A third family of constant amplitude codes can be obtained from Result 9, which identi�es
a set of 22

t �(2t)! bent functions in m = 2t variables. Because the non-linear order of the functions is at most t,
this set is a subcode of RM(t; 2t) and so has minimum distance at least 2m�t = 2t. By restricting to functions
g of non-linear order at most ` � t and permutations � of non-linear order at most `� 1, we can obtain codes
with larger minimum distance 2m�` at the expense of lower rate. It is not hard to see from Result 9 that this
code will consist of a union of cosets of RM(1;m). In the case ` = 2, we note that this construction does not
in general produce all the bent quadratic functions, so the rate of the resulting codes is lower than that of
the codes in Construction 12. However, for larger `, it can attain higher rates. As an example, for m = 6 and
` = 3, we obtain a code with minimum distance 8, rate 23=64 and PAPR 1. To make these codes practical,
an e�cient algorithm for encoding data bits into functions of the type appearing in Result 9 is required. This
is straightforward in the cases ` = t (where encoding 2t bits onto functions g is trivial, and � can be any
permutation of f0; 1gt) and ` = 2 (where � can be represented by a non-singular m�m matrix and g can be
obtained from an encoder for RM(2; t)).

The above constructions give further motivation to the longstanding open problems of enumerating, con-
structing and classifying bent functions | as well as being interesting for their own sake, progress on these
problems is likely to lead to better constant amplitude codes. For example, for m = 6 it should in principal
be possible to obtain a code of rate 1=2 and minimum distance 8 since the number of bent functions for
m = 6 is known to exceed 232 [28]. However, we know of no simple method for generating this number of
bent functions.

C. Families of Constant Amplitude Codes from Kerdock and Delsarte-Goethals Codes

In this section we generate more coding options by exhibiting subcodes of the Kerdock and Delsarte-Goethals
codes with constant PAPR.
We begin by recalling some terminology from [17, Chap. 15, Sec. 5 and Chap. 21, Sec. 8].
A set Y of quadratic forms in m variables is called an (m;h)-set if for any Q;Q0 2 Y , the quadratic form

Q+Q0 has rank at least 2h. If such a set Y contains the all-zero form, then clearly every non-zero form in Y
also has rank at least 2h. The code [

Q2Y

Q+RM(1;m)



obtained from such a set contains jY j � 2m+1 codewords and has minimum distance 2m�1 � 2m�h�1 (because
the distance between any two words in the same coset of RM(1;m) is 2m�1 and the distance between any
two words in di�erent cosets is at least 2m�1 � 2m�h�1, being determined by the rank of the sum of the two
forms). It is shown in [17, p. 667, Thm. 13] that for any (m;h)-set Y , jY j � cbm=2c�h+1, where c = 2m for
m odd and c = 2m�1 for m even. Explicit constructions for maximal (m;h)-sets are given in terms of trace
functions in [17, p. 454-455, Thms. 15 and 16] for m odd and [17, p. 457, eqn. (33), p. 461, eqn. (37)] for m
even. In the even case, these sets give rise to the Kerdock and Delsarte-Goethals codes.
For the remainder of this section, we assume that m is even.
Construction 14: An (m;m=2)-set is called a Kerdock set. For each even m, a Kerdock set is constructed

in [17, p. 457, eqn. (33)]. The set contains the zero quadratic form and 2m�1 � 1 quadratic forms of full
rank. The resulting code K(m), known as the Kerdock code, contains RM(1;m) as a subcode, has minimum
distance 2m�1 � 2(m=2)�1 and rate 2m=2m. Selecting any 2m�2 of the 2m�1 � 1 non-zero cosets of RM(1;m)
in the Kerdock code gives a subcode with the same minimum distance, rate (2m� 1)=2m and PAPR 1. This
subcode has higher rate than the code of Construction 11, but nearly the same minimum distance. For m = 4,
we obtain a code of rate 7=16 and minimum distance 6 (which is a subcode of the Nordstrom-Robinson code)
and for m = 6, a code of rate 11=64 and minimum distance 28.

It is unfortunate that we had to remove the zero coset from the Kerdock code in the above construction,
since it reduced the rate from 2m=2m to (2m� 1)=2m. However, it is not hard to show that any Kerdock set
of quadratic forms must contain the zero form. We ask: does there exist a code with the same parameters
as the Kerdock code which consists entirely of bent functions? In particular, is there a Boolean function g
(necessarily of non-linear order greater than 2) such that the set g +K(m) contains only bent functions?
Next we attempt to generalise this Kerdock-based construction to the Delsarte-Goethals codes [17, p.

461, Thm. 19]. The code DG(m;h), where 1 � h � m=2, is constructed from a maximal (m;h)-set and
has minimum distance 2m�1 � 2m�h�1 and contains 2(m�1)(m=2�h+1)+m+1 codewords, arranged in cosets of
RM(1;m). The particular (m;h)-set of quadratic forms used to construct DG(m;h) is not described explicitly
in the construction of [17], nevertheless it can be derived from the (m;h)-set used to construct K(m) and a
related (m� 1; h)-set appearing in [17, p. 454-455, Thm. 16].
The quadratic forms in the (m;h)-set include the zero form and so every non-zero form in the set has rank

at least 2h. But to construct a constant amplitude MC-CDMA subcode of DG(m;h), Lemma 10 tells us we
must include only full rank quadratic forms. To evaluate the rate of this subcode, we must �nd the number
of such forms in the (m;h)-set used to construct the Delsarte-Goethals codes. We resort to the results of [17,
Chap. 21, Secs. 7 and 8]. Given a set of quadratic forms Y , we de�ne the inner distribution of Y to be the
(m+ 1)-tuple of real numbers (B0; B1; : : : ; Bm=2) where

Bi =
1

jY j jf(Q;Q
0) 2 Y � Y : rank(Q+Q0) = 2igj:

For Y the (m;h)-set used to construct DG(m;h), we would like to know the numbers (A0; A1; : : : ; Am=2)
where

Ai = jfQ 2 Y : rank(Q) = 2igj;

in particular the number Am=2. We have the following Lemma:
Lemma 15: Let Y be the (m;h)-set used to construct DG(m;h) and let Ai, Bi be de�ned as above. Then

Ai = Bi; 0 � i � m=2
Proof: The code DG(m;h) is the Gray image of a code that is linear over Z4 [9] and so is distance

invariant, i.e. the weight distribution and distance distribution of DG(m;h) are equal. But by virtue of the
code's construction from quadratic cosets of RM(1;m), these two distributions are determined entirely by the
numbers Ai and Bi respectively, with the number of words of weight 2m�1 � 2m�i�1 being determined by Ai

and the number of times 2m�1 � 2m�i�1 appears in the distance distribution being determined by Bi. To



obtain equality of these distributions we must then have Ai = Bi, 0 � i � m=2. This result can be proved
without recourse to Z4-linerity by carefully examining the form of codewords in DG(m;h) given by [17, eqn.
(37), p. 461].

The inner distribution (B0; B1; : : : ; Bm=2) of Y , a maximal (m;h)-set is known exactly from [17, p. 668,
Thm. 14]. We have:

Bm=2�i =

m=2�hX
j=i

(�1)j�iCi;j

where

Ci;j = 4(
j�i
2 )
�
j
i

� �
m=2
j

�
(2(m�1)(m=2�h+1�j) � 1):

Here,

�
x
y

�
denotes a 4-ary Gaussian binomial coe�cient [17, p. 443].

Lemma 16: With notation as above, we have

C0;j � C0;j+1 for all j � 1:
Proof: Examining the ratio C0;j+1=C0;j and using simple approximations shows that for j � 1,

C0;j+1=C0;j � 2�1�2j .

Lemma 17: With notation as above, we have

Am=2 � 2(m�1)(m=2�h+1)�2

Proof: From the preceding lemmas, we have

Am=2 = Bm=2 = (C0;0 � C0;1) + (C0;2 � C0;3) + � � � � C0;0 � C0;1:

Now

C0;0 � C0;1 = 2(m�1)(m=2�h+1) � 1� 4m=2 � 1

3
�
�
2(m�1)(m=2�h) � 1

�
� 2(m�1)(m=2�h+1)

�
1� 2m � 1

3 � 2m�1

�

� 1

3
� 2(m�1)(m=2�h+1)

and the lemma follows.

Construction 18: Lemma 17 shows that considering only cosets of RM(1;m) corresponding to the full rank
forms in the (m;h)-set used in constructing DG(m;h) results in a subcode which encodes 2 bits less than
the entire code. Since DG(m;h) always contains the zero form, this is just one bit less than we would have
obtained by considering all the non-zero cosets in the code. This full rank subcode has minimum distance
2m�1 � 2m�h�1, rate (m� 1)(m=2 � h+ 2)=2m and PAPR 1. Taking all the non-zero cosets in the the code
DG(m;h) would result in a subcode with the same minimum distance, rate [(m � 1)(m=2 � h + 2) + 1]=2m

but PAPR 2m�2h. For small values of m, the full rank quadratic forms in the (m;h)-set can be obtained by
direct calculation. It would be convenient to �nd a simple method of selecting such forms directly for larger
values of m.

Finally in this subsection, we bring together all the preceding constructions in the cases m = 4; 6 to produce
two tables of constant amplitude codes, Tables I and II.



(R; d) Reference

(5=16; 8) Construction 11, single coset
(7=16; 6) Construction 14, subcode of K(4)
(9=16; 4) Construction 12

TABLE I

Parameters of constant amplitude codes for m = 4

(R; d) Reference

(7=64; 32) Construction 11, single coset
(11=64; 28) Construction 14, subcode of K(6)
(15=64; 24) Construction 18, subcode of DG(6; 2)
(20=64; 16) Construction 12
(23=64; 8) Construction 13, ` = 3

TABLE II

Parameters of constant amplitude codes for m = 4

D. Codes with PAPR greater than 1

We have seen that codes with PAPR equal to 1 can exist only for m even. We have also seen that the rates
of codes with PAPR 1 are constrained. In this subsection, we give three constructions for codes with higher
PAPR for both odd and even m. These further extend the available coding options (though we do not explore
those options in any detail). In particular, they produce codes with PAPR 2 for odd m. For odd m (and
indeed even m), there may exist good codes with PAPR signi�cantly less than 2 and indeed close to 1. These
would arise from sets of words that are `nearly bent', that is, words whose minimum distance to RM(1;m) is
close to 2m�1 � d2m

2
�1e. We leave as a major open problem the question of constructing such codes, though

we note that when m is odd, they cannot arise from subcodes of RM(2;m) because of the connection between
rank and PAPR in Lemma 10.
We begin with a lemma generalising a result of [18]:
Lemma 19: Let f and g be Boolean functions of m variables x0; : : : ; xm�1. Suppose that both f and g have

PAPR at most w. Then the Boolean function

c(x0; : : : ; xm�1; xm) = (1 + xm) � f(x0; : : : ; xm�1) + xm � g(x0; : : : ; xm�1)

has PAPR at most 2w
Proof: We have f̂(u0; : : : ; um�1); ĝ(u0; : : : ; um�1) � (nw)1=2 for every choice of (u0; : : : ; um�1) 2

f0; 1gm. It is easy to show that

ĉ(u0; : : : ; um�1; um) = f̂(u0; : : : ; um�1) + (�1)um ĝ(u0; : : : ; um�1):

Hence

jĉ(u0; : : : ; um�1; um)j � jf̂(u0; : : : ; um�1)j+ jĝ(u0; : : : ; um�1)j � 2(nw)1=2

and from Lemma 6, we have

PAPR(c) =
1

2n
max

u2f0;1gm+1
jĉ(u)j2 � 2w:



Notice that the length 2n codeword corresponding to c in the above lemma is formed by concatenating the
length n words f and g. This simple concatenation construction allows us to convert any construction for a
code C of length n = 2m, rate R and minimum distance d into a construction for a code C 0 of length 2n = 2m+1

which also has rate R but, according to Lemma 19, with PAPR(C 0) � 2 � PAPR(C). The double-length code
C 0 consists of all codewords of the form (1 + xm)f + xmg where f; g 2 C. The minimum Hamming distance
of this code is the same d as that of the original code (though most pairs of words in C 0 will di�er in at least
2d positions, d positions in each `half'). Recall, with notation as above, that

ĉ(u0; : : : ; um�1; um) = f̂(u0; : : : ; um�1) + (�1)um ĝ(u0; : : : ; um�1):

Taking f = g and um = 0, we get

ĉ(u0; : : : ; um�1; 0) = 2f̂(u0; : : : ; um�1):

It follows from this that in fact we have PAPR(C 0) = 2 � PAPR(C).
For example, this idea allows us to convert all of our constructions for constant amplitude codes for even

m into constructions of codes with PAPR equal to 2 for odd m. Hence Tables I and II can be essentially
replicated for m = 5 and m = 7, but now the codes have PAPR 2. Of course the concatenation can be
repeated multiple times.

Our second construction generalises Result 9 to construct Boolean functions whose Walsh-Hadamard trans-
forms are small. In the special case � = 0, our construction is identical to that of Result 9.
Lemma 20: Suppose t + � � t � 1 are integers. Let � : f0; 1gt+� ! f0; 1gt be a 2�-to-1 map (regarded as

a vector of t Boolean functions in t+ � variables) and let g(x0; : : : ; xt+��1) be any Boolean function in t+ �
variables. Finally, let

f(x0; : : : ; x2t+��1) = �(x0; : : : ; xt+��1) � (xt+� ; : : : ; x2t+��1) + g(x0; : : : ; xt+��1)

be a Boolean function in 2t+ � variables. Then PAPR(f) � 2� .
Proof: By Lemma 6, it is enough to show that jf̂(u)j � 2t+� for every choice of u = (a; b), where

a 2 f0; 1gt+� ; b 2 f0; 1gt. We have

f̂(a; b) =
X

v2f0;1g2t+�

(�1)f(v)+Lu(v)

=
X

c2f0;1gt+�

X
d2f0;1gt

(�1)g(c)+(�(c)+b)�d+a�c

where v = (c; d).
Now if �(c) + b = 0, then the inner sum is equal toX

d2f0;1gt

(�1)g(c)+a�c

in which the summand is independent of d. Hence in this case, which occurs for 2� choices of c, the inner sum
is equal to �2t.
On the other hand if �(c) + b 6= 0, then the inner sum is equal toX

d2f0;1gt

(�1)g(c)+a�c+�d = (�1)g(c)+a�c �
X

d2f0;1gt

(�1)�d

in which  = �(c) + b is not the zero vector. In this case, the inner sum is equal to 0.
Considering all contributions to the sum over c, we see that

jf̂(u)j � 2� � 2t = 2t+� :



This lemma can be used to generate codes in the same way as in Construction 13. It identi�es 22
t+� �

(2t+�)!=(2� !)2
t
distinct Boolean functions with PAPR at most 2� and non-linear order at most t+ �. This last

fact is true because each of the t component Boolean functions in � must be balanced and so has non-linear
order at most t+ �� 1. Thus the codes will, as subcodes of RM(t+ �; 2t+ �), have minimum distance at least
2t. For example, taking t = � = 2, the lemma can in principal be used to produce a code of length 64, rate
41=64, minimum distance 4 and PAPR 4. By restricting the non-linear orders of � and g as in Construction
13, we can trade-o� rate and minimum distance. We note that the construction cannot be used to produce
codes with PAPR of, say, 2 when m is even.

Our third construction is concerned with the analogues of the Delsarte-Goethals codes in the case m odd.
These codes are described via (m;h)-sets in [17, p. 454-455, Thms. 15, 16, Cor. 17]. In the m odd case, two
linear codes with rate [m(bm=2c � h+ 2) + 1]=2m and minimum distance 2m�1 � 2bm=2c�h�1 are constructed
from two di�erent maximal (m;h)-sets for each h and m, 1 � h � bm=2c. Each of these sets contains
2m(bm=2c�h+1) quadratic forms, one of which is the zero form. Every non-zero form in the two sets has rank
greater than 2h (whereas this was true of the sum of two forms from the set in the even case). As before, we
can select from each (m;h)-set just the forms of maximum rank (equal to m � 1 when m is odd), to obtain
two subcodes with the same minimum distance as before, but with PAPR of only 2 instead of 2m�2h. The
only remaining questions are to determine the rate of the subcodes, and to �nd a method for generating the
maximum rank forms in the sets. We can settle the �rst question using the same techniques as were used in
the even case, the results of [17, Chap. 21, Secs. 7 and 8] applying here too. In fact the result is slightly
easier to derive because the codes are linear. Using the same notation as in Section V-C, we can show that
A(m�1)=2, the number of maximum rank forms in a maximal (m;h)-set, is at least 2m(bm=2c�h+1)�1 . This is
half as many forms as are in the complete (m;h)-set (but recall that we had to remove the zero form in any
case). The subcodes obtained from these sets of forms have rate m(bm=2c � h+ 2)=2m and now we only lose
one encoded bit as compared to the entire codes.
As examples, for m = 5 and h = 1, we obtain codes with rate 10=32, minimum distance 12 and PAPR 2,

while for m = 5 and h = 2, we obtain codes with rate 15=32, minimum distance 8 and PAPR 2. These should
be compared to codes obtained from Table II and our rate doubling construction.

VI. Conclusions and Open Problems

We have seen how coding for MC-CDMA can signi�cantly reduce PAPR at the expense of rate, and how the
additional redundancy can be exploited for error-correction. We have quanti�ed this by formulating bounds
on the parameters of rate, minimum distance and PAPR of a code. We have also developed the connections
between PAPR, Reed-Muller codes, Walsh-Hadamard transforms and bent functions.
To �nish, we gather together a number of areas requiring further investigation and some open problems.
We hinted in our description of the MC-CDMA system that in real systems, QPSKmodulation is used rather

than BPSK modulation and a user actually transmits data simultaneously on I and Q channels. Furthermore,
di�erent data can be transmitted on the I and Q channels. Can better rates and PAPR performance be
obtained by considering code design on the two channels jointly? Quaternary codes and bent functions may
be useful in addressing these questions.
The coding techniques developed here are also applicable to forward links, where PAPR is also a concern

[2], [15]. Indeed the methods might be used directly (i.e. without the need for subcode concatenation) in
systems like IS-95 where modulated Walsh-Hadamard sequences are used directly to transmit data to users.
Even though it is not possible to code across multiple channels intended for di�erent mobile recipients, we
can still have a situation where a single user demands a high transmission rate on the forward link. Variable
spreading factor schemes for rate adaptation in CDMA also exploit certain orthogonality properties of the
Walsh-Hadamard sequences, namely that concatenations of modulated short sequences can be orthogonal to
longer sequences. Our coding techniques can be applied to a combined multi-code, variable spreading factor
scenario on the forward link, in which, for example, the coding might be applied across short sequences to
produce a very high rate transmission channel with low PAPR to one mobile user. This channel would still



be orthogonal to lower rate channels used to transmit to other users. The rates and PAPRs attainable in this
situation should be explored further.
In Example 5, we gave an instance of a `perfect' MC-CDMA code. Are there any more non-trivial codes

meeting our Hamming-style bound with equality?
We have seen that bent functions have ideal power properties in MC-CDMA transmissions. This underlines

the need to �nd new constructions for large numbers of bent functions and the problem of classifying all
bent functions. We ask: can the recursive construction of bent-based bent sequences in [1] be written in
terms of Boolean functions and made amenable to encoding? Can the recent constructions in [8] or the new
characterisations in [4], [5] be exploited for coding purposes?
The work in this paper also gives further motivation to the old problem of �nding the covering radius of

RM(1;m) for m odd: solving this and then constructing large numbers of words at the covering radius would
give codes with best possible PAPR. We have also seen that the problem of �nding a code with the same
parameters as the Kerdock code which consists entirely of bent functions has practical consequences. We have
yet to solve the important practical problem of �nding methods for selecting maximum rank forms from the
(m;h)-sets considered in Section V. There is also the problem of �nding more and better constructions for
large numbers of `approximately bent' functions.
Finally, we speculate on the similarity between the codes for MC-CDMA described here and the codes for

OFDM developed in [6], [7], [20], [22], [25]. In the binary case, the OFDM codes are also either implicitly
or explicitly constructed from cosets of RM(1;m). In both situations, an orthogonal transform is used to
transform data prior to transmission and the problem is to design codes which reduce the size of the transform
values. The Walsh-Hadamard transform used here is a discrete analogue of the Fourier transform inherent
in OFDM, so similar coding solutions might be expected. Indeed, in [7] it is shown that for m even, certain
cosets of RM(1;m) which consist of binary Golay complementary sequences and have PAPR at most 2 are bent
cosets. However the Reed-Muller code appears to arise for di�erent reasons in the two cases. For OFDM,
an explanation relating the particular Boolean functions yielding Golay complementary sequences and the
recursive constructions for those sequences was given in [25]. In MC-CDMA, the Reed-Muller code plays a
role because of the connection between rows of the Walsh-Hadamard matrix and the codewords of RM(1;m)
(though this link has a recursive proof). A detailed explanation of the double appearance of the Reed-Muller
codes may give greater insight into both practical and theoretical questions.
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