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1 Introduction

Burke's theorem says that if the arrival process to a �=M=1 queue is Poisson

with rate less than the service rate, then the departure process in equilibrium

is also Poisson with the same rate. In other words, a Poisson process of rate �

is a �xed point of the �=M=1 queue with service rate 1, for every � < 1. It has

recently been shown [14] that a similar result holds for single-server queues

with a general service time distribution: non-trivial stationary ergodic �xed

points do exist. However, little is known about the properties of �xed points.

In this paper we consider the �xed point question at the large deviations

scaling. Assuming the service process satis�es a sample path large deviation

principle, we identify a class of arrival processes whose sample path large

deviations behaviour is preserved by the queue, and conjecture that �xed

points belong to this class. The invariant rate function corresponding to

a given arrival rate is given by a kind of exponential tilting of the service

distribution. This suggests that, in some sense, the �xed point is as similar

in relative entropy to the service process as it can be, subject to its rate

constraint. To make sense of this interpretation, however, raises more ques-

tions and seems to be an interesting topic for future research. For example,

is the �xed point a Gibbs measure?

For completeness, we also present some results on the existence and at-

tractiveness of �xed points for discrete-time queues. We show that the

continuous-time results of [14] and [15] can be reproduced in discrete time

with minor modi�cations.

The results in this paper are derived in the context of a discrete time

queueing model which we now describe. The queue has arrival process

fAn; n 2 Zg, where An denotes the amount of work arriving in the nth

time slot. The service process is denoted by fSng, where Sn denotes the

maximum amount of work that can be completed in the nth time slot. The

arrival and service processes are assumed to be stationary and ergodic se-
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quences of positive real random variables. The workload process, fWng,

is described by Lindley's recursion: Wn+1 = maxfWn + An � Sn; 0g. The

amount of work departing in time slot n is given by

Dn = An +Wn �Wn+1 = minfWn +An; Sng: (1)

If An and Sn are integer-valued for all n, then Wn can be thought of as the

number of customers in the queue at time n.

In the next section we will present the relevant large deviation results from

[17] and [8], and identify a class of rate functions which are preserved by

the queueing operator. In sections 3 and 4, we present some results on the

existence and attractiveness of �xed points.

2 Invariant rate functions for the single server queue

Let X be a Hausdor� topological space with Borel �-algebra B, and let Xn

be a sequence of random variables taking values in X . A rate function is a

non-negative lower semicontinuous function on X . We say that the sequence

Xn satis�es the large deviation principle (LDP) with rate function I, if for

all B 2 B,

� inf
x2BÆ

I(x) � lim inf
n

1

n
logP (Xn 2 B) � lim sup

n

1

n
logP (Xn 2 B) � � inf

x2 �B
I(x):

Here BÆ and �B denote the interior and closure of B, respectively. A large

deviation rate function is good if it has compact level sets.

Let ~Sn denote the polygonal approximation to the scaled service process,

de�ned for t � 0 by:

~Sn(t) = Ŝn(t) + (nt� bntc)

�
Ŝn

�
bntc+ 1

n

�
� Ŝn

�
bntc

n

��
;

where

Ŝn(t) =
1

n

bntcX
k=1

Sk:
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Given an arrival process An, we de�ne ~An(t) analogously. Let C(R+) denote

the space of continuous functions on the positive real line and AC(R+) the

subset of absolutely continuous functions. We now record some hypotheses.

Assumptions:

1. The sequences fAng and fSng are stationary and ergodic, and inde-

pendent of each other. The limiting cumulant generating functions,

�A(�) = lim
n!1

1

n
logE exp �(A1 + : : :+An);

�S(�) = lim
n!1

1

n
logE exp �(S1 + : : : + Sn);

exist as extended real numbers for all � 2 R, are di�erentiable at the

origin and lower semicontinuous.

2. The sequences ~An and ~Sn both satisfy the LDP in C(R+) equipped with

the topology of uniform convergence on compacts, with respective rate

functions IA and IS given by:

IA(�) =

( R1
0 IA( _�(t))dt; if � 2 AC(R+);

+1; otherwise,

where

IA(x) = sup
�2R

f�x� �A(�)g

is the convex dual of �A; IS and IS are described similarly in terms

of �S .

3. The stability condition �0
A(0) < �0

S(0) holds.

4. IA(x) � IS(x) for all x � �0
A(0).

It has been shown by a number of authors under di�erent levels of generality

(see, for example, [2, 5, 6, 10]) that the tail of the workload distribution in

equilibrium satis�es

lim
b!1

1

b
logP (W > b) = �Æ; (2)
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where

Æ = inf
T>0

TIW (1=T ) (3)

and, for w > 0,

IW (w) = inf
a�w

�
IA(a) + IS(a� w)

�
: (4)

In order for the workload to build up at rate w over a long period of time,

arrivals over this period must occur at some rate a exceeding the service

rate by w; the most likely way for this to happen is found by minimizing the

expression in (4) over all possible choices of a. Large workloads occur by

the queue building up at rate 1=T over a period of (scaled) length T , chosen

optimally according to (3). The decay rate Æ has the following alternative

characterization:

Æ = supf� : �A(�) + �S(��) � 0g: (5)

Let ~Dn(t) denote the scaled departure process, de�ned analogous to ~An(t)

and ~Sn(t), and let ~Wn(t) = W (bntc)=n denote the scaled workload at time

bntc.

Theorem 1 [17, Theorem 3.3] Under assumptions 1-3, the sample mean

~Dn(1) = Dn=n of the equilibrium departure process satis�es an LDP in R

with rate function ID given by

ID(z) = inf

(
Æq + �1

h
IA

�z1 � q

�1

�
+ IS

� z1
�1

�i
+ �2

h
IA

� z2
�2

�
+ IS(c2)

i

+�IA

�z � z1 � z2
�

�
+ (1� �1 � �2)IS

� z � z1 � z2
1� �1 � �2

�)
; (6)

subject to the constraints that

q; z1; z2; �1; �2; c2; � � 0; �1 + �2 + � � 1; �2c2 � z2; z � z1 � z2 � 0: (7)
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The interpretation is as follows. Let q; z1; z2; �1; �2; c2; � achieve the in�mum

above subject to the constraints. The most likely path resulting in depar-

tures at rate z in equilibrium is the following. The system starts with an

initial queue size q at time 0. Then, in the �rst phase of length �1, arrivals

occur at rate (z1 � q)=�1 and services at rate z1=�1, so that at the end of

this period the queue is empty and z1 customers have departed. In the next

phase, of length �2, customers arrive at rate z2=�2, which is no more than

the available service rate c2 during this period; hence the queue remains

empty and an additional z2 customers depart. The available service rate

during the �nal phase of length 1��1��2 is (z�z1�z2)=(1��1��2). The

arrival rate is (z � z1 � z2)=� during the initial � units of this phase, and is

the mean arrival rate for the remainder, of length 1� �1 � �2 � � . Clearly,

only z � z1 � z2 customers can depart during this �nal phase, bringing the

total departures to z. The reason that the optimal path can have at most

three phases has to do with the convexity of IA and IS . This implies that

the arrival and service rates must be constant from when the queue is �rst

empty until the time that it is last empty during the scaled time interval

[0; 1]. Likewise the arrival and service rates must be constant from the start

until the time the queue is �rst empty, and from the time the queue is last

empty until the end of the time period. This interpretation helps us to write

down the joint rate function for the sample mean of the scaled departure

process during [0; 1] and the scaled workload in queue at time 1. We also

note that arrival and service rates must be constant through the �rst two

phases; if not, `straightening' by replacing the paths of the arrival and ser-

vice processes over the �rst two phases with straight lines at the respective

mean rates leaves the total departures unchanged but reduces the objective

function in (6). Likewise, the arrival rate must be constant throughout the

�nal phase. Thus, we can modify Theorem 1 as follows.

Under assumptions 1-3, the sample mean ~Dn(1) of the equilibrium departure

process over the period (0; n) and the scaled workload ~Wn(1) at time n
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jointly satisfy an LDP in R2 with rate function ID;W given by

ID;W (z; w) = minf inf
q2C1

f1(q); inf
x2C2

f2(x)g; (8)

where x = (q; z1; z2; �),

f1(q) = Æq + IA(z + w � q) + IS(z); C1 = fq : 0 � q � z + wg;

f2(x) = Æq + �
h
IA
�z1 � q

�

�
+ IS

�z2
�

�i
+

(1� �)
h
IA
�z + w � z1

1� �

�
+ IS

�z � z1
1� �

�i
;

C2 = fx : 0 � q � z1 � z; z2 � z1; � 2 [0; 1]g: (9)

We omit a detailed derivation of this result for brevity. The intuition behind

it is that the most likely path leading to ~Dn(1) = z and ~Wn(1) = w can only

be of one of the following two types. In the �rst case, we have an initial

workload nq at time 0, arrivals at constant rate z + w � q and constant

service capacity z over the entire period [0; n]. The queue never empties on

[0; n] and no service capacity is wasted. In the second scenario, the optimal

path has two distinct phases. The �rst phase begins at time 0 with workload

nq. The arrival rate is (z1 � q)=� and the service capacity is z2=� during

this phase, which runs until time �n. Moreover, z1 � z2, and so the queue

is empty at the end of the �rst phase. During the second phase, which

runs over [�n; n], the arrival rate is (z +w� z1)=(1� �), the service rate is

(z � z1)=(1 � �) and the queue is never empty. The optimization problem

in (8), (9) corresponds to determining the most likely path within these

scenarios.

It was shown in [8] that, if assumption 4 is violated, then the rate function

governing the sample path LDP for the scaled departure process in equilib-

rium, ~Dn (de�ned analogous to ~An; ~Sn), is not convex; in particular, there is

no convex function I(�) such that ID(�) =
R
I( _�)(t)dt for � 2 AC(R+). As-

sumption 4 guarantees that ID is convex and that, conditional on ~Dn(1) = d,

P (supt2[0;1] j ~Dn(t) � dtj > �) ! 0 as n ! 1 for every � > 0. This `linear

geodesic property' is still not suÆcient to guarantee that the rate function
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ID(�) =
R
I( _�)(t)dt for all � 2 AC(R+). The main result of this section is

that, given a service process which satis�es assumptions 1 and 2, we can �nd

an arrival process such that assumptions 1-4 are satis�ed, and such that the

departure process satis�es the sample path LDP with rate function ID = IA.

For this arrival process, we also show that a large deviations version of quasi-

reversibility holds: the joint rate function for ~Dn([0; 1]); ~Wn(1) is the sum

of the individual rate functions for ~Dn([0; 1]) and ~Wn(1) respectively. We

state the result following some de�nitions.

Let f : R ! R [1 be a convex function. The e�ective domain of f , which

we denote by dom f , is the set fx 2 R : f(x) < 1g. For x 2 dom f , the

subdi�erential of f at x, denoted subdi� f(x), is the set

f� 2 R : f(y) � f(x) + �(y � x) 8 y 2 Rg :

It is convenient to work in a topology which is �ner than the topology of

uniform convergence on compacts. Set

Y =

�
� 2 C(R+) : lim

t!1

�(t)

1 + t
exists;

�

and equip Y with the norm

k�ku = sup
t

���� �(t)1 + t

���� :
Theorem 2 Suppose the service process fSn; n 2 Zg satis�es assumptions

1 and 2, and assume without loss of generality that the mean service rate

E[S1] = �0
S(0) = 1. Let � 2 (0; 1) be in the interior of the e�ective domain

of IS. De�ne

� = inffsubdi� IS(�)g: (10)

If the arrival process fAn; n 2 Zg satis�es assumptions 1 and 2 and

IA(x) = IS(x)� IS(�)� �(x� �); (11)
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then assumptions 3 and 4 hold as well, and the departure process ~Dn satis�es

the LDP in Y with good convex rate function ID � IA. In addition, for any

t > 0, ( ~Dn([0; t]); ~Wn(t)) jointly satisfy the LDP in C([0; t]) � R with good

convex rate function

ID;W (�;w) =

( R t
0 IA(

_�(s))ds + Æw; if � 2 AC([0; t]);

+1; otherwise,

Note that � exists and is �nite by the convexity of IS and the assumption

that � is in the interior of dom IS . Since �S is di�erentiable at the origin,

with �0
S(0) = E[S1] = 1 by assumption, we have IS(1) = 0 and IS(x) > 0

for all x 6= 1 (see [4]). Consequently, by the convexity and non-negativity of

IS , IS is decreasing on (�1; 1) and increasing on (1;1). Since � 2 (0; 1),

it follows that � < 0. Finally, it is not hard to verify from the de�nition

that the subdi�erential is a closed set. So, by(10), � 2 subdi� IS(�).

We now verify that IA de�ned by (11) is a rate function and that it is

convex. We have, by de�nition of the subdi�erential and the fact that

� 2 subdi� IS(�), that

IS(x) � IS(�) + �(x� �) 8 x 2 R;

Hence, by (11), IA(x) � 0 for all x 2 R. It is also clear from (11) that IA

inherits lower semicontinuity and convexity from IS , and that IA(�) = 0.

Therefore, IA is a convex rate function.

A continuous time queue is called quasi-reversible if, in stationarity, the

state of the queue at any time t, the departure process before time t and the

arrival process after time t are mutually independent (the state is the same

as the queue length if service times are exponential but is more complex in

general). It then follows that the arrival and departure processes are Poisson.

The joint distribution in a network of quasi-reversible queues is product-

form, which makes them analytically tractable and has contributed to the

popularity of quasi-reversible queueing models in performance analysis. A

more detailed discussion of quasi-reversibility can be found in [12, 16, 19].
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In Theorem 2, we show that a large deviations analogue of this property,

which we shall refer to as LD quasi-reversibility, holds for a general dis-

crete time queue whose input has the invariant rate function given by (11).

Speci�cally, the past of the departure process is independent of the current

workload on a large deviations scale, in the sense that the joint rate func-

tion for the past departures and the current workload is the sum of their

individual rate functions. We have from the de�nition of IA; IS that the

joint rate function for ( ~An((�1; t]); ~Sn((�1; t]); ~An(t;1) decomposes into

a sum of their individual rate functions. Since the workload at t and the

departures up to time t depend only on the arrivals and services up to time

t, we see that in fact the past departures, the current workload, and the

future arrivals are mutually independent on the large deviation scale, in the

sense described above.

The proof of Theorem 2 proceeds through a sequence of lemmas.

Lemma 1 Let fAng, fSng satisfy the assumptions of Theorem 2, with IA

given by (10) and (11). Then, for Æ de�ned by (5), Æ = ��.

Proof : Since IA and �A are convex duals, as are IS and �S , we obtain using

(11) that

�A(�) = sup
x2R

[�x� IA(x)] = sup
x2R

[(� + �)x� IS(x) + IS(�)� ��]

= �S(� + �) + IS(�)� ��; (12)

and so

�A(��) + �S(�) = �S(0) + IS(�)� ��+�S(�): (13)

We have from (10) and the de�nition of subdi�erentials that IS(x) � IS(�)+

�(x� �) for all x 2 R. Hence,

�S(�) = sup
x2R

[�x� IS(x)] = ��� IS(�): (14)
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Combining this with the fact that �S(0) = 0, we get from (13) that �A(��)+

�S(�) = 0, so that, by (5), Æ � ��.

We have shown that f(�) := �A(�) + �S(��) = 0 at � = �� > 0. Now

f is convex and f(0) = 0 since �A(0) = �S(0) = 0. Moreover, f 0(0) =

�0
A(0) � �0

S(0) < 0 by assumption 3, so f isn't identically zero on [0;��].

Hence, 0 and �� are the only zeros of f and f(�) > 0 for all � > ��. It

follows from (5) that Æ � ��. Combining this with the reverse inequality

obtained earlier completes the proof of the lemma.

Lemma 2 Suppose fAng, fSng satisfy the assumptions of Theorem 2, with

IA given by (10) and (11). Let z; w � 0 be given. Then,

f1(q) � IA(z) + Æw and f2(x) � IA(z) + Æw

for any q 2 C1 and any x 2 C2.

Proof : For any q 2 [0; z + w], we have by (11) and Lemma 1 that

f1(q) = Æq + IA(z + w � q) + IS(z)

= Æw + IS(z + w � q) + IA(z) � Æw + IA(z); (15)

where the inequality is seen to follow from the non-negativity of IS(�).

Next, let x = (q; z1; z2; �) achieve the in�mum of f2 over C2. The in�mum

is attained at some x 2 C2 because f2 is convex and lower semicontinuous

with compact level sets (it inherits these properties from the rate functions

IA, IS), and C2 is closed. We shall show that f2(x) � I(z) + Æw.

We see from the de�nition of C2 that z2 � z1. If z2 = z1, we obtain from

the de�nition of f2 in (9) and the convexity of IA and IS that

f2(x) � Æq + IA(z + w � q) + IS(z);

and so, by (15), f2(x) � IA(z) + Æw.
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On the other hand, if z2 > z1, then the constraint on z2 in the de�nition of

C2 is slack, so f2 must attain an unconstrained minimum with respect to z2,

i.e., z2=� is a local minimizer of IS(�). Since IS(x) is convex and achieves

its minimum value of zero uniquely at x = 1, we have z2=� = 1. We also

note that IS is non-increasing on (�1; 1] and so

IS
�z1 � q

�

�
� IS

�z1
�

�
;

since z1 < z2 and q � 0. Hence, by (11) and Lemma 1,

IA
�z1 � q

�

�
� IA

�z1
�

�
= IS

�z1 � q

�

�
� IS

�z1
�

�
� Æ

q

�
� �Æ

q

�
: (16)

We obtain from (9,16) and the equality IS(z2=�) = IS(1) = 0, that

f2(x) � �IA
�z1
�

�
+ (1� �)

h
IA
�z + w � z1

1� �

�
+ IS

�z � z1
1� �

�i
: (17)

Using (11) and Lemma 1 again, we see that

IA
�z + w � z1

1� �

�
+ IS

�z � z1
1� �

�
= IS

�z + w � z1
1� �

�
+ IA

�z � z1
1� �

�
+ Æw:

Substituting this in (17) and noting that

�IA(z1=�) + (1� �)IA((z � z1)=(1� �)) � IA(z)

by the convexity of IA, we get

f2(x) � IA(z) + Æw:

Since x minimizes f2 over C2 by assumption, the above inequality also holds

for any y 2 C2. This completes the proof of the lemma.

Lemma 3 Let w; z � 0 be given. If z + w � 1, then the in�mum in (8) is

achieved by f1 at q� = z + w � 1, whereas, if z + w � 1, then the in�mum

in (8) is achieved by f2 at

x� = (q; z1; z2; �) =
�
0;
z(1� w � z)

1� z
;
1� w � z

1� z
;
1� w � z

1� z

�
:

In either case, the minimum value, ID;W (z; w), is IA(z) + Æw.
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Proof : We have from (15) that

f1(q
�) = Æw + IS(z + w � q�) + IA(z) = Æw + IA(z);

since IS(z + w � q�) = IS(1) = 0.

Using the de�nition of f2 in (9), we obtain after some simpli�cation that

f2(x
�) =

1� w � z

1� z
[IA(z) + IS(1)] +

w

1� z
[IA(1) + IS(z)] : (18)

Now IS(1) = 0 and we obtain from (11) and Lemma 1 that

IA(1) + IS(z) = IA(z) + IS(1) + Æ(1 � z) = IA(z) + Æ(1 � z):

Thus, we have from (18) that f2(x
�) = Æw + IA(z).

It can readily be veri�ed that q� 2 C1 and x� 2 C2. The optimality of q�

and x� is now immediate from the lower bounds on f1 and f2 obtained in

Lemma 2 above. This establishes the claim of the lemma.

Lemma 3 establishes an LD quasi-reversibility property: the joint rate func-

tion for the mean departure rate on (0; n) and the workload at time n is

the sum of the corresponding individual rate functions. In other words, the

queue is approximately in equilibrium at time n (the rate function for the

workload is the same as the equilibrium rate function) irrespective of the

mean rate of departures on (0; n). This property turns out to be crucial to

the proof of Lemma 4 below and thereby to the proof of Theorem 2.

Lemma 4 For any k 2 N and 0 = t0 < t1 < : : : < tk, the random vector

( ~Dn(t1); : : : ; ~Dn(tk); ~Wn(tk)) satis�es the LDP in Rk+1 with rate function

IkD;W (z1; : : : ; zk; w) =

kX
i=1

(ti � ti�1)IA
�zi � zi�1

ti � ti�1

�
+ Æw:

Proof : The proof is by induction on k. The basis k = 1 was established in

Lemma 3 for t1 = 1, but can easily be extended to arbitrary t1 > 0 by simply
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rescaling the most likely path leading to the event ~Dn(1) = z, ~Wn(1) = w,

which was identi�ed in Lemma 3.

Assume the claim of the lemma holds for k � 1. Fix � > 0 and let Ek(w)

denote the event

Ek(w) = fj ~Dn(ti)� zij < �; i = 1; : : : ; k; j ~Wn(tk)� wj < �g;

where the dependence of Ek(w) on n, � and (ti; zi), i = 1; : : : ; k is suppressed

in the notation. For notational simplicity, we shall write a � b for ja�bj < �.

We have

P(Ek(w)) � P(Ek�1(q))�P
�
~Dn(tk) � zk; ~Wn(tk) � w

�� Ek�1(q)
�

(19)

for all q � 0. By the induction hypothesis,

lim
n!1

1

n
logP(Ek�1(q)) = �

k�1X
i=1

(ti � ti�1)IA
�zi � zi�1

ti � ti�1

�
+ Æq +O(�): (20)

Now, conditional on Ek�1(q), ~Dn(tk) and ~Wn(tk) depend only on the arrival

and service processes on [tk�1; tk] and on q, tk�1 and zk�1. Consequently, it

is clear from the form of the rate functions IA and ID in assumption 2 that

the joint rate function of ( ~Dn(tk); ~Wn(tk)) conditional on Ek�1(q) depends

on the past up to tk�1 only through q, tk�1 and zk�1. Therefore, we have

from (19) and (20) that

lim inf
n!1

1

n
logP(Ek(w)) � �

k�1X
i=1

(ti � ti�1)IA
�zi � zi�1

ti � ti�1

�
+O(�)�

inf
q�0

h
Æq � lim inf

n!1

1

n
logP(Fkj ~Wn(tk�1) = q)

i
;

where Fk denotes the event ~Dn(tk)� ~Dn(tk�1) � zk�zk�1; ~Wn(tk) � w. We

recognize the in�mum over q � 0 above as the limit of the scaled logarithm

of the probability that ~Dn(tk)� ~Dn(tk�1) � zk� zk�1 and that ~Wn(tk) � w

given that the queue is in equilibrium at time tk�1. Thus, by the induction
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hypothesis, the in�mum is simply (tk�tk�1)ID;W ((zk�zk�1)=(tk�tk�1); w),

for ID;W given by (8), and we obtain using Lemma 3 that

lim
�!0

lim inf
n!1

1

n
logP(Ek(w)) � �

kX
i=1

(ti � ti�1)IA
�zi � zi�1

ti � ti�1

�
� Æw

= �IkD;W (z1; : : : ; zk; w): (21)

The corresponding upper bound can be obtained using the principle of the

largest term. We note that P(Ek(w)) is bounded above by

nX
i=1

P(Ek�1(i�))P( ~Dn(tk) � zk; ~Wn(tk) � wjEk�1(i�)) +P( ~Wn(tk�1) � n�):

Now P( ~Wn(tk�1) � n�) = P(W (bntk�1c) � n2�) � exp(�Æn2�=2tk�1) for

large enough n. Hence, P(Ek(w)) is bounded above by

n� sup
q�0

P(Ek�1(q))P( ~Dn(tk) � zk; ~Wn(tk) � wjEk�1(q)) + exp
�
�
Æn2�

2tk�1

�
:

The second term is negligible in comparison to the �rst for large n. The

�rst term is simply n� times the supremum over q of the right hand side of

(19), which was used to obtain the lower bound in (21). Thus, we get

lim
�!0

lim inf
n!1

1

n
logP(Ek(w)) � �IkD;W (z1; : : : ; zk; w):

We have thus established the large deviation upper and lower bounds for a

base of the topology on R
k+1 . Together with the exponential tightness of

( ~Dn(t1); : : : ; ~Dn(tk); ~Wn(tk)), this implies the full LDP on R
k+1 with rate

function IkD;W (see [4, Theorem 4.1.11, Lemma 1.2.18]).

Proof of Theorem 2: For each t > 0, Lemma 4 establishes the LDP for ev-

ery �nite-dimensional distribution ( ~Dn(t1); : : : ; ~Dn(tk); ~Wn(tk)), where 0 <

t1 < : : : < tk = t. These can be extended to an LDP for ( ~Dn([0; t]); ~Wn(t))

on C([0; t])�R by the method of projective limits. The argument is identical

to the proof of Mogulskii's theorem in [4, Theorem 5.1.2] and is omitted. It

is not hard to see that the rate function for this LDP is indeed ID;W . By
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contraction, we also obtain the LDP for ~Dn([0; t]) in C([0; t]), for each t � 0.

By taking projective limits, these imply the LDP for ~Dn([0;1)) in C(R+)

equipped with the topology of uniform convergence on compacts, which is

the projective limit topology. We can strengthen this result to an LDP in

Y by showing that ~Dn([0;1)) is an exponentially tight sequence in Y. The

argument is the same as in the proof of [9, Theorem 1] and is omitted.

3 Existence of �xed points

In this section we present some results on the existence of �xed points in a

discrete-time setting, mostly using arguments analogous to those presented

in [14] for the continuous time setting.

Consider the space RZ equipped with the topology of coordinatewise con-

vergence, which is metrizable using the metric

d(x;y) =
X
i2Z

1

2jij
jxi � yij

1 + jxi � yij
:

We let M be the space of stationary probability measures on RZ which are

stochastically dominated by the service process and equip it with the weak

topology generated by the metric d(�; �). More precisely, let �n denote the

distribution of S1+ : : :+Sn, where (Sn; n 2 Z) is a realization of the service

process, and de�ne fn : RZ ! R by fn(x) = x1 + : : : + xn. We say that a

stationary probability measure � on RZ is in M if, for each n 2 N, � Æ f�1
n

is stochastically dominated by �n. Weak convergence in M coincides with

convergence in distribution of all �nite-dimensional marginals and can be

metrized using, for instance, the Prohorov metric. Thus, M is a closed

subset of a Polish space, it is clearly convex and it can be shown to be

compact. We denote by Me the subset of M consisting of ergodic measures

and by M� (resp. M�
e ) the subset consisting of measures (resp. ergodic

measures) whose one-dimensional marginals have mean � 2 R.

Consider an in�nite queueing tandem. Let An denote the amount of work
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entering the �rst queue of the tandem in time slot n and let Skn denote the

amount of work that can be served by queue k in time slot n, k 2 N, n 2 Z.

Let W k
n denote the workload in queue k at the beginning of time slot n and

Dk
n the amount of work departing queue k and entering queue (k+1) during

time slot n. We assume the following in the remainder of this section.

Assumptions Skn is an iid sequence for each �xed k and identically dis-

tributed for all k,

ES1
1 = 1; �S(�) := log E exp �S1

1 <1 for all � in a neighbourhood of 0:

The service distribution is non-degenerate, i.e., P (S1
1 6= 1) > 0. The arrival

process An and the service processes Skn at the di�erent queues are mutually

independent, An is stationary and ergodic with rate � < 1, i.e.,

lim
n!1

1

n

nX
i=1

Ai = E[A1] = � a:s:;

and An is stochastically dominated by the service process (at any queue).

In addition,

�A(�) := lim
n!1

1

n
logE exp �(A1 + : : : +An)

exists as an extended real number for all � 2 R, �A is di�erentiable in the

interior of its domain (the set where �A is �nite) and steep, i.e., j�0
A(�)j ! 1

as � approaches the boundary of its domain.

It follows from the above assumptions that the departure process (Dk
n; n 2 Z)

is stationary and ergodic with rate �, for each k 2 N. Recall that �A and

�S are convex functions and that �S has in�nitely many derivatives in the

interior of its domain (see [4], e.g., for proofs). Since the arrival process was

assumed to be stochastically dominated by the service process, it follows

that �A(�) � �S(�) for � > 0 and so �A is �nite in some neighbourhood of

zero (�niteness for � < 0 is not an issue since the An are non-negative). We

have,

�A(0) = �S(0) = 0; �0
A(0) = E[A1] = � < 1 = E[S1

1 ] = �0
S(0);
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and so

9 �0 > 0 : �A(�) + �S(��) < 0 8 � 2 (0; �0): (22)

Let M0 � M be the set of stationary probability measures on R
Z whose

ergodic decompositions do not contain an atom at the service distribution.

We can de�ne the queueing operator Q on M0 by setting Q(�) to be the

law of the departure process corresponding to an arrival process which is

independent of the service process and has law � 2 M0. It follows from

Loynes' construction [13] that Q is well-de�ned and maps M0 into itself,

that it preserves ergodicity, i.e., Q(M0 \Me) � M0 \Me, and that it is

mean-preserving in the sense that Q(M�
e ) � (M�

e ) for all � < 1. Moreover,

Q is linear, i.e.,

Q(��1 + (1� �)�2) = �Q(�1) + (1� �)Q(�2);

for all �1; �2 2 M0 and � 2 [0; 1]. Finally, Q is continuous in the weak

topology restricted to M0. The proof of the last statement is virtually

identical to that of [14, Theorem 4.3] and is omitted.

Let �0 denote the law of (An; n 2 Z), �k the law of (Dk
n; n 2 Z) and �S the

law of the service process, (Sn; n 2 Z). We have assumed that �0 2M�
e for

some � < 1, whereas �S 2 M1
e , so �0 is not the service distribution. Since

�0 consists of a single ergodic component, it follows that �0 2 M0. Hence,

so is �k = Qk(�0) for any k 2 N, where Qk denotes the kth iterate of Q.

Since M0 is clearly convex,

�k :=
1

k

k�1X
i=0

�k 2M0 for all k 2 N : (23)

SinceM is compact, there is a subsequence k(j) of N such that �k(j) ! � for

some � 2M . We shall show that � is a �xed point of the queueing operator.

Theorem 3 Let � 2 M be de�ned as above as a subsequential limit of the

�k's, where �k is the Cesaro average of the distributions of the departures
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from the �rst k queues in the tandem. Then � 2 M0 and Q(�) = �, i.e., �

is a �xed point of the queueing operator.

Proof: Since �k 2 M0 and Q : M0 ! M0, we have Q(�k) 2 M0 for all k.

But,

Q(�k) = Q

 
1

k

k�1X
i=0

�i

!
=

1

k

kX
i=1

�i = �k +
1

k
(�k � �0): (24)

To obtain the second equality, we have used the fact that Q is linear and

that Q(�i) = �i+1 by de�nition of the �i. It is clear from (24) that,

lim
j!1

Q(�k(j)) = lim
j!1

�k(j) = �: (25)

We show in Lemma 7 below that � 2M0. Since Q :M0 !M0 is continuous

in the weak topology and �k(j) ! � in this topology, it follows that

lim
j!1

Q(�k(j)) = Q(�): (26)

By (25) and (26), Q(�) = �.

Lemma 5 Consider a sequence of stationary arrival distributions �k 2M ,

converging weakly to a stationary arrival distribution � 2 M . Let W0(k)

(resp. W0) denote a random variable with the distribution of the workload

at the beginning of time slot zero, when the arrival process has distribution

�k (resp. �) and is independent of the service process. Then, we have

lim inf
k!1

E[W0(k)] � E[W0]:

The result holds even if E[W0] = +1.

The proof proceeds along the lines of the proof of [14, Lemma 4.4] and is

omitted.
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Lemma 6 Let W0(k) denote a random variable with the distribution of the

workload at the beginning of time slot zero, when the arrival process has

distribution �k and the service process has distribution �S. Then, we have

lim sup
k!1

E[W0(k)] < +1:

Proof : Recall thatW k
0 is the waiting time at queue k at the beginning of time

slot zero, when the arrival process into this queue has distribution �k and

is independent of the service process at this queue, which has distribution

�S . It is now immediate from the de�nition of �k that

W0(k)
d
=

1

k

kX
i=1

W i
0 and so E[W0(k)] =

1

k

kX
i=1

E[W i
0]; (27)

where
d
= denotes equality in distribution. But, by Loynes' construction,

W 1
0 = sup

n�0

�1X
i=�n

Ai � S1
i ; (28)

where, as usual, we take the empty sum to be zero. We also have that

Dk
n = Dk�1

n +W k
n�1 �W k

n ; n 2 Z; k = 1; 2; 3; : : : (29)

where D0
n is identi�ed with An. Using (28) and (29), it can be shown

inductively (see, for example, [7] or [1, Proposition 5.4]) that

kX
i=1

W i
0 = sup

nk�:::�n1�0

�1X
i=�nk

Ai �

kX
j=1

�nj�1�1X
i=�nj

Sji ; (30)

where n0 is de�ned to be zero. Hence, by the mutual independence of the

arrival process and the service processes at the di�erent queues, we have for
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all x and any � > 0, that

P

 
kX
i=1

W i
0 > kx

!

� e��kxE

2
4 sup
nk�:::�n1�0

exp �(
�1X

i=�nk

Ai �
kX

j=1

�nj�1�1X
i=�nj

Sji )

3
5

� e��kx
1X

nk=0

E exp(�

�1X
i=�nk

Ai) E

2
4 sup
nk�:::�n1�0

exp(��

kX
j=1

�nj�1�1X
i=�nj

Sji )

3
5

To obtain the last equality above, we have used the fact that the expectation

of the supremum of a collection of non-negative random variables is no more

than the sum of their expectations. Now, the number of terms over which the

supremum in the last line above is taken is the number of ways of partitioning

nk into k non-negative integers, which is
�n+k

k

�
. Moreover, since the Sji for

di�erent i, j are iid, the random variables over which the supremum is taken

are identically distributed, with the distribution of exp��
P�1

i=�nk
S1
i . Thus,

we obtain that

P

 
kX
i=1

W i
0 > kx

!
� e��kx

1X
n=0

�
n+ k

k

�
E exp

"
�

�1X
i=�n

(Ai � S1
i )

#
: (31)

Since �A is convex, it is continuous on the interior of its domain, and on

this set it is the pointwise limit of continuous functions,

�n(�) :=
1

n
logE exp �(A1 + : : :+An):

Hence �A is uniformly continuous on compact subsets of its domain and the

convergence of �n to �A is uniform on these subsets. Let �0 > 0 be in the

interior of the domain of �. Then, for any � > 0, there is an N < 1 such

that

j�n(�)� �A(�)j < � 8 n � N; � 2 [0; �0]: (32)

Recall that �n(�) � �S(�) for all � > 0 and n 2 N since the service process

was assumed to stochastically dominate the arrival process. Hence, we have
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from (31) and (32) that, for all � 2 (0; �0),

P

 
kX
i=1

W i
0 > kx

!
� e��kx

"
N�1X
n=0

�
n+ k

k

�
en(�S(�)+�S(��))

+

1X
n=N

�
n+ k

k

�
en(�A(�)+�+�S(��))

#
:

Observe from (22) that we can �nd � 2 (0; �0) and � > 0 suÆciently small

that �A(�) + �+�S(��) < ��. For such a � and �, we get

P

 
1

k

kX
i=1

W i
0 > x

!

� e��kx

"
N�1X
n=0

�
n+ k

k

�
en(�S(�)+�S(��)) +

1X
n=N

�
n+ k

k

�
e�n�

#

� cNke��kx = ce�k(�x�lnN);

where c is a constant that may depend on �, � and N but does not depend

on k. Thus, we obtain using (27) that

E[W0(k)] =

Z 1

0
P(W0(k) � x)dx

�

Z 2 lnN=�

0
dx+

Z 1

2 lnN=�
ce�k�x=2dx �

2 lnN

�
+

2c

k�
:

The above quantity is bounded uniformly in k, which establishes the claim

of the lemma.

Lemma 7 The distribution �, which was de�ned in the statement of the

theorem as a subsequential limit of the �k's (mixtures of departure distribu-

tions from successive queues in the tandem), does not contain an atom at

the service distribution. In other words, � 2M0.

Proof: Since the service process was assumed to be non-deterministic, it

follows from Loynes' construction that if the arrival process is independent

of the service process but has the same distribution, then the expected
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workload at time zero is in�nite. By the linearity of the queueing operator,

the same is true if the ergodic decomposition of the arrival distribution

contains an atom at the service distribution. In other words, if W0 denotes

the workload at time zero when the arrival process has distribution � and

is independent of the service process, then

� 2M nM0 ) E[W0] = +1:

Now �k(j) ! � 2 M by de�nition, so it follows from Lemmas 5 and 6 that

E[W0] < +1. Hence � 2M0.

Now � is a stationary process belonging to M0 and hence could consist of

stationary components at di�erent rates. De�ne M �
sp, the set of stationary

measures of \pathwise rate �", as those measures in M � whose ergodic

components belong only to M �
e . Thus if a process X = fXn; n 2 Zg is

distributed according to some � 2M �
sp, then a.s.

lim
n!1

1

n

nX
i=1

X(i) = �:

The �xed point � obtained above can be decomposed into its components

in [�2[0;1)M
�
sp as

� =

Z 1

0
���(d�);

where � is some measure on [0,1). By linearity of Q, Q(�) =
R 1
0 Q(��)�(d�).

But the queueing operator also preserves rates: �� and Q(��) must have the

same rate for all � in the support of �. Thus Q(�) = � implies Q(��) = �� ,

� a.s. Therefore there exists a �xed point for Q in M �
sp, for � belonging to

the support of �.

However, the question remains as to whether Q has an ergodic �xed point

of rate �. We shall settle this question in Theorem 5 below as a corollary of

Theorem 4.
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4 Attractiveness of �xed points

In this section we present some results on the attractiveness of �xed points,

which are discrete analogues of those obtained by Mountford and Prab-

hakar [15] in the continuous-time setting.

Consider an in�nite tandem of queues indexed by the non-negative integers.

Let S = fSn; n 2 Zg be an iid family of non-negative integer valued random

variables, where Sn denotes the maximum amount of service e�ort available

at queue 0 in the nth time slot. For n 2 Z, k � 1, let Skn be the maximum

amount of service e�ort in the nth time slot at queue number k. The pro-

cesses Sk = fSkn; n 2 Zg are iid, independent of S, and Skn
d
= S1 for all n

and k. Consider a stationary and ergodic arrival process A = fAn; n 2 Zg,

where An takes values in the non-negative integers, E(A1) = � < 1. We

shall assume that A is independent of the service processes S and Sk, k � 1.

Suppose that A is input to queue 0 and let Ak = fAk
n; n 2 Zg be the

arrival process to queue k. The result of Loynes [13] asserts that each Ak is

stationary and ergodic, and E(Ak
1) = �. In what is to come, it is convenient

to use the notation A1 = Q(A;S) to denote that A1 is the departure process

from a queue with arrival process A and service process S. Similarly, write

Ak+1 = Q(Ak; Sk).

We proceed as follows. First, by assuming the existence of an ergodic �xed

point F at mean �, we show that Ak converges to F in the �� metric (de�ned

below).

De�nition 1 The �� (Rho Bar) distance between two stationary and ergodic

sequences X = fXn; n 2 Zg and Y = fYn; n 2 Zg of mean � is given by

��(X;Y ) = inf


E
 jX̂1 � Ŷ1j;

where 
 is a distribution on M�
e �M�

e { the space of jointly stationary and

ergodic sequences (X̂; Ŷ ), with marginals X̂1 and Ŷ1 distributed as X1 and
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Y1. (See, e.g. Gray[11] or Chang[3], De�nition 2.3, for further details of

the �� metric.)

Theorem 4 Consider the in�nite queueing tandem described above. Sup-

pose queue 0, and hence queue k; k � 1, admits a mean � stationary and

ergodic �xed point. Suppose also that P (Sn = 0) > 0. Then ��(Ak; F )!0 as

k goes to in�nity.

Proof : Our method of proof will closely follow that of Mountford and Prab-

hakar [15]; we shall merely set up the language and notation needed to

import the argument in [15].

We use the coupling in [15]. Let F be distributed as the �xed point,

independent of A and of all service variables. The coupling is achieved

by allowing the service process S to serve both the processes A and F .

Thus F 1 = Q(F; S) is the arrival process to queue 1, and for each k � 1

F k+1 = Q(F k; Sk) is the arrival process to queue k + 1. Note that the

processes F k are all ergodic, of mean �, and distributed as F . It is helpful

to imagine that there are two separate bu�ers at each queue k, one for the

A-customers and one for the F -customers. This makes explicit the notion

that customers of one process do not in
uence the waiting of the customers

of the other process. The coupling between the two processes at each queue

merely consists of using the same service process for both the A- and the

F -customers.

The customers of A [ F are colored yellow, blue or red according to these

rules

� customers in A \ F are colored yellow

� customers in A but not in F are colored blue

� customers in F but not in A are colored red.

Let Y , B and R be the process of yellow, blue and red customers respectively.

For each k, color the points of Ak [ F k in a similar fashion and de�ne

Y k, Bk and Rk to be the corresponding processes of yellow, blue and red
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customers. As in [15], we adopt the following service policy to ensure that

once a customer is yellow, it remains yellow forever. Thus at each queue:

a) Yellow customers observe a \�rst in, �rst out" rule.

b) Yellow customers take priority over any blue or red customers.

c) If a blue customer arrives at a queue at which there are red customers,

then it immediately \couples" with the red customer who arrived �rst and

has not yet coupled. Both the \coupled" customers will be colored yellow

in future queues. A similar rule applies for red customers.

Given the joint ergodicity of the trio (Ak; F k; Sk), it is not hard to see that

the process (Y k; Bk; Rk) is jointly ergodic. The problem is that a limit of

the (Y k; Bk; Rk) need not be ergodic. However, as a result of the above

service policy, the (non-random) density of yellow customers increases with

k. Using D to denote density, we wish to show that D(Y k) increases to �.

Following [15] we argue by contradiction and hence suppose that there exist

customers in the initial arrival processes A and F that never couple and

therefore never become yellow. We call these customers \ever-blues" and

\ever-reds" respectively. Given a customer V (in either A or F ), write V (k)

for their departure time from the kth queue. From the service policy and

coloring scheme, we readily obtain

Lemma 8 Let V and U be two customers (in A or F , not necessarily be-

longing to the same initial point process) such that V (k) > U(k) for some

k. If U(k + 1) > V (k + 1), then customer V must be coloured yellow after

k + 1 queues.

The importance of Lemma 8 is that among customers that never become

yellow order is preserved: if an ever-blue in A arrives before an ever-red in

F , then it will arrive before the ever-red after passing through any number

of queues. In a manner entirely analogous to [15], this order preservation

property can be used to obtain the following lemma (identical to Lemma 3.1

of [15]).
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Lemma 9 If the density of ever-blues is strictly positive, then there exists

an �, not depending on k, such that the (non-random) density in F k of red

customers C satisfying \there exist blue customers of Ak in (C(k), C(k) +

2 =�]" must be at least �/2.

Now by the stability of queue 0 under input F and the joint ergodicity of

(F; S), the conditional probability, p, that an arrival of F sees an empty

queue given past arrivals is a nonzero random variable. Because F is a

�xed point, the pairs (F k; Ak) are distributed as (F;Ak) and p is also the

conditional probability that an arrival of any F k sees an empty queue. Take

Æ > 0 to be such that the density of customers in F k for whom p < Æ is less

than �=4.

Given this and the conclusion of Lemma 9, we obtain the next lemma (similar

to Lemma 3.2 of [15]).

Lemma 10 Under the assumptions of Lemma 9, there exist strictly positive

� and Æ such that for every k, red customers C in F k with the properties

(a) there exists a blue customer of Ak in (C(k), C(k) + 2 =�]

(b) P (C arrives at an empty queue j F k)) > Æ

have density at least �=4.

Consider a red customer R that satis�es properties (a) and (b) of Lemma

10. Because of property (b) the chance that R �nds queue k empty upon

arrival is at least Æ. Since the process Sk is iid, independent of F k and

s = P (S1 = 0) > 0, the chance that R waits at least 2=� units of time at

queue k before departing is at least sd2=�e�1. Property (a) guarantees that

a blue customer will arrive at queue k while R is waiting. This implies that

R will be yellow in F k+1. Therefore, under the assumptions of Lemma 9,

D(Y k+1) � D(Y k) � Æsd2=�e�1�=4 for all k. This contradiction establishes

that D(Y k) increases to �.

Let � and �k be the joint distributions of the processes (A;F ) and (Ak; F k),
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respectively. Since A and F are independent, � equals the product measure

L(A) � L(F ) { clearly a member of M�
e �M�

e . The translation invariant

nature of the queueing operation preserves joint ergodicity. Therefore each

�k is also a member of M�
e �M�

e .

Now D(Y k) = E�k min(Ak
1 ; F

k
1 ). Therefore

��(Ak; F k) = inf


E
 jÂ

k
1 � F̂ k

1 j

� E�k jA
k
1 � F k

1 j

= E�k

�
Ak
1 + F k

1 � 2min(Ak
1 ; F

k
1 )
�

= 2
�
��D(Y k)

�
k!1
�! 0:

This concludes the proof of Theorem 4.

Theorem 5 If � 2M�
sp is a �xed point for the queue, then it is necessarily

ergodic. That is, � 2M�
e .

Proof : Given Theorem 4, the proof is identical to the proof of Theorem 5.2

in [14] and is omitted.
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