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ABSTRACT
Over the last few years, electronic auctions have become an
increasingly important aspect of e-commerce, both in the
business to business and business to consumer domains. As
a result of this, it is often possible to find many auctions
selling similar goods on the web. However, when an individ-
ual is attempting to purchase such a good, they will usually
bid in one, or a small number, of such auctions. This results
in two forms of inefficiency. Firstly, the individual may pay
more for the good than would be expected in an ideal mar-
ket. Secondly, some sellers may fail to make a sale that could
take place in an ideal market.

In this paper, we present an agent that is able to participate
in multiple auctions for a given good, placing bids appropri-
ately to secure the cheapest price. We present experiments
to show;

1. Current auction markets on the web are inefficient,
with trades taking place away from equilibrium price,
and not all benefit from trade being extracted.

2. Our agent is able to exploit these inefficiencies, result-
ing in it making higher profits than the simple strategy
of bidding in a small number of auctions.

3. As more participants use our agent, the market be-
comes more efficient. When all participants use the
agent, all trades take place close to equilibrium price,
and the market approaches ideal behaviour.

Keywords
Auctions. Electronic Commerce. Agents. Negotiation.

1. INTRODUCTION
As a result of the explosion in popularity of e-commerce
[8], more and more companies are providing virtual auction
sites. Because of this, if you want to purchase a particular
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good, there are often many auction sites that are offering
it. Furthermore, even a single site such as E-Bay may host
many auctions for similar goods. If you really want to get
the best price, you must monitor all of these auctions using
your web browser, and place bids appropriately. Care must
be taken to ensure you don’t make more than one purchase.
If there are a large number of auctions, this can be quite
a daunting task, requiring your undivided attention for a
period of time. Furthermore, if you wish to purchase more
than one item, (as is often the case in B2B trading,) it be-
comes almost impossible. Because of this, the majority of
auction participants focus on a single auction. The use of
automated bid technology on sites such as E-Bay encourages
this behaviour. A buyer enters a maximum purchase price
in a given auction, and the site automatically places bids
in that auction on their behalf, locking the participant into
that single auction.

This results in an inefficient market. In many cases, the
winner of an auction may have been able to get a better
price in a different auction, and the losers may have been
able to make a purchase elsewhere. In other cases, the seller
loses out. If there are few participants in a certain auction,
and they value the good at a low price, the good will sell for
below market value or may even fail to meet its reservation
price. This is despite the fact that losers of other auctions
for similar goods would be willing to pay more for it.

In this paper, we describe an agent able to participate in
multiple auctions on behalf of a trader, leading to optimal or
near-optimal purchase decisions being made. This agent ex-
ploits the inefficiencies of the market, locating the auctions
that are closing at the cheapest prices and purchasing from
there. Furthermore, we present experiments that assess the
impact of such an agent on the microeconomic properties of
the market. We show firstly that the trader using the agent
makes increased profits over the usual strategy of selecting
one auction. We also demonstrate that, as more participants
adopt the agent-based approach, the market becomes more
efficient. The paper is structured as follows. In Section 2,
we present the algorithm used by the automated agent to
participate in multiple auctions. In Section 3, we describe
experiments showing the effectiveness of the agent, and the
effect of the agent on the microeconomic dynamics of the
market made up of multiple auctions. In Section 4, we de-
scribe related work, and in Section 5, we present conclusions
and future work.
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2. THE AGENT ALGORITHM
The agent aims to purchase one or more identical goods
on behalf of its user. It can participate in many auctions
for this good, and coordinates bids across them to hold the
lowest bids. As auctions progress, and it is outbid, it may
bid in the same auction or choose to place a bid in a different
auction. The algorithm consists of two parts. Firstly, it has
a coordination component, which ensures it has the lowest
leading bids possible to purchase the appropriate number of
goods. Secondly, it has a belief-based learning and utility
analysis component to determine if it should deliberately
’lose’ an auction in the hope of doing better in another.

2.1 Definitions
An auction house may run one or more auctions for a given
good. Each auction ai offers n(ai) goods for sale. Auctions
are assumed to be English auctions in format, with bidders
placing bids at the price they are currently willing to pay
for the good. A bidder may place more than one bid in a
given auction. The n(ai) goods offered in the auction are
sold to the bidders making the n(ai) highest bids, for the
price they bid. In case of two equal bids, the item goes to
the earliest bidder. Hence the auction is discriminatory –
some buyers will pay more than others for the same good.
Different auctions impose different rules covering how a bid
may be entered or retracted. For the purposes of this paper,
we assume that a buyer may not retract a bid, and a buyer
may enter a bid provided it is at least a certain minimal
increment δ above the n(ai)th highest bid. See Wurman
et.al. [24] for a taxonomy of alternative design decisions in
auctions.

Our agent participates in many auctions selling similar goods,
spread out between many auction houses. It wishes to pur-
chase m goods in these auctions, and is given a valuation
of v on each good by its user. To do this, it monitors the
set of auctions currently progressing. For each auction ai, it
observes the n(i) highest bids. In other words, it observes
the values of the bids which, if the auction terminated im-
mediately, would result in a successful purchase. We refer to
these as the currently active bids. An active bid b1 is lower
in precedence than b2 if it is lower in value, or if it is the same
value but was submitted later. To represent the reservation
price r, we assume that the seller initially places n(i) bids
of value r − δ, where δ is the minimum bid increment.

2.2 The Coordination Algorithm
Let L be the number of currently active bids that are held
by our agent. (Initially, L will be zero.) To ensure it makes
m purchases, it needs to make new bids that result in it
having an additional (m − L) active bids. As we shall see,
this may require it to make more than (m − L) bids, as it
may need to outbid itself.

If the agent is to hold j additional active bids in auction ai,
it must place bids that beat the lowest j of the currently
active bids placed by competitors. We define the beatable-
j list for auction ai to be the ordered set of the lowest j
active competitor bids {bi

1, . . . , b
i
J} (where bi

J has highest
precedence), together with all active agent bids {bi

1, . . . , bi
K}

with precedence lower than bi
J . To beat the bids in this list,

the agent must place j + k bids of value bi
J + δ where δ

is the minimum bidding increment. The incremental cost

to the agent of placing these bids, if successful, above the
cost that it would have incurred in auction ai previously,
is j · bi

J + δ −
P

j bi
j . The beatable-0 list of any auction is

defined to be the empty set, and has incremental cost of
zero. Obviously, an auction for q goods has no beatable-j
lists for j > q.

The agent now constructs potential bid sets. A bid set is a
set of beatable-j lists that satisfies the following criteria;

1. The set contains exactly one beatable-j list from each
auction.

2. The beatable-j lists contain, in total, exactly (m− L)
bids made by parties other than our agent. (In other
words, the sum of all J = m− L)

In other words, each bid set represents one possible way of
placing bids to ensure that our agent will gain an additional
(m−L) active bids, and therefore will hold exactly m active
bids. We define the incremental cost of each of these bid
sets to be the sum of the incremental costs of the beatable-j
lists in it.

The agent must generate the bid set with the lowest incre-
mental cost. In addition, it must avoid generating bid sets
that contain a bid equal to or greater than its valuation of
the good, v. Various algorithms can be used to do this. We
have adopted a depth first strategy through the space of pos-
sible bid sets, pruning areas of the search space which are
higher cost than the best solution found so far. Full details
are presented in [14].

If there is more than one bid set with identically lowest cost,
the agent chooses one arbitrarily. If no such bid sets exist,
the agent relaxes condition 2 and finds the smallest i such
that at least one bid set exists which contains (m − L − i)
bids made by parties other than the agent. Given this i, the
agent chooses the bid set with the lowest incremental cost.
Having generated the bid set with the lowest cost, the agent
places bids in each auction. For each beatable-j list in the
bid set, the agent places j + k bids of value bi

J + δ in the
corresponding auction ai.

The agent continues to monitor the auction, and repeats
its analysis if other parties place new bids. In this way, the
agent ensures it maintains m active bids at the least possible
cost to itself, unless doing so requires it to place bids above
its valuation of the good. Providing all auctions terminate
simultaneously, this will result in it buying the goods at the
best price possible, given the competition in each auction.

2.3 Auctions Terminating at Different Times
Now, we consider the case where auctions terminate at dif-
ferent times. In such a situation, the algorithm above will
not necessarily behave optimally. Imagine a situation where
an auction starts every half-hour, and lasts for an hour. The
agent would always monitor two auctions, one that is nearer
closing than the other. Inevitably, bids will be higher in the
auction that is nearing completion. Hence the agent would
switch bidding to the newer auction, and withdraw from the
auction about to close. If this continued, the agent would
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never make a purchase, but would simply switch bids to a
new auction every half-hour.

The agent needs a mechanism for determining whether to
remain in an auction which is about to close, even when
there are other auctions with lower current bid prices. To
do this, it must be able to make a trade-off in terms of
expected value between the relative certainty of remaining
in an auction about to close, against the risk of participating
in a newer auction. The newer auction may result in a lower
purchase, or may result in a far higher purchase price above
the agent’s valuation of the good. In this section, we propose
a mechanism for doing this.

The mechanism we use combines simple learning with util-
ity theory. The agent uses learning to build a model of the
spread of valuations held by participants in different auction
houses. Then, based on its beliefs about these valuations,
it calculates the utility of likely participation in persisting
auctions, and compares this with the certain outcome in the
terminating auction. If the terminating auction has a higher
utility, it remains a participant and makes the purchase. If
the remaining auctions have higher expected utility, it with-
draws from the terminating auction and continues partici-
pation elsewhere.

2.3.1 The Learning Mechanism
The agent generates a model of the potential outcome of
auctions by creating a model of each auction house. For a
given auction house and a given type of good, it creates a
belief function B(x, q) representing the probability that x
bidders value the good with a valuation greater than q in a
given auction for that good. It builds up this function by
monitoring auctions for the good conducted by the auction
house. Various possible learning techniques can be used to
generate this function, and are discussed in [14]. The ex-
act choice will depend on the underlying dynamics of the
demand for the good under consideration.

Using this function, we can estimate the probability that a
bid of a certain value will be successful in an auction by a
given auction house. Consider an auction for n goods, in
which our agent wishes to purchase one. The probability
that a bid of q by our agent will be successful can be esti-
mated to be 1−B(n, q); i.e. 1 minus the probability that n
other bidders are prepared to outbid our agent.

There is a flaw in this model, which must be taken into ac-
count if it is to be successful. Unlike a Vickrey or Dutch
auction, an English auction reveals nothing about the val-
uations of successful bidders. In other words, if a bidder
makes a successful bid of x, we cannot be sure how much
higher they may have been willing to bid. To take account
of this, it is necessary to add some kind of heuristic weight-
ing to the belief function - we must increase the value of a
successful bid by a certain amount, to reflect this possible
willingness to bid higher. One possibility is to add a small
random amount to each successful bid. In some domains, it
may be possible to use econometric data to determine ac-
curately the range that this should be drawn over, while in
other domains it may be necessary to use a heuristic esti-
mate.

2.3.2 Utility analysis of leaving an auction
We now consider how this belief function can be used to
compare the expected payoff of an auction that is about to
terminate with the less certain outcome of other auctions
that terminate later. For the sake of clarity and brevity, we
present the technique assuming our agent wishes to purchase
a single good.

The expected payoff from the terminating auction is simple
to calculate. Assuming our agent is holding an active bid q,
or is able to place one at the last moment, then the payoff
will be (v− q). If the agent is unable to place a bid because
all active bids are beyond its valuation of the good, then
payoff will be zero and the agent is forced to participate in
other auctions.

The expected payoff of continuing to participate in the non-
terminating auctions is more complex to calculate. To do
this, we use the belief function to calculate the probability
our agent will be able to make a purchase at various pos-
sible bid prices. Recall that, for a given bid price q, the
probability our agent will make a successful bid in an auc-
tion run by a given auction house is 1−B(n, q), where n is
the number of goods being sold. Similarly, the probability
that our agent will be able to make a successful bid at a
lower price, q− 1, is 1−B(n, q− 1). Hence, the probability
that our agent will succeed with a bid of q and no lower
is B(n, q − 1) − B(n, q). The utility of this outcome will
be (v − q). Hence, we can calculate the expected utility of
participating in a given auction as;

vX
q=0

�
B(n, q − 1)−B(n, q)

�
(v − q) (1)

Of course, as the auction may already be in progress, it is
necessary to take into account the current active bids in that
auction. The general belief function B(x, q) for the auction
house is therefore adapted for this particular auction an to
give B(an, x, q). If the good being traded is a private value
good, and hence all buyers have valuations independent of
each other, this is defined as follows;

Let p be the value of the xth highest bid in auction an Then

B(an, x, q) =

8><>:
B(x, q)
B(x, p)

for all q ≥ p

1 for all q < p

Given an expected utility on the remaining auctions, the
agent must decide whether to place higher bids in the auc-
tion that is about to terminate, or withdraw from it. If we
assume that the agent is risk neutral, then it will be willing
to bid up to a value where the actual utility of the termi-
nating auction is the same as the highest expected utility
among the remaining auctions. In other words, it is pre-
pared to make a maximum bid bmax of;

bmax = v −
vX

q=0

�
B(n, q − 1)−B(n, q)

�
(v − q)

In this way, the agent is able to make informed decisions
about whether to continue bidding in an auction or to switch.
If it is making multiple purchases, it may purchase some in
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Figure 1: Supply and Demand

the terminating auction, and choose to switch others to con-
tinuing auctions. Extensions of the algorithm to handle this
case will be dealt with in a future paper.

3. EXPERIMENTAL ANALYSIS
We now present an analysis of the efficiency of the agents,
and their effect on the microeconomic properties of the mar-
ket.

3.1 Infrastructure
A custom written simulator was used for all experiments.
The simulator was written in Java, and ran entirely on one
machine. A separate thread handled each auction’s oper-
ation, and hence auctions operated asynchronously. In a
given auction, each trading period was divided into rounds,
in each of which there were two steps. In the first step the
auction house asked each participating agent for its choice
of bids, and accepted those bids that met the improvement
criterion, which was that a bid shall be at least 1 higher
than the current lowest bid. Duplicate bids are allowed,
with earliest posted being considered higher. In the second
step, all successful bids shouted in step 1 were broadcast to
all participating agents. A run of an experiment ended when
no auction received any new bids, at which point goods are
awarded to the highest bids, at the bid prices.

3.2 Experimental design
In each experiment there were 6 simultaneous auctions, with
reservation prices {10, 20, 30, 40, 50, 60}. Each auction had 5
goods available for sale. There were always 40 buyers, whose
reservation prices were 2 each of {35, 40, 45, 50, 55, 60, 65, 70}
and the rest with reservation price 30. Each buyer’s goal
was to buy 3 goods. The utility of a trade to the auction
was simply the trade price minus the auction’s reservation
price. The utility of a trade to the buyer was the buyer’s
reservation price minus the trade price, and buyers were
constrained to buy as many goods up to a maximum of 3,
provided the trade had positive utility.

The resulting supply and demand curves for the market are
shown in Figure 1.

The ascending supply curve shows that, as price increases,
more sellers are willing to sell. The descending demand
curve shows that, as prices increase, less buyers are will-
ing to buy. At the intersection point, the number of buyers
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Figure 2: Prices paid in a typical run

and sellers wishing to trade is equal. This is the equilib-
rium price, P0, and the quantity traded at this price is the
equilibrium quantity, Q0. In this particular setup, the equi-
librium price is 50, and the equilibrium quantity is 25. In
an ideal market, trade takes place at the equilibrium price,
and according to the first theorem of welfare economics, the
outcome is pareto optimal. (i.e. all gains from trade are
realised.)

The experimental economist Vernon Smith used two mea-
sures in his comparison of actual markets with the ideal
[20]. Allocative Efficiency is defined as the total actual
profit earned by all the traders divided by the maximum
total profit that could have been earned in an ideal market,
expressed as a percentage. This is a measure of how much
of the potential gain from trade has been realised within
the market. Smith’s Alpha, α, is a coefficient of conver-
gence which measures how close actual trade prices are to
the equilibrium. This is defined as α = 100s0/P0, where s0

is the standard deviation of trade prices around P0 rather
than around the mean price.

The simulation uses two types of bidding algorithm. We
represent human bidders with a simple automated strategy.
Before the auctions open, the buyer randomly chooses three
different auctions, and attempts to purchase one good from
each. It then bids against other bidders, up to its reserva-
tion price. Automated agents use the algorithm described
in Section 2. We present a series of experiments, exploring
the effect of adding agents to the market. Initially, we run
the market with no automated agents, and observe its effi-
ciency. We then allow one buyer to use the agent strategy,
and measure its utility gain in comparison with the nave
strategy, for different reservation prices. We then randomly
assign automated agents to 0, 1 5, 10, 20, 30 and 40 of the
buyers. In each case we observe the allocative efficiency and
Smith’s alpha, to identify how close to an ideal market the
behaviour is.

3.3 Results
Figure 2 plots the trading prices for the 6 auctions in a single
run with no automated agents. Note the spread of trade
prices, resulting in a high value of alpha (17.1). In auctions
2, 5 and 6, buyers have paid more than they would have in
an ideal market. In auction 4, the seller has failed to make
a sale, while in an ideal market, buyers would have been
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Table 1: Utility extracted with and without an agent
Number of other agents 0 9 19 29 39

No agent, r = 45 1.32 0.14 0 0 0
Agent, r = 45 1.44 0.08 0 0 0

No agent, r = 55 5.85 4.89 3.92 4.06 3.25
Agent, r = 55 9.94 5.52 4.67 4.36 4.13

No agent, r = 65 14.5 13.1 11.6 12.85 12.3
Agent, r = 65 20.0 15.8 14.6 14.4 14.2
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Figure 3: Smith’s alpha vs. number of automated
agents

willing to trade at this price. Hence allocative efficiency is
low (92%).

Table 1 shows the utility gain that can be made by a single
buyer adopting the agent approach. It compares the utility
gain for a buyer with different valuations, either using the
agent or not. The buyer competes against 39 other buyers,
with the leftmost column specifying how many of these use
the automated agent. The results are the average utility of
the agent over 20 or more runs, where the other agents are
randomly allocated to buyers. Looking at the first row, we
see that the agent based approach yields higher utility than
the standard strategy in all cases (Except in the case of 9
agents, with our agent having a reservation price of 45. We
believe this is a statistical blip.) In the case of traders with
reservation higher than the equilibrium price, the difference
is substantial. However, looking down each column, we see
that as more traders adopt the agent-based approach, the
utility gained by each decreases. When more than half the
community adopts the agent-based approach, each buyer
makes less profit than they did when the community as a
whole didn’t use agent technology.

Hence, we have an interesting phenomenon, analogous to a
multi-party form of the prisoner’s dilemma; It is individ-
ually rational for any one buyer to adopt the automated
agent, but this sets in motion a trend which is detrimental
to each individual buyer, and hence to the social welfare of
the community of buyers as a whole.

Figures 3 and 4 show how, as more automated agents are
added to the market, it becomes more efficient.

The curves are the average value of alpha and allocative
efficiency over 50 runs. It is interesting to observe that even

10 20 30 40
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Figure 4: Allocative Efficiency vs. number of auto-
mated agents
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Figure 5: Auction profits vs. number of autonomous
agents

a small number of agents can result in significant efficiency
improvements in the market. This is even more pronounced
if, rather than allocating agents randomly to buyers, the
agents are adopted by buyers with high valuations.

In light of the lower utility that can be extracted if all buyers
use an agent, one must ask where all the utility that this
higher efficiency corresponds to is going. The answer in the
case of English auctions such as the one we study, is to the
sellers, as Figure 5 shows.

It plots the average profit made by each auctioneer, as more
buyers adopt the agent. As can be seen, the average profit
increases as the market becomes more efficient. The sub-
marginal auctioneers (those with reservation prices higher
than equilibrium price) lose out, failing to trade at all. How-
ever, this is more than compensated for by the additional
profits made by the others. Hence, it is in the interests of
auctioneers (unless they are submarginal) to promote the
use of agents in their auction houses, as opposed to the sim-
ple automated bidding strategies offered currently.

4. RELATED WORK
Research into automated negotiation has long been an im-
portant part of distributed AI and multi-agent systems. Ini-
tially it focused primarily on negotiation in collaborative
problem solving, as a means towards improving coordina-
tion of multiple agents working together on a common task.
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Laasri, Lassri, Lander and Lesser [9] provide an overview of
the pioneering work in this area. As electronic commerce
became increasingly important, the work expanded to en-
compass situations with agents representing individuals or
businesses with potentially conflicting interests. The con-
tract net [19] provides an early architecture for the distri-
bution of contracts and subcontracts to suppliers. It uses a
form of distributed request-for-proposals. However, it does
not discuss algorithms for determining what price to ask in a
proposal. Jennings et.al. [7] use a more sophisticated nego-
tiation protocol to allow the subcontracting of aspects of a
business process to third parties. This is primarily treated as
a one-to-one negotiation problem, and various heuristic al-
gorithms for negotiation in this context are discussed in [3].
Vulkan and Jennings [21] recast the problem as a one-to-
many negotiation, and provide an appropriate negotiation
protocol to handle this. Other relevant work in one-to-one
negotiation includes the game-theoretic approach of [17] and
the logic-based argumentation approach of [12].

As much electronic commerce involves one-to-many or many-
to-many negotiation, the work in the agent community has
broadened to explore these cases too. The Michigan Auc-
tionBot [23] provides an automated auction house for ex-
perimentation with bidding algorithms. The Spanish Fish-
market [16] provides a sophisticated platform and problem
specifications for comparison of different bidding strategies
in a Dutch auction, where a variety of lots are offered se-
quentially. The Kasbah system [1] featured agents involved
in many-to-many negotiations to make purchases on behalf
of their users. However, the algorithm used by the agents
(a simple version of those in [3]) was more appropriate in
one-to-one negotiation, and so gave rise to some counter-
intuitive behaviours by the agents. [2] and [15] present adap-
tive agents able to effectively bid in many-to-many market-
places, and are the first examples of work which borrow
techniques from experimental economics to analyze the dy-
namics of agent-based systems. [13] demonstrates how these
can be used to produce a market mechanism with desirable
properties. Park et.al. [10, 11] present a stochastic-based
algorithm for use in the University of Michigan Digital Li-
brary, another many-to-many market.

Gjerstad et. al. [5] use a belief-based modeling approach
to generating appropriate bids in a double auction. Their
work is close in spirit to ours, in that it combines belief-
based learning of individual agents bidding strategies with
utility analysis. However, it is applied to a single double
auction marketplace, and does not allow agents to bid in a
variety of auctions. Vulkan et.al. [22] use a more sophisti-
cated learning mechanism that combines belief-based learn-
ing with reinforcement learning. Again, the context for this
is a single double auction marketplace. Unlike Gjerstad’s
approach, this focuses on learning the distribution of the
equilibrium price. Finally, the work of Garcia et.al. [4] is
clearly relevant. They consider the development of bidding
strategies in the context of the Spanish fishmarket tourna-
ment. Agents compete in a sequence of Dutch auctions, and
use a combination of utility modeling and fuzzy heuristics
to generate their bidding strategy. Their work focuses on
Dutch rather than English auctions, and on a sequence of
auctions run by a single auction house rather than parallel
auctions run by multiple auction houses. However, the in-

sights they have developed may be applicable in our domain
also. We hope to investigate this further in the future.

In this paper, we have shown how agents operating in mul-
tiple auctions can create a more efficient market. An alter-
native approach is to attempt to provide the right market
mechanism in the first place, providing a centralized point
of contact for all buyers and sellers to trade. Sandholm [18]
proposes a sophisticated marketplace able to handle combi-
natorial bidding, and able to provide guidance to buyers and
sellers as to which market mechanism to adopt for a partic-
ular negotiation. In the long term, as the different auction
houses merge or fold and only a few remain, this approach
will be ideal. In the short term, we expect improved market
dynamics will occur through autonomous agents in multiple
auctions.

It is interesting to contrast our analysis with that of Green-
wald and Kephart [6]. They demonstrate that the use of
dynamic price-setting agents by sellers, to adjust their price
in response to other sellers, can lead to an unstable mar-
ket with cyclical price wars occurring. We, however, show
that (in a very different context) the use of agents improves
the dynamics and stability of the market. From this, we can
conclude that agent technology is not a-priori ’good’ or ’bad’
for market dynamics, but that each potential role must be
studied to determine its appropriateness.

5. CONCLUSIONS AND FUTURE WORK
We have presented an agent able to participate simulta-
neously in multiple auctions, and explored its properties.
The experimental analysis has demonstrated that the agent
strategy outperforms the standard single auction strategy
significantly, and also leads to more efficient markets. How-
ever, as more participants adopt the agent-based approach,
the community of buyers lose out, and end up making less
profit than they made when no-one was using an agent. The
auctioneers (sellers) are the ones who benefit most from the
extra efficiency of the market. In this paper we have pre-
sented experiments using a single, specific supply/demand
graph. We intend to carry out further experiments with
different supply/demand curves, and mathematical analy-
sis, to determine if the sellers receive the additional surplus
in all circumstances, or if the buyers may find the use of
agents to be collectively as well as individually beneficial.
The experiments presented in this paper focus on auctions
which run in parallel, and hence the automated agent does
not need to make use of the utility mechanism to select be-
tween current and future auctions. Additional experiments
will be carried out, exploring the effect of staggering and
randomizing the auction start and end times, to explore the
effect of this on the market dynamics and the capabilities of
the agent to handle this. In addition, we plan to extend the
functionality of the agent. We will explore how effective dif-
ferent learning mechanisms are, and also adapt the agent to
be able to participate simultaneously in a variety of differ-
ent auction environments - eg Dutch, Vickrey, Continuous
Double Auction, etc.
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