

Entropy and Com ple xity

De vavrat Sh ah 1, Mayank Sh arm a2
Basic Res e arch Institute in th e M ath e m atical Scie n ce
H P Laboratorie s Bristol
H PL-BRIMS-2000-32
De ce m b e r 20th , 2000*

E-m ail: de vavrat@cs.stanford.edu, m sh arm a@standford.edu

inform ation
th e ory;
algorith m s

Com putational com ple xity of algorith m s for solving proble m s
h as be e n at th e h e art of th e ore tical com pute r scie n ce .
Traditionally, th e com putational cost of an algorith m is
e stim ated by "counting" ope rations com binatorially de pend ing
on th e algorith m . W e pre se n t a ve ry diffe re n t m e th od for
e stim ating cost of solving proble m , incorporating ide as from
inform ation th e ory. Algorith m s can b e vie w e d as "se arch "
procedure s on th e input (output) space . Th is naturally m ak e s
com putational cost of algorith m as function of "e n tropy" of
input (output) distribution . Th e re lation of com putational
com ple xity and "e n tropy" of distribution d epends on th e
particular "ope rations" used by algorith m to solve proble m .
Th is particular m apping b etw e e n com putational scale and
"e n tropy" scale is inde pend ent of proble m . W e d em onstrate th e
use of th is m e th od in classical "se arch ing" and "sorting"
proble m s. W e w ork out m any diffe re n t se arch ing and sorting
algorith m s' com ple xity using th is m e th od. In proce ss, w e also
com e up w ith n e w algorith m s to solve som e case s of se arch ing
and sorting th at are aw are of input distribution .

* Inte rnal Accession Date Only Approved for Exte rnal Publication
1 Com pute r Scie n ce D epartm e nt, Stanford Unive rsity, Stanford, CA
2 De partm e nt of Ele ctrical Engine ering, Stanford Unive rsity, Stanford, CA
 Copyrigh t H e w le tt-Pack ard Com pany 2001

Entropy and Complexity

Devavrat Shah

Computer Science Department,

Stanford University.

devavrat@cs.stanford.edu

Mayank Sharma

Department of Electrical Engineering,

Stanford University.

msharma@stanford.edu

Abstract

Computational complexity of algorithms for solving problems has been at the
heart of theoretical computer science. Traditionally, the computational cost of
an algorithm is estimated by \counting" operations combinatorially depending
on the algorithm. We present a very di�erent method for estimating cost of solv-
ing problem, incorporating ideas from information theory. Algorithms can be
viewed as \search" procedures on the input(output) space. This naturally makes
computational cost of algorithm as function of \entropy" of input(output) distri-
bution. The relation of computational complexity and \entropy" of distribution
depends on the particular \operations" used by algorithm to solve problem. This
particular mapping between computational scale and \entropy" scale is indepen-
dent of problem. We demonstrate the use of this method in classical \searching"
and \sorting" problems. We work out many di�erent searching and sorting al-
gorithms' complexity using this method. In process, we also come up with new
algorithms to solve some cases of searching and sorting that are aware of input
distribution.

1 Introduction

An algorithm takes some input, processes the input depending on the problem struc-

ture and �nds output corresponding to this input. Thus an algorithm can be viewed

as a function that takes input and maps it to output. Let us suppose that we can ac-

tually store the whole table of this function that captures the relation between inputs

and outputs in the memory. Even in such simpli�ed scenario, algorithm need to �nd

the positions corresponding to each input. Or equivalently, we need to �nd the \code"

corresponding to input that resembles to \address" in the table of (input,output). To

do so, an algorithm uses some operators depending on the problem structure as well

as knowledge of algorithm designer. For example, in case of sorting, \comparing two

elements" is an operation. From above it can be deduced that, the complexity of

problem is at least as much as \searching" for proper output for given input, using

available operations.

1

If distribution on input elements and hence on output elements is known, then it

can be incorporated in design of eÆcient algorithm. The distribution implies the

\uncertainty" in output generation. Operations of algorithm help in removing this

uncertainty by identifying subspace of the whole output space, incrementally. When

an algorithm gets over, the exact output is known. Hence there is no uncertainty left.

Generally uncertainty is measured by \entropy" of distribution. In that sense, algo-

rithm starts with entropy of input(output) distribution and ends with zero entropy.

So using the amount of entropy reduction obtained by operations used in algorithm,

it is possible to predict approximately how many times an operator needs to be used,

and hence predict approximate running time. Formally, let X be a random input, let

A be operator applied on it and let Y be the processed input by operator A. Since

operator is deterministic, to formulate it as a random variable, consider the \random"

action it will take, induced by the randomness of X. Hence, if we consider A as such

a \random" variable, then information of Y and A together can help us recovering

X. Hence,

H(Y;A) = H(X)

) H(Y) +H(AjY) = H(X)

) H(AjY) = H(X)�H(Y)

= Entropy Reduction

By property of H(), we know,

H(Y) +H(AjY) = H(A) +H(Y jA)

) H(AjY) = H(A) + (H(Y jA)�H(Y))

Hence, if Y is not dependent on A, then, we can say that, H(A) � H(AjY), and

hence entropy reduction is like H(A), the entropy reduction that an operator can

obtain. Further, if algorithm starts with distribution of entropy h bits, and if H(A)

is say amount of entropy operator can reduce, then, h=H(A) is the minimum number

of times operations needs to be performed in order to �nd the output.

Putting it together, we can get a sort of \bijection" between computational \time

scale" of algorithm and \entropy scale" of input(output) distribution. So if we can

estimate the entropy reduction of operators, we can get estimate of time complexity of

algorithm. Extending this further, by knowing upper bound on \entropy reduction"

of operators, we get lower bound on time complexity.

From above discussion, reader can realize that, searching is canonical case where the

method should be applicable. In the next section, this method is applied to analyze

searching algorithms. In the section 3, this method is extended for the case of sorting.

We �nally discuss further work and some directions.

2

2 Searching

By de�nition, the problem in searching is : given n elements one need to �nd an

element with particular property. Depending on property and available structure in

the collection of points, \search" can be performed quickly. Searching is canonical ex-

ample where distributional uncertainty or entropy of input query distribution should

determine the complexity of searching that particular point out of n points. We con-

sider searching under di�erent properties and see how known algorithms behave from

the point of view of removing distributional uncertainty.

2.1 Searching among ordered collection of points

Consider that, n ordered elements, 1; � � � ; n are given, and they are sorted in that

order. Say they are positive real numbers, a1 < : : : < an. As an input a query q,

some real number, is given. The task is to �nd out which element in these n elements

is nearest to query value q. So for example, let n = 4, and ordered numbers are (1.2,

2.3, 4.6, 9.1) and say q = 4:4, then output should be 3, since 4.6 is nearest in value

to q. Let us assume, for simplicity, that with almost zero probability q's value will be

\exactly" equal to one of the aks. Note that, here allowed operation is picking any of

n positions, and comparing it with query q.

Let us consider the distribution of input queries. Let pk = Pr(query's answer will be k).

Thus (pk)
n

k=1 gives out the whole distribution of the outputs that will be generated.

Hence the uncertainty in output generated, or, formally entropy of this discrete dis-

tribution is H(p) = �
P

n

k=1 pk ln pk. Even if we manage to code these numbers by

optimal coding schemes like hu�man coding, H(p) is lower bound on expected num-

ber of comparisons required for searching. To see the same thing other way, note that

operation of querying and comparing kth elements gives information whether q � ak
or q > ak. This will reduce the search space from n elements to k or n � k ele-

ments. The probability mass on left of kth element, including it, is
P

k

j=1 pj = lk, and

hence in the space of �rst k elements, now the probability of each element becomes

: pj=lk; 1 � j � k. Thus at the end of querying kth element, with probability lk, the

remaining entropy of distribution is :

�

kX
j=1

(pj=lk) ln(pj=lk)

= �(1=lk)

kX
j=1

pj ln pj � (ln lk=lk)(

kX
j=1

pj)

= �(1=lk)

kX
j=1

pj ln pj � (ln lk)

3

and with probability rk = (1� lk), the remaining entropy is :

�

nX
j=k+1

(pj=rk) ln(pj=rk)

= �(1=rk)

nX
j=k+1

pj ln pj � (ln rk=rk)(

nX
j=k+1

pj)

= �(1=rk)

kX
j=1

pj ln pj � (ln rk)

Thus expected remaining entropy is :

�

nX
j=1

pj ln pj � lk ln lk � rk ln rk

= H(p)� lk ln lk � (1� lk) ln(1� lk)

This shows that, the expected entropy reduction is

�lk ln lk � (1� lk) ln(1� lk)

which is maximized when lk = 1� lk = 1=2, and then its 1 bit. So if one can achieve

1 bit reduction every time given the distribution, then that is the optimal strategy

for searching using comparison. Also, since every operation reduces entropy only by

one bit at best, at least H(p) number of steps are required.

Suppose that, the distribution given is uniform, that is, all points are likely to be

output with probability 1=n. In that case, the entropy is lnn bits. The standard

algorithm for search is binary search : Every time, query the \midpoint" of the active

interval of elements and depending on answer, either makes left or right half as active

interval. Continue till interval size reduces to 1.

Note that, due to uniform distribution, this exactly gives entropy reduction of 1 bit

at every comparison, the maximum possible reduction. Hence, this is an optimal

algorithm for searching under uniform distribution.

In general, say any distribution p is given. In that case, what should be an optimal

algorithm ? In literature, this is known as problem of alphabetic coding. Known

algorithm for alphabetic coding, for example the one by yeung [8], achieves expected

time for search lesser or equal to H(p)+2. This is quite near to optimal search time of

H(p), that can possibly be achieved. Note that, under special cases when each of the

probability is power of 1=2, exact bounds are achieved by the very same algorithm.

From over above observations, we can suggest a simple greedy heuristic. Every time,

compare with the point in the interval, such that it divides the probability mass into

4

half or as near to half as possible in both sides. Equivalently, query the point by

which the entropy reduction is as near to 1 bit as possible. Note that, if sequence

of probabilities are such that this is always possible, then this heuristic matches the

optimal algorithm.

Next we look at another variation of searching, where di�erent search operations have

di�erent prices.

2.2 Searching with \priced" queries

Consider the model where quering di�erent elements have di�erent and let us suppose

input distribution is say uniform, and goal is to minimize the expected cost of the

algorithm. The issue here is minizing total expected cost under heterogeneous query-

cost model. One might be tempted to go for greedy algorithm that picks up the query

which has maximum entropy reduction per unit cost. But that is not the optimal

algorithm, as one can easily come up with counter example. To solve this optimally,

a dynamic programming algorithm running in O(n2) can be used. Let us denote,

C(i; : : : ; j) as optimal expected cost for searching an element that comes uniformly

from one of the fi; : : : ; jg elements with query-cost ck for querying kth element. Also

for notation, C(i; i) = 0. Then we can write, recursively,

C(i+1; : : : ; i+m) =
m

min
k=1

fci+k+(k=m)C(i+1; : : : ; i+k)+(1�k=m)C(i+k; : : : ;m)g

Instead of uniform if the probability distribution on querying were di�erent, and say,

p = (pk)
n

k=1 is the probability distribution. Let lk =
P

k

j=1 pj. Then we could re-write

the above recursive equation as,

C(i+ 1; : : : ; i+m) =
m

min
k=1

fci+k + lkC(i+ 1; : : : ; i+ k) + (1� lk)C(i+ k; : : : ;m)g

Note that, the probability distribution while computing, C(a; b); 1 � a � b � n,

gets normalized in order to make the probability on (a; b) adding up to 1. Note that,

C(1; : : : ; n) gives the minimum expected cost and �nding exactly the minimizer values

for each of the recursive stage, we get the complete tree of the queries to be made.

Note that, this evaluation requires �(n2) operations.

The interesting thing to note here is : optimal algorithm becomes of second order in

n, due to new dimension of price along with probability distribution.

2.3 Near Optimal search

In [7], Charikar et. al. present near-optimal algorithm. We can view that algorithm

as generalized version of greedy heuristic that tries to query point having maximum

entropy-reduction/cost. The algorithm presented by them assumes uniform distri-

bution on the available query points. We notice that, the same algorithm can be

5

extended with little change to case where any distribution over query points is possi-

ble. We present the description of the algorithm here.

Let r and c be some constant parameters. Let p = (pk)
n

k=1 be probability distribution

of q, the query point, with pk = Pr(q = kthpoint). Initially costs of query points are

grouped by considering all points with costs in [rj�1; rj] in group j, with rounded-cost

rj. The costs can be normalized so that minimum cost is 1. The algorithm maintains

a search interval I, which is the set of possible (contiguous) locations where q could lie,

and split I into three (contiguous) intervals L;M;R where the left and right intervals

L and R respectively dont not contain any element of (the current) group j and the

middle interval M , referred to as the e�ective interval, which begins and ends with

an element of group j. The algorithm maintains the property that I does not contain

any elements of groups j � 1 or lower. We repeatedly compare q with the group j

element that divides M such that, on either side the total probability mass of M is

divided closest to 1=2. Such comparisons are called regular comparisons and each such

comparison is guaranteed to halve the probability mass of the e�ective interval. This

certainly makes progress as long as the element q lies within the e�ective interval.

However, if q does not belong to the current group j, at some point q could fall

outside the e�ective interval for group j. In such a case, we do not want to spend too

much on querying group j elements. To handle this possibility, after every c regular

comparisons an extra check is performed with boundary of the e�ective interval. If

current search interval I does not contain anyelement from group j, we move to group

j + 1.

The above description is almost complete. Without formally stating the complete

algorithm, we go onto analysis of this algorithm and stating some facts about the

algorithm. Consider the following :

Claim 1 : Every regular comparison, reduces the probability mass of the e�ective interval

at least by half.

Claim 2 : Total number of comparisons done of cost order j, cj , is bounded above by

(1 + 1=c) ln(pj=pj+1) + c+ 2.

From this, we state the following lemma.

Lemma 1. For r; c, the competitive ratio of the algorithm is bounded above by, (1 +

1=c)r ln(1=p) + (c+ 2)r2=(r � 1), where p is say minimum nonzero probability of any

query point.

Proof. Let group m be the last group examined by the algorithm. Then the cost of

the algorithm is at most,

mX
j=0

rjcj �

mX
j=0

rj((1 + 1=c) ln(
nj

nj+1
+ c+ 2)

6

= (1 + 1=c)

mX
j=0

rj ln(
pj

pj+1
) + (c+ 2)

mX
j=0

rj

� (1 + 1=c)rm ln(1=p) + (c+ 2)
rm+1

r � 1

Where, p is the probability of the last signi�cant e�ective interval. The optimal proof

has to be of cost rm�1. Hence the competitive ratio of the algorithm is bounded above

by

(1 + (1=c))r ln(1=p) + (c+ 2)r2=(r � 1)

By choosing di�erent values of r and c we get di�erent competitive ratio and one can

optimize over that.

We now brie
y look at searching problem in general and identify possible relation

between time complexity and entropy of element to be searched.

2.4 Unordered Search

In general, there is no order available between elements among which we would like

to search. Let, p = (pk)
n

k=1 be probability distribution for output. For simplicity

assume that, query matches exactly to one of the n point's value. Since by comparing

with any of the n points, the information obtained is only regarding that point, the

entropy reduction is just the di�erence of entropy before and the entropy conditioned

on the information known after comparison. So if the distribution is uniform, then

expected entropy reducion will be (1=n)[k lnk � (k � 1) ln(k � 1)], at the kth stage,

that is, when the output point can be any of the k points, or equivalently, at the end

of (n� k) stages, the expected entropy is (k=n) ln k. This shows that, expected time

of searching is �(n) as known.

3 Sorting and Entropy

Sorting involves the following : As input n elements are given which are from com-

pletely ordered class in arbitrary order. Goal is to order them and output the ordered

list of these elements. This is equivalent to identifying the permutation of the origi-

nal order in which input was presented, and then putting elements into right position

once identi�cation is done. For example, (1.2 4.2 0.4 5.1) corresponds to permutation

(2 3 1 4), and sorting outputs (0.4 1.2 4.2 5.1).

We consider the algorithms for sorting that uses only : (a) comparison of two elements,

and (b) swapping them if required. In identi�cation of permutation, only comparison

is useful, so we only concetrate on comparison operation.

7

Let us represent input as permutation � for simplicity over n elements. Let us con-

sider, what information does comparison gives or what uncertainty does comparison

remove. Elements of positions i and j 6= i could be relatively of any order, that is,

either, element of position i could be greater or smaller compared to jth element. But

after comparision, this uncertainty is reduced since it is exactly known that what the

relative order is. Let � be probability that Pr(�(i) > �(j)) for the input distribution

over the permutation space. Then the uncertainty regarding these two positions is

H(�) = �� ln� � (1 � �) ln(1 � �). At the end of comparison it is lost and hence

reduction of uncertainty is H(�). The maximum amount can be 1 when � = 1=2.

This says that, if the input distribution over the space of permutations has entropy

H bits, then the expected number of comparisons are at least H to determine the

input. If input is n numbers long, then there are e�ectively n! possible permutations.

If all permutations are equally, then initially the uncertainty or entropy of space is

: lnn! bits. Hence, from above discussion, lnn! � n lnn(stirling), is lower bound on

the number of comparisons to be done, by any algorithm.

We use this formalization to actually analyze some of the known algorithms of sorting.

4 Entropy change for Sorting Algorithms

In this section, we analyze how the entropy changes in some of the known comparison

based sorting algortihms. Classical analysis of these algorithms can be found in [4].

4.1 Merge Sort

Merge Sort : Algorithm

� Divide the list exactly in the middle, creating two sublists.

� If list is of size � 2, trivially sort using a comparison

� If not, sort left list and right list recursively. After they are sorted, merge these

two sorting lists. This merging is done by just comparing heads of the \non-

merged" part of lists, and putting smaller (larger) element in the sorted list.

Note that, this take number of comparisons between [l; 2l], where l is size of the

two equal sublist.

Next, we would like to see how the entropy is reduced as the algorithm proceeds. We

assume, uniform distribution on input. Note that, the comparisons are done only

when the list size is either � 2 or when there is merging taking place. When list size

is � 2, the both elements of that particular position could have been equally likely in

any relative order. So by comparison of that kind, the entropy is certainly reduced by

1 bit. For comparisons done during merging, again, since two sorted sublists that are

8

merged, are completely \independent" in the sense that, elements from two di�erent

sublists are not compared before till they are merged. During merging, at every stage,

both elements are equally likely to have any relative order. Hence such comparisons

reduce entropy by 1 bit. Thus in merge-sort, all comparisons done, reduce the entropy

by 1 bit. So from discussion for comparison based sorting algorithms in previous

section, this is an optimal sorting algorithm. Since this algorithm exactly reduces 1

bit, it takes exactly, �(n lnn) comparisons irrespective to permutation.

4.2 Insertion sort

Insertion sort : Algorithm

� It sorts elements incrementally. At some stage, say �rst k elements of inputs

are relatively sorted. Now consider k + 1st element.

� Place the k + 1st element, in this sorted list of �rst k elements. This gives �rst

k + 1 elements sorted.

� Proceed till all n elements are sorted.

Note that, by stage k, �rst k elements are sorted with respect to each other. Under

uniform distribution on inputs, these �rst k elements are likely to have any of the

k! relative order equally likely. Thus by end of stage k, lnk! entropy is reduced.

At k + 1st stage, the k + 1 element is equally likely to be at any of the position

in sorted list of k elements. Thus the uncertainty of k + 1st element's position is

ln(k + 1). At the end of the insertion, it is reduced, and hence reduction at the end

of stage k + 1 is lnk! + ln(k + 1) = ln(k + 1)!. Note that, this involves, searching for

position of k+1st element in sorted list of k elements. As noted before, this involves

ln(k + 1) comparisons. But only �nding positions is not suÆcient since we have to

insert it at that position. Since this is done via linked list, on average it takes �(k)

comparisons. At the end of stage n, we get entropy reduced by lnn! and that involves

�(
P

n

k=1 k) = �(n2) comparisons.

4.3 Few Other

Before going to some more interesting case, we note that, using the similar arguments,

we can analyse other classically known algorithms like, bubble sort,heap-sort etc. In

interest of not making article boring, we skip their analysis here. We would like to

note that, analysis of these algorithms is not complicated.

4.4 Randomized Quick Sort

Randomized quick sort is a very interesting algorithm. Though worst case perfor-

mance of this algorithm is O(n2), with high probability it works well, that is perfor-

9

mance is O(n lnn). This is classically known and well studied [2] [1][3]. We analyze

randomized quick sort using our approach and get the same results for expected run-

ning time as in [3] and for concentration around mean as in [1] with little analysis;

which is much cleaner compared to classically known proof.

RandQS : Algorithm

� Choose a position i uniformly at random from all elements, say n. Let y be the

element at position i.

� Let L and S are two lists which are empty intially. Start comparing elements

starting from position 1 to n, in that order, with y. For any k, when it is

compared with y, if it is smaller than y, it is appended at the end of the S else

it is appended at the end of L.

� When all n are compared, sort the L and S recursively and merge them by

placing y in middle of L and S.

The element y chosen, call \pivot", is likely to be of relative order between f1; : : : ; ng

with equal probability 1=n. If y is, kth element then there are k � 1 elements in

S-list and n� k elements in L-list, and there is any relative order possible among the

elements of S and L. Thus if input is distributed uniformly over all permutations,

then initial entropy is : lnn!, while, after choosing kth element, the entropy left is

lnk!+ln(n�k)!. Thus entropy reduction is : lnn!� lnk!� ln(n�k)!, with probability

1=n. So expected probability reduction is :

Entropy Reduction =

nX
k=1

1

n
[lnn!� lnk!� ln(n� k)!]

=
1

n

nX
k=1

[n lnn� k lnk � (n� k) ln(n� k)]

=

nX
k=1

(k=n+ (n� k)=n) lnn� k=n lnk � (n� k)=n ln(n� k)

=

nX
k=1

[�(k=n) ln(k=n)� (1� k=n) ln(1� k=n)]

= nf

nX
k=1

1

n
[H(k=n)]g

� nf

Z 1

0

H(x)dxg

= n(1=2)

10

Hence the expected decrease in the entropy is n=2 bits. At the next stage, we have

two RandQS running, one on size k and other on size n � k. Hence the expected

reduction of entropy for that case is k=2 + (n� k)=2 = n=2. This stage is completely

independent of the previous stage. Thus, the expected entropy removed of every stage

is n=2 bits while the number of comparisons done is n. Since net entropy is n lnn, it

takes around 2 lnn stages, with each costing n comparisons. Hence we have expected

number of comparisons : 2n lnn.

Further, we can use the above formulation to prove that the cost of RandQS is

concentrated around 2n lnn. By Xj; j � 1, we denote the entropy reduced in stage

k, by RandQS. Let Sk =
P

k

j=1Xj . Let RandQS takes more than 2n lnn + cn,

comparisons. That is, it takes, c more stages compared to 2 lnn stages, or rather,

2 lnn + c stages end up removing entropy n lnn bits. Or putting it other way, say

some k = 2 lnn+ c, i.i.d. random varibles, add up to value which is cn=2 away from

their aggregate mean, say k�. We would like to �nd the probability of this event,

which can be written as :

Pr(jComparisons in RandQS� 2n lnnj � cn) = Pr(jSk � k�j � cn=2)

= Pr(j
1

k
Sk � �j � cn=2k)

These random variables are nice and well-behaved. So they have large deviation

rate function, say I(), which is convex, lower semicontious and it's fretchet-legendre

transform of the log-moment generating fuction of i.i.d. random variable, which have

mean � = n=2. Applying Cramer's theorem (see [6] for reference) for ~Sk
=

4 Sk=k (or

to get only upper bound for all n, use Cherno�'s bound), and we get,

Pr(j ~Sk � �j � cn=2k) � exp(�I(cn=2k)k)

= n�I(cn=2k);Since, k = O(lnn)

We dont compute rate function I() here, but it is easy to compute since we explicitly

know the distribution of random variable. The purpose of this is to show that, using

this method we can very simply show that RandQS has concentration in general,

(no conditions assumed !) as proved in [1]. We would like to note that, the known

proof of this fact [1], uses quite complicated argument involving bounded-martingale

inequality and other things.

5 Lower bound of Sorting Algorithms

In this section, we demonstrate how the lower bound of running time of algorithms

can be obtained using this method. In particular, we get non-trivial lower bounds for

p shell sort algorithms' running time using this method.

11

5.1 Lower bound on p-shell sort

We would like to note that, exactly same lower bound on running time of p�shell

sort algorithm are obtained by Jiang et. al. in [9] using ideas of incompressibility of

problem instance and kolmogorov complexity. We note that, the proof we will present

here turns out to be simpler and more intuitive.

We �rst describe p-shell sort algorithm.

p-Shell Sort : Algorithm

� Algorithm runs for p stages. At any stage t � p, n elements are divided into

disjoint `(t)
4

= dn=kte sublists, each of size kt, where, (kt)
p

t=1 are predetermined

parameter.

� Sort the `(t) sublists seperately using insertion sort on them, and replace the

sorted elements back into n positions.

� Do this for all stages one after other. The way algorithm selects parameters, at

the end of stage p, for any permutation, all elements are sorted.

For example, consider that size of input is 4. We consider 3�stage shell sort algorithm.

Let k1 = 2; k2 = 2; k3 = 2. Let permuation is (4 2 1 3). In �rst stage, we have, �rst

list contains �rst two elements (4 2) and second list (1 3). After sorting them, we get

(2 4 1 3). Next stage we have sublists : (2 1) (4 3). Then we get, (1 3 2 4). Finally

we have, (1 4) and (3 2), which yields completely sorted : (1 2 3 4).

Naturally question arises, what is the lower bound on the comparisons done by such

p�shell sort algorithm. This question was known since early 1960s, and there was no

non-trivial lower bound known till [9] by Jiang et. al. We will obtain similar bounds

using our method.

Let p stages have list lengths k1; � � � ; kp. At any stage, since it uses insertion sort

over every sublist, if sublist size is k, then �(k2) comparisons performed in expected

sense and entropy is decreased by, ln(k) � k lnk bits. Furthermore, insertion sort has

property that, if it reduces entropy by k ln c bits, for k sized input, then it must have

spent at least kc comparisons. Since at a stage, when the sublist size is k, there are

n=k such lists. The net entropy reduced is k lnk �n=k = n lnk and comparisons done

are n=k � k2 = nk, on average. So if k1; � � � ; kp are each stage's sublist lengths, then

the entropy reduction is :

Entropy Reduction of p stages = n(lnk1 + : : : + lnkp)

= n(ln(

pY
j=1

kj))

12

and the number of comparisons done on average,

Average Comparions = n(k1 + : : : + kp)

At the end of p stages, since all inputs are sorted, the entropy reduction should be

net entropy reduction of input, which is lnn! � n lnn. Hence we get,

n(ln(

pY
j=1

kj)) = n lnn

) (

pY
j=1

kj) = n

By well-known arithmetic-geometric inequality,

(

pX
j=1

kj) � p(

pY
j=1

kj)
1=p

) (

pX
j=1

kj) � p(n)1=p

) n(

pX
j=1

kj) � p(n)1+1=p

Hence, we conclude that,

Average Comparisons Required � pn1+1=p

Thus, we get lower bound of pn1+1=p for the number of comparisons done by p�shell

sort.

Note that, more careful reader might come up with question of using entropy reduction

of k lnk for a sublist at any stage, since at any subsequent stage, uniform distribution

wont be present. But as noted before, for insertion sort, if kc are operations done,

the maximum entropy removed is k ln c, and hence the lower bound, follows exactly

as above.

6 Distribution aware sorting algorithms

Till now, we considered that distribution is uniform for input over permutations. In

this section, we consider any general distribution. For such situation, we try to obtain

algorithms optimized with respect to given input distribution.

13

6.1 Quicker Quick Sort, given Information

In this section, we consider the \optimal" version of quick sort that will be aware of

input distribution.

Let us consider, what does quick sort do at each stage, and that will itself explain

how should it be in case of awareness of input distribution. At each stage, quick sort

picks up an element as a \pivot", which creates two sublist, one of smaller elements

and the other of larger elements. The choice of \pivot" governs how much of entropy

is reduced at the cost of those n comparisons. The optimal situation would be the

one where entropy reduction is maximized in expected sense at each step.

We can give the following optimal quick sort algorithm, optimized with respect to

expected number of comparisons made by algorithm given the input distribution.

The order in which algorithm should pick up \pivot" element of n unknown elements

can be determined by a dynamic programing type algorithm. Note that, once given

this order based on input distribution, its usual quick sort.

Let I be input distribution given on Sn, the permutation group. Let us denote

H(i; i + 1; �; jjI(i; : : : ; j)); i � j, the minimum number of expected comparisons re-

quired given input distribution I restricted to only relative permutations of elements

(i; � � � ; j). Let qij be probability that element at position i is jth element in rela-

tive order. (eg. in (213), element at position 1 is 2). Now denote Vi(1; � � � ; n) =P
n

j=1 qij[H(1; � � � ; j � 1jI(1; : : : ; j � 1)) +H(j + 1; � � � ; njI(j + 1; : : : ; n))]. This is ex-

pected number of comparisons other than n needed to be done if element at position i

is chosen. De�ne S�
4

= fk : Vk � Vj ; forj = 1; � � � ; ng. If jS�j > 1, pick any element of

S� uniformly at random and call this as i�, the optimizing choice. Note that, in unifor-

m distribution case, V1 = � � � = Vn, and hence either of them can be chosen uniformly

at random at that stage. This holds recursively for all permuations of (i; � � � ; j); i � j,

given input distribution, and hence this problem is particular instance of dynamic

programing, where at each stage, decision takes O(n) time and there are in all, O(n2)

quantities to be computed, hence its O(n2) algorithm. Once the sequence of selection

of dividor is done, its just execution of those sequences, which needs O(n2) storage.

The expected time complexity is determined by the minimum value : Vi�(1; � � � ; njI).

Thus this was optimal quick sort given input distribution.

6.2 General Optimal Sorting

In general, given input distribution, we would like to come up with comparison based

algorithm, without any extra constraints like quick sort, to do sorting optimally. We

note that, using similar idea of dynamic programing, one can derive the sequence-

tree of comparisons one should make, to achieve optimal expected comparisons given

input distribution. This dynamic program runs for O(n3) times, but it gets the

optimal sequence tree, using which we get the optimal expected running time, given

14

the input distribution. The amount of storage it requires is high though, but since

worry is time complexity, one can ignore that.

Before we end, we would like to note that, most of the algorithmic concepts can be

found in [5] with classical analysis of quite a few of the above presented algorithms.

7 Conclusion and Future-work

We presented a new method based on information theoretic ideas, to estimate com-

putational complexity of some problems. We demonstrated the power of the method

by showing its application to various searching-sorting problems. The method is very

simple and intuitive. In the process, we obtained some new algorithms for some class

of searching-sorting problems. The method described naturally gives rise to tech-

nique to obtain lower bound. In particular, we showed the use of this method to

obtain lower bound for p�shell sort algorithm. We strongly believe that, this method

can be applied to more general class of problems to estimate the time complexity of

algorithms.

Furthermore, if some entropy is left in output distribution, then it indicates that,

any randomly chosen answer from this remaining output space will give some sort

of approximation to exact answer. Hence, this method can be extended for studying

the tradeo� between running time and approximation of solution. It is easy to see

how this approximation method can be used for cases of searching/sorting. It will be

interesting to apply it for some other cases.

Acknowledgement

We acknowledge Balaji Prabhakar and Neil O'Connell for their very useful discussion,

guidance and suggestions.

References

[1] C. McDiarmid and R. Hayward. Strong Concentration for Quicksort. In Proceedings of
The Symposium of Discrete Algorithms, 1992.

[2] R. Motwani and P. Raghavan. Randomized Algorithms. Chapter 1, pp 4-6, Cambridge
University Press ,1995.

[3] P. Hennequin. Combinatorial analysis of quicksort algorithm. Theoretical Informatics

and Applications, 23(3), pp 317-333 ,1989.

[4] D. Knuth. Sorting and Searching, Vol 3, The Art of Computer Programming. Addison-
Wesley, 1973, revised, 1996.

15

[5] T. H. Cormen, C. E. Leiserson and R. L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge.

[6] A. Dembo and O. Zeitouni. Large Deviations Techinques and Applications. Springer-
Verlag,1998.

[7] M. Charikar, R. Fagin, V. Guruswami, J. Kleinberg, P. Raghavan and A. Sahai. Query
Strategies for Priced Information. In Proceedings of the 32nd Annual ACM Symposium
on Theory of Computing (2000).

[8] R. W. Yeung. Alphabetic Codes Revisited. IEEE Transactions on Information Theory,
1991.

[9] Tao Jiang, Ming Li and Paul Vitanyi. The average-case complexity of Shellsort. In
Proceedings of ICALP, 1999.

16

