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1 The single server queue

Let (Xn; n 2 Z) be a stationary ergodic sequence of random variables with

EX0 < 0, and consider the recursion

Qn = (Qn�1 +Xn)
+: (1)

This is known as Lindley's recursion. It arises in the analysis of �rst-come-

�rst-served single server queues, in both continuous and discrete-time set-

tings.

In continuous time, customers are labelled by the integers and Xn is the

di�erence between the service time of customer n and the interarrival time

between customers n and n+1; in this case Qn is the waiting time of customer

n+ 1 (that is, the time spent in the queue before commencing service).

In discrete time, Xn is the di�erence between the amount of work to arrive

at the queue at time n and the amount of work which can be processed at

that time; in this case, Qn is the amount of work remaining in the queue.

We shall adopt the latter interpretation, but clearly most of the results pre-

sented here will have implications in the former context.

It was shown by Loynes [40] that, for any initial condition Q0, the law of Qn

converges as n ! 1 to a unique equilibrium distribution (independent of

Q0). Moreover, the sequence

Qn =

"
sup
m�n

nX
k=m

Xk

#+
; (2)

n 2 Z, de�nes a stationary ergodic solution.
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Exercise 1.1 Show that the sequence Qn de�ned by (2) satis�es (1). Con-

vince yourself that this is the unique solution by repeatedly applying the Lind-

ley recursion (1).

An nice example to keep in mind is the following. Suppose theXn are iid with

P (X0 = 1) = 1�P (X = �1) = p < 1=2. Then the process Q (de�ned by (2))

is a stationary birth and death Markov chain with equilibrium distribution

P (Q0 � q) =

�
p

1� p

�q

(3)

for q 2 Z+. This is a discrete-time analogue of the M/M/1 queue. We shall

rewrite (3) as

logP (Q0 � q) = �Æq (4)

where Æ = log[(1� p)=p].

It is a remarkable fact that an approximate version of the formula (4) holds

quite generally: for large q,

logP (Q0 � q) � �Æq (5)

for some Æ > 0. We will soon make this statement precise and give a proof

using large deviation theory. But �rst, let us consider the implications.

If (5) holds we can (in principle) estimate the frequency with which large

queues build up by empirically observing the queue-length distribution over

a relatively short time period: plot the log-frequency with which each level q

is exceeded against q, and linearly extrapolate. I have quali�ed this statement

because actually this is a very challenging statistical problem. Nevertheless,

3



this ingeneous idea, which was �rst proposed in [11], has inspired major

new developments in the application of large deviation theory to queueing

networks and network management generally.

Before we give a formal statement and proof of (5) we present some back-

ground material on one-dimensional large deviation theory. For more de-

tailed accounts, and more on the theory of large deviations in general, see

[15, 14, 25, 39].

1.1 One-dimensional large deviation theory

1.1.1 Cram�er's theorem

Let Yk be a sequence of iid random variables and set Sn = Y1+ � � �+Yn. The
cumulant generating function associated with Y1 is de�ned by

�(�) = logEe�Y1 :

This is a convex function on R taking values in the extended real numbers

R
� == (�1;+1].

Exercise 1.2 Prove that � is convex. (Hint: use H�older's inequality.)

The convex dual, or Fenchel-Legendre transform, of � is a non-negative func-

tion on R de�ned by

��(x) = sup
�2R

[�x� �(�)]:
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Theorem 1.1 The sequence of random variables Sn=n satis�es the large de-

viation principle with rate function ��: for all closed sets F ,

lim sup
n!1

1

n
logP (Sn 2 F ) � � inf

F

��; (6)

and for all open sets G,

lim inf
n!1

1

n
logP (Sn 2 G) � � inf

G

��: (7)

The inequality (6) is usually referred to as the large deviations upper bound,

and (7) as the large deviations lower bound. If both hold we say that the

sequence Sn=n satis�es the large deviation principle with rate function ��.

1.1.2 A generalisation of Cram�er's theorem

Cram�er's theorem generalises far beyond the realm of sums of iid random

variables. In the standard one-dimensional generalisation, Sn is any sequence

of random variables, and the statement of Cram�er's theorem can be shown to

hold with � de�ned to be the limiting scaled cumulant generating function

�(�) = lim
n!1

1

n
logEe�Sn;

provided this limit exists and is well-behaved. It is easy to see that this is

consistent with the case of sums of iid random variables.

To state this generalisation we need some de�nitions. Let f be a function

on R which takes values in the extended real numbers. The e�ective domain

of f is de�ned by Df = f� : f(�) <1g. The function f is steep if, for any

sequence �n which converges to a boundary point of Df , limn!1 jf 0(�n)j =
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+1. Note that �1 and +1 are never considered to be boundary points.

The function f is essentially smooth if it is steep, the interior of its e�ective

domain is non-empty and it is di�erentiable there.

Let Sn be a sequence of random variables with respective cumulant generating

functions

�n(�) = logEe�Sn:

Theorem 1.2 If the limiting scaled cumulant generating function

�(�) = lim
n!1

�n(�)=n (8)

exists for each � 2 R as an extended real number and zero lies in the interior

of its e�ective domain then, for all closed sets F ,

lim sup
n!1

1

n
logP (Sn 2 F ) � � inf

F

��: (9)

If, in addition, � is essentially smooth, the corresponding lower bound

lim inf
n!1

1

n
logP (Sn 2 G) � � inf

G

�� (10)

holds for all open sets G.

If the upper and lower bounds of Theorem 1.2 hold, we say the sequence

Sn=n satis�es the large deviation principle (LDP) with rate function ��.

Let Yk be a sequence of random variables and set

Sn = Y1 + � � �+ Yn:
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Exercise 1.3 Compute � and �� for the following models.

(1) Yk iid Poisson with mean �.

(2) Yk iid exponential with mean �.

(3) Yk iid Gaussian with mean � and variance �2.

(4) Yk is a stationary auto-regressive process of degree 1. That is,

Y0 =

1X
k=0

�k��k;

and

Yk = �Yk�1 + �k

for all k > 0, where �1 < � < 1 and the �k are iid Gaussian with zero mean

and variance �2.

Theorem 1.2 has a converse. A function I : R ! [0;1] is a good rate function

if the level set fx : I(x) � �g is compact for each � � 0.

Theorem 1.3 If the sequence Sn=n satis�es the LDP with good rate function

I and

lim sup
n!1

1

n
logE exp((� + �)Sn) <1;

for some � > 0, then

lim
n!1

1

n
logEe�Sn = I�(�):

This is a consequence of Laplace's method, and can also be regarded as a

special case of Varadhan's lemma. Note that I needn't be convex, whereas

Theorem 1.2 always leads to convex rate functions.
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A related thing is the principle of the largest term. Let an and bn be positive

sequences of real numbers. If

lim
n!1

1

n
log an = a

and

lim
n!1

1

n
log bn = b;

then

lim
n!1

1

n
log(an + bn) = maxfa; bg:

This extends easily to �nite sums.

1.1.3 Russell's time-change formula

The following is a useful trick for computing �� in the case of `on/o� sources'.

It follows from Russell's time-change formula (see [52] for more details). Let

Rk and Tk be a pair of iid sequences, and set Yk = 1 for k � R1, Yk = 0

for R1 < k � R1 + T1, Yk = 1 for R1 + T1 < k � R1 + T1 + R2, and so

on. As before, set Sn = Y1 + � � �+ Yn. If the cumulant generating functions

�R(�) = logEe�R1 and �T (�) = logEe�T1 are �nite in a neighbourhood of

zero, the sequence Sn=n = (Y1 + � � � + Yn)=n satis�es the LDP with rate

function given by

I(x) = inf
a>0

a[��
R
(x=a) + ��

T
((1� x)=a)]: (11)

Exercise 1.4 Try to give a heuristic proof of this formula, using the princi-

ple of the largest term.
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Exercise 1.5 Use (11) to compute the rate function associated with Sn=n

when Yk is a Markov chain on f0; 1g. (Hint: use the fact that the times

between transitions are independent and geometrically distributed.) If the

transition probabilities are given by p(0; 1) = a and p(1; 0) = d, show that

�(�) = log
�
c+

p
c2 � (1� a� d)e�

�
;

where 2c = 1� a+ (1� d)e�. (Hint: use Theorem 1.3.)

1.2 Application to the single-server queue

The following is one of the fundamental theorems in the application of large

deviation theory to queueing networks. It has been demonstrated by several

authors, under similar conditions [6, 16, 20, 30]. The proof given here is

similar to the proof given in [6].

Recall that the queue-length at time zero is given by

Q0 = sup
n�0

S+
n

where

Sn = X0 +X�1 + � � �+X�n:

Set

�n(�) = logEe�Sn:

Theorem 1.4 Suppose that the limiting scaled cumulant generating function

�(�) = lim
n!1

�n(�)=n (12)
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exists for each � 2 R as an extended real number, and �(�) < 0 for some

� > 0.

If �n(�) <1 for all � > 0 such that �(�) < 0, then

lim sup
q!1

1

q
logP (Q0 � q) � �Æ; (13)

where

Æ = supf� > 0 : �(�) < 0g: (14)

If the large deviations lower bound

lim inf
1

n
logP (Sn > xn) � ��(x)

holds for all x > 0, then

lim inf
q!1

1

q
logP (Q0 � q) � �Æ: (15)

Combining this with Theorem 1.2 we have:

Corollary 1.5 If the limiting scaled cumulant generating function

�(�) = lim
n!1

�n(�)=n (16)

exists for each � 2 R as an extended real number, �(�) < 0 for some � > 0,

�n(�) < 1 for all � > 0 such that �(�) < 0, and � is essentially smooth,

then

lim
q!1

1

q
logP (Q0 � q) = �Æ:
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As will become clear when we present the proof, one interpretation of Theo-

rem 1.4 is that the naive approximation

P (sup
n

Sn � q) ' sup
n

P (Sn � q)

is justi�ed on a logarithmic scale.

Proof of Theorem 1.4 | Upper bound. Fix � > 0 with �(�) < 0. By the

inequalities of Boole and Markov, for q > 0,

P (Q0 � q) = P (sup
n�0

Sn � q)

�
X
n�0

P (Sn � q)

� e��q
X
n�0

e�n(�):

Now choose � > 0 such that �(�)+ � < 0. By hypothesis, �n(�)=n � �(�)+ �

for all n suÆciently large, so there exists a constant C > 0 such that

e�n(�) � Ce[�(�)+�]n;

for all n. Thus,

P (Q0 � q) � Ce��q
X
n�0

e[�(�)+�]n

= Ce��qe�(�)+�(1� e�(�)+�)�1;

and so

lim sup
q!1

1

q
logP (Q0 � q) � ��:

Since this holds for any � with �(�) < 0 we have established the upper bound.
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Lower bound. We can assume that Æ <1, because otherwise there is nothing

to prove. For any � > 0,

lim inf
q!1

1

q
logP (Q0 � q) = lim inf

q!1

1

q
logP

[
n�0

fSn � qg

� lim inf
q!1

1

q
logPfS[�q] � qg

= ����(1=�):

Thus,

lim inf
q!1

1

q
logP (Q0 � q) � � inf

�>0
���(1=�):

To complete the proof:

supf� > 0 : �(�) < 0g = supf� > 0 : sup
x2R

[x� � ��(x)] < 0g
= supf� > 0 : x� � ��(x) < 0 for all x 2 Rg
= supf� > 0 : � < ��(x)=x for all x > 0g
= inf

�>0
���(1=�)

Here we have used the fact that ��(0) = � inf � > 0. �

Recall that we are interpreting Xk as the di�erence Ak � Ck between the

amount of work arriving at time k and the amount of work which can be

processed at time k. If we assume that the sequence A is independent of C

then �(�) = �A(�) + �C(��), where

�A(�) = lim
n!1

1

n
logE exp

 
�

nX
k=1

Ak

!

and �C is de�ned similarly.

Exercise 1.6 (1) Show that ��(x) = infy[�
�

A
(y) + ��

C
(y � x)].
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(2) If Ck = c for all k, then �C(�) = c� and

Æ = supf� > 0 : �A(�) � c�g = inf
x>0

��
A
(x + c)=x:

Exercise 1.7 Compute Æ for the following examples.

(1) Ak iid Poisson with mean � and Ck iid Poisson with mean � > �.

(2) Ak iid exponential with mean � and Ck iid exponential with mean � > �.

(3) Xk iid Gaussian with mean � < 0 and variance �2.

(4) Ak a Markov chain on f0; 1g and Ck = c for all k where c is bigger that

the equilibrium probability of the chain being in state 1.

1.3 The many-sources asymptotic

There is also an asymptotic regime which considers what happens when a

queue, or network of queues, is shared by a large number of independent

traÆc sources. This is interesting not just from a potentially practical point of

view, but also because it demonstrates the bene�ts of statistical multiplexing.

Consider a single-server queue as before, with N sources and constant service

capacity cN . Denote by Ai

k
the amount of work which arrives from source

i at time k. For each i, (Ai

k
; k 2 Z) is a stationary and ergodic sequence

of random variables and these sequences are assumed to be independent of

each other and identically distributed. For stability we require EX1
0 < c. To

put this in a familiar context, set

XN

k
= A1

k
+ � � �+ AN

k
� cN:
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Then the queue-length at time zero is given by

QN

0 =

�
sup
n�0

SN
n

�+

where

SN
n
= XN

0 +XN

�1 + � � �+XN

�n
:

We will consider the asymptotic behaviour of P (QN

0 � q) as the number of

sources N becomes large. Using similar techniques as before we obtain the

following result. Set

�n(�) = logE exp

 
�

0X
k=�n

A1
k

!

and, for q � 0,

I(q) = inf
n�0

��
n
(q + cn):

Theorem 1.6 Fix q > 0. The lower bound

lim inf
N!1

1

N
logP (QN

0 > qN) � �I(q);

holds without any assumptions. If

lim sup
m!1

lim sup
N!1

1

N
log
X
n>m

e��
�

n
(q+cn)N � �I(q); (17)

then

lim
N!1

1

N
logP (QN

0 > qN) = �I(q):
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Proof of Theorem 1.6 | Lower bound. For each n,

lim inf
N!1

1

N
logP (QN

0 > qN) = lim inf
N!1

1

N
logP (sup

m�0

SN
m
> qN)

� lim inf
N!1

1

N
logP (SN

n
> qN)

= lim inf
N!1

1

N
logP

 
NX
i=1

0X
k=�n

Ai

k
> (q + cn)N

!

� ���
n
(q + cn);

by Cram�er's theorem. Now optimise this bound over n.

Upper bound. We can apply Boole's inequality and Markov's inequality as

before, but this time with a sequence �n:

P (QN

0 > qN) = P (sup
n�0

SN
n
> qN)

�
X
n�0

P (SN
n
> qN)

=
X
n�0

P

 
NX
i=1

0X
k=�n

Ai

k
> (q + cn)N

!

�
X
n�0

e�[�n(q+cn)��n(�n)]N :

For each n we can choose the optimal value of �n and this becomes

P (QN

0 > qN) �
X
n�0

e��
�

n
(q+cn)N :

The hypothesis (17) was chosen speci�cally to control the terms in the `tails'

of this summation. By the principle of the largest term,

lim sup
N!1

1

N
logP (QN

0 > qN) � max

�
� inf

0�n�m
��
n
(q + cn); �(m)

�
;
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where

�(m) = lim sup
N!1

1

N
log
X
n>m

e��
�

n
(q+cn)N :

By hypothesis, lim supm!1 �(m) � �I(q), and the result follows. �

The many sources asymptotic �rst appeared in [57]. Variants of Theorem

1.6 are given in [5] and [12]. For the last word, see [59].

1.4 E�ective bandwidths

For a single-server queue with arrivals process Ak we can ask: how much

service capacity do we need in order to ensure that

P (Q > q) � e�Æq;

for large q and some prespeci�ed value of Æ? From Theorem [30] (see also

Exercise 1.6) we see that the answer to this question, assuming the conditions

are satis�ed, is approximately �A(Æ)=Æ, where

�A(�) = lim
n!1

1

n
logE exp

 
�

nX
k=1

Ak

!
:

This quantity is called the e�ective bandwidth of the source A.

The notion of e�ective bandwidths was introduced by Kelly [34]. See also

[29, 35], where the two-parameter e�ective bandwidth

�(Æ; n) =
1

Æn
logE exp

 
nX

k=1

Ak

!

is proposed as a more detailed traÆc descriptor. Note that that this function

also contains information which is relevant to the many sources asymptotic.
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2 Queueing networks

The techniques outlined in the previous section are ideal for studying the

single-server queue but soon become cumbersome when one tries to apply

them to more complicated queueing networks. In this section we present a

`variational' approach which has many advantages.

2.1 The general framework

The following is a general scheme which can be applied to an endless variety

of network problems where the goal is to establish probability approximations

for aspects of a system (such as queue lengths) under very general ergodicity

and mixing assumptions about the network inputs.

We will suppose that the inputs to a network can be represented by a sequence

of random variables (Xk) in R
d , and that the (sequence of) objects of interest,

(On), can be expressed as a continuous function of the partial sums process

corresponding to X. To make this more precise, for t � 0 set

Sn(t) =
1

n

[nt]X
k=0

X�k: (18)

Write ~Sn for the polygonal approximation to Sn:

~Sn(t) = Sn(t) +

�
t� [nt]

n

��
Sn

�
[nt] + 1

n

�
� Sn

�
[nt]

n

��
: (19)

For � 2 Rd , denote by A� the space of absolutely continuous paths � : R+ !
R
d , with �(0) = 0 and limits limt!1 �(t)=t = �; equipped with the topology
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induced by the norm

k�ku = sup
t

���� �(t)1 + t

���� : (20)

Our supposition is that there exists a continuous function f : A� ! X , for

some Hausdor� topological space X , such that On = f( ~Sn), for each n. (Note

that we are also implicitly assuming that ~Sn 2 A�, for each n.)

For example, consider the single-server queue. In this case d = 1 and Xk is

the di�erence between the amount of work arriving at time k and the amount

of work that can be processed at that time. If X is stationary and ergodic

with � = EX0 < 0, then

lim
t!1

~Sn(t)=t = lim
n!1

nX
k=1

X�k=n = �

almost surely and hence ~Sn is almost surely in A� for each n. Recall (Section

1) that the queue length at time zero (for the equilibrium system) is given

by

Q0 = sup
n�0

nX
k=0

X�k; (21)

or, equivalently, Q0=n = f( ~Sn), where f : A� ! R+ is de�ned by

f(�) = sup
t>0

�(t): (22)

Note that f is only well-de�ned when � < 0.

Exercise 2.1 Check that f is a continuous function.

Why is this a useful supposition? To answer this, we need to introduce some

rather abstract large deviation theory.
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2.2 Large deviations and the contraction principle

Let X be a Hausdor� topological space with Borel �-algebra B, and let �n

be a sequence of probability measures on (X ;B). We say that �n satis�es

the large deviation principle (LDP) with rate function I, if I : X ! R+ is

lower semicontinuous and, for all B 2 B,

� inf
x2BÆ

I(x) � lim inf
n

1

n
log�n(B) � lim sup

n

1

n
log�n(B) � � inf

x2 �B
I(x); (23)

if, for each n, Zn is a realisation of �n, it is sometimes convenient to say that

the sequence Zn satis�es the LDP. A rate function I is good if its level sets

fx : I(x) � �g, � � 0, are compact subsets of X .

A useful tool in large deviation theory is the contraction principle. This

states that if Zn satis�es the LDP in a Hausdor� topological space X with

good rate function I, and f is a continuous mapping from X into another

Hausdor� topological space Y, then the sequence f(Zn) satis�es the LDP in

Y with good rate function given by J(y) = inffI(x) : f(x) = yg:

Consider the partial sums process ~Sn. The contraction principle tells us

that, if the sequence ~Sn satis�es the LDP in A� with a good rate function

I, for any continuous function f taking values in a Hausdor� topological

space, the sequence f( ~Sn) satis�es the LDP with good rate function given

by J(y) = inffI(�) : f(�) = yg: In practise this will mean that once we

have established (or simply assumed) the LDP for the partial sums process,

we immediately have LDP's for the objects we are interested in provided

we can write them as continuous functions of ~Sn. We only have to solve the

variational problem to identify the rate function. This approach considerably
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reduces the technical diÆculties normally associated with proving LDP's in

queueing networks (and in fact in many other applications of large deviation

theory). In some sense it provides a mechanism for turning heuristics into

theorems: solving the variational problem is equivalent to �nding the most

likely way in which the associated event occurs, and this, at least in many

applications to queueing networks, is the heuristic which is used to predict

the LDP one is trying to prove.

2.3 Large deviations for partial sums processes

Under quite general conditions, the sequence ~Sn satis�es the LDP in A� with

good rate function given by

I(�) =

Z
1

0

��( _�)ds;

where, as before, �� is the convex dual of the limiting scaled cumulant gen-

erating function

�(�) = lim
n!1

1

n
logEen��Sn(1); (24)

which is assumed to exist for each � 2 R
d as an extended real number,

and also assumed to be di�erentiable at the origin with r�(0) = �. In the

applications we will consider next, we will regard this as a hypothesis. In this

section, we will present a very quick summary of the relevant background.

Denote by ~ST
n
the restriction of ~Sn to the interval [0; T ] and byAT the space of

absolutely continuous functions on [0; T ] with �(0) = 0, eqquipped with the

uniform topology. Dembo and Zajic [13] establish quite general conditions
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for which ~ST
n
satis�es the LDP in AT with good convex rate function given

by

I(�) =

Z
T

0

��( _�)ds:

For the LDP to hold in the iid case, it is suÆcient that the moment generat-

ing function Ee��X1 exists and is �nite everywhere; this is a classical result,

due to Varadhan [56] and Mogulskii [43]. The proof given in Dembo and

Zeitouni [14] only requires �niteness of � in a neighbourhood of the origin.

This family of LDP's can immediately be extended to spaces of functions

indexed by the entire half-line via the Dawson-G�artner theorem for projec-

tive limits (see, for example, [14].) However, the projective limit topology

(the topology of uniform convergence on compact intervals) is not strong

enough for many applications; for example, the function f de�ned by (22)

is not continuous in this topology on any supporting subspace, and so the

contraction principle cannot be applied. This has motivated the considera-

tion of stronger topologies by Dobrushin and Pechersky [18] and Ganesh and

O'Connell [27]. In the latter it is proved that if the LDP holds for ~S1
n
in A1

and � is di�erentiable at the origin with r�(0) = �, then the LDP holds for

~Sn in the space A� with the topology induced by the norm (20), and with

good convex rate function given by

I(�) =

Z
1

0

��( _�)ds:

As we remarked earlier, the function f de�ned by (22) is continuous in this

topology, provided � < 0.1

1The motivation for working with the norm (20) rather than the gauge topology intro-

duced in [18] is the following. In the topology of [18], the mapping � 7! supt[�(t) � t] is
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2.4 Solving the variational problem

Throughout the remainder of this section we will assume that the sequence

~Sn satis�es the LDP in A� with good convex rate function given by

I(�) =

Z
1

0

��( _�)ds;

where � = r�(0) and

�(�) = lim
n!1

1

n
logEen��Sn(1):

Recall now that, by the contttraction principle, if Y is Hausdor� and f :

A� ! Y is continuous, then the sequence f( ~Sn) satis�es the LDP in Y with

good rate function

J(y) = inf

�Z
1

0

��( _�)ds : f(�) = y

�
: (25)

The basic tool used to simplify the variational problems which arise in queue-

ing networks is Jensen's inequality. To illustrate this, consider the simplest

possible example, where d = 1 and f(�) = �(1). This mapping is certainly

continuous, so we can apply the contraction principle to get that the sequence

f( ~Sn) satis�es the LDP in R with good rate function

J(y) = inf

�Z
1

0

��( _�)ds : �(1) = y

�
:

continuous on the subspace of increasing paths in A�, for � < 1. This allows one to treat

the single server queue with constant service rate. However, the mapping � 7! supt �(t) is

not continuous in that topology, so the single-server queue with stochastic service rate is

immediately out of reach. Another advantage with using the norm (20) is that the space

C(R+ ) of continuous functions � : R+ ! R
d with limits limt!1 �(t)=t is, when equipped

with the norm (20), isomorphic to C([0; 1]); in particular, it is Polish, which is a useful

property to have in large deviation theory.
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Now, for any path � with �(1) = y, the path  2 A� de�ned by _ = y on

[0; 1) and _ = � on [1;1) also has  (1) = y and, moreover,Z
1

0

��( _ )ds �
Z

1

0

��( _�)ds:

To see this, �rst note thatZ
1

1

��( _ )ds = 0 �
Z

1

1

��( _�)ds:

On the interval [0; 1) we haveZ 1

0

��( _ )ds = ��(y) = ��
�Z 1

0

_�ds

�
�
Z 1

0

��( _�)ds;

by Jensen's inequality. Thus, J(y) = ��(y). This should be compared with

Theorem 1.2.

2.5 Interpreting the in�miser

What is the meaning of the path which achieves the in�mum in the variational

problem (25)? The answer to this is simple: it is the `most likely' path among

all paths � with f(�) = y. In fact, one can show that, given f( ~Sn) = y, the

probability that ~Sn lies in any �xed neighbourhood of the in�miser tends to

one as n goes to in�nity. Thus, operating at the level of sample paths has

the advantage of not just providing estimates of probabilities of rare events

but also revealing precisely the manner in which they occur.

Consider the example of the previous section: f(�) = �(1). We saw that

the in�miser in this case is the path with constant gradient y on the interval

[0; 1) (and gradient � thereafter). Thus, the most likely way to any point
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is via a straight line and given that Sn(1) takes an extreme value, with

high probability it got there approximately along a staight line. This basic

property, which we refer to as the `linear geodesic property', considerably

simpli�es many network problems.

2.6 Examples and exercises

2.6.1 The single server queue

Now consider the single-server queue: d = 1 and Xk is the di�erence between

the amount of work arriving at time k and the amount of work which can be

processed at that time. Suppose also that � = �0(0) < 0. If X is stationary

and ergodic with EX0 = � then the queue length at time zero is de�ned and

given by

Q0 = sup
n�0

nX
k=0

X�k; (26)

or, equivalently, Q0=n = f( ~Sn), where f : A� ! R+ is de�ned by

f(�) = sup
t>0

�(t):

As this mapping is continuous (see Exercise 2.1) we can apply the contraction

principle to get that the normalised queue length at time zero, Q0=n, satis�es

the LDP in R+ with good rate function

J(q) = inf

�Z
1

0

��( _�)ds : sup
t>0

�(t) = q

�
:

For any path � 2 A� with

sup
t>0

�(t) = q;
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there must exist � < 1 at which the supremum is achieved (here we are

using that fact that limt!1 �(t)=t = � < 0). The path  2 A� de�ned by

_ = q=� on (0; � ] and _ = � elsewhere also has sup
t>0  (t) = q and by

Jensen's inequality (as above)Z
1

0

��( _ )ds = ���(q=�) �
Z

1

�1

��( _�)ds:

It follows that

J(q) = inf
�>0

���(q=�) = Æq;

where

Æ = inf
x>0

��(x)=x:

The LDP in this case states that, for any q > 0,

lim
q!1

1

q
logP (Q0 > q) = �Æ:

This should be compared with Theorem 1.4.

Recalling Section 2.5 we can ask: how to large queues build up? From the

above we saw that the most likely path which achieves a large queue-length q

is for the queue to start more or less empty and then grow at a constant rate

q=� � for a time � �, where � � = arginf
�>0��

�(c + q=�): (To convince yourself

of this you will have to reverse the order of time.)

Exercise 2.2 Compute � � as a function of c and � when ��(x) = �2(x �
c)2=2.
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2.6.2 Single-server queue with �nite waiting space

Consider the following variation on the single-server queue. As before, d = 1

and Xk is the di�erence between the amount of work arriving at time k and

the amount of work which can be processed at that time. However, there is

a maximum allowable queue-length, which evolves as follows:

Qb

n
= minf(Qb

n�1 +Xk)
+; bg;

where b > 0 is the waiting space.

Equilibrium properties of such queues have been studied by Borovkov [3]

and Toomey [55]. In the latter, the following characterisation is given for

the equilibrium queue-length distribution, assuming it exists. Assume X is

stationary and ergodic with EX0 = � = r�(0) < 0, and de�ne, for q 2 R,

tq = infft � 0 : n ~Sn(t) = qg:

Note that, for 0 � q � b, tq�b is almost surely �nite. It is (implicitly) shown

in [55] that under these assumptions there is a stationary ergodic solution

Qb, where the queue-length at time zero is given by

Qb

0 = inffq 2 [0; b] : tq�b < tqg:

For a 2 R de�ne mappings Ta : A� ! [0;1] by

Ta(�) = infft � 0 : �(t) = ag;

and f : A� ! [0; 1] by

f(�) = inffy 2 [0; 1] : T1�y(�) < Ty(�)g:

26



We can now write Qn

0=n = f( ~Sn).

Applying the contraction principle, if f is continuous we can deduce the LDP

for Qn

0=n in [0; 1] with good rate function given by

J(y) = inf

�Z
1

0

��( _�)ds : f(�) = y

�
:

Exercise 2.3 Show that f is continuous, and that J(y) = Æy where Æ =

infx>0�
�(x)=x. Compare this with Theorem 1.4.

This LDP was obtained in [55] using the essentially same approach. It jus-

ti�es approximating the frequency of over
ow in a queue with (large) �nite

waiting space by the frequency with which that level is exceeded in the cor-

responding queue with in�nite waiting space.

2.6.3 Departures from a single server-queue

Consider the single-server queue of Section 2.6.1, except that now d = 2 and

Xk = (Ak; Ck), where Ak is the amount of work to arrive at time k and Ck is

the amount of work that can be served. We shall assume that X is stationary

and ergodic and that the sample path LDP holds with

� = r�(0) = (�1; �2) = (EA0; EC0)

and EA0 < EC0. The departures at time k are de�ned by

Dk = Ak +Qk�1 �Qk:

Consider the partial sums process associated with D: for t � 0 set

Tn(t) =
1

n

[nt]X
k=0

D�k;
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and write ~Tn for the polygonal approximation to Tn. Then

~Tn(t) = ~S1
n
(t) + sup

s>t

[ ~S1(s)� x1(t)� ( ~S2(s)� ~S2(t))]� sup
s>0

[ ~S1(s)� ~S2(s)];

and so we can write ~Tn = f( ~Sn) where f : A� !A�1
is de�ned by f(�) =  

where

 (t) = �1(t) + sup
s>t

[�1(s)� �1(t)� (�2(s)� �2(t))]� sup
s>0

[�1(s)� �2(s)]:

Exercise 2.4 Show that f is continuous.

We can therefore deduce an LDP for the sequence ~Tn with rate function given

by

J( ) = inf

�Z
1

0

��( _�)ds : f(�) =  

�
:

To solve this variational problem in general is quite hard.

Let us �rst concentrate on the sequence ~Tn(1). By the same argument we

have the LDP for this sequence with rate function

K(x) = inf

�Z
1

0

��( _�)ds : [f(�)](1) = x

�
:

If we also assume that ��(x; y) = ��
A
(x)+��

C
(y) or, equivalently, �(�1; �2) =

�A(�1) +�C(�2), we can make some progress. This assumption is satis�ed if

the arrivals and service processes, A and C are independent.

Exercise 2.5 Show that

K(z) = inffÆq + ��
A
(x) + ��

C
(y) : q � 0; minfy; q + xg = zg;

where Æ = supf� > 0 : �A(�) � �C(�)g.
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Exercise 2.6 (Constant service rate) If �C(�) = c�, for some c > �0
A
(0),

then K = ��
A
on [0; c] and +1 elsewhere.

Exercise 2.7 Assume that �C is �nite and di�erentiable. Show that if

�A(�) = �C(�)� �0
C
(�1)(� � �1)

then K = ��
A
. Find some examples where this property is satis�ed.

The last exercise identi�es an arrival process, for any given arrival rate �1 <

�0
C
(0), whose one-dimensional large deviations behaviour is left invariant by

the queue with service process C. For more on this, see [28].

A natural question to ask at this point is: when is the linear geodesic property

preserved? In other words, when do we have

J( ) =

Z
1

0

K( _ )ds? (27)

This is the subject of the paper [27]. It is shown there (see also [28]) that

the rate function J is convex if, and only if, ��
A
� ��

C
on (�1; �1]. If this

condition is satis�ed then (27) holds.

2.6.4 Other examples

More complicated examples where this approach has been applied can be

found in [45, 46, 47]. These include the �rst-come-�rst served single-server

queue with multiple inputs, where the state of the system in equilibrium and

the joint large deviations behaviour of the outputs are analysed, and queues
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with dedicated bu�ers. Most of the problems we have discussed, including

those studied in [45, 46, 47], along with variants and related problems, have

been analysed using di�erent methods in (for example) [1, 2, 4, 6, 7, 8, 10,

17, 18, 21, 22, 23, 24, 32, 51, 54].

2.7 Application: A problem in stochastic control

Consider the following queueing system. We have a stationary and ergodic

arrivals process Xk, and the queue evolves as follows:

Qn = minf(Qn�1 +Xn � c(Qn�1))
+; Bg; (28)

where c is some function which we are allowed to choose. The object is to

keep the queue-length away from the boundaries 0 and b.

This problem arises in many contexts, from storage and inventory control to

tape-speed control in backup drives. It can also be regarded as an abstraction

of the �le-transfer problem in communications networks (if you send the

data too fast it causes congestion, if you send it too slowly you loose on

throughput).

We will only consider the following control functions: for some threshold

T 2 [0; B], c = c1 on [T;B] and c = c0 on [0; T ), where c0 < EX0 < c1.

It is not hard to convince yourself that this class of control functions is in

some sense an optimal subclass of all control functions which take values in

the interval [c0; c1]. The problem is to determine, from among this subclass,

an optimal choice of T . We will assume that the events of hitting either

boundary are equally undesireable, so the object is simply to minimise the
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frequency of time spent at either boundary.

If ~Sn satis�es the usual LDP in A� with c0 < � = r�(0) < c1 and B is

large, we can use large deviation theory to estimate the frequency of time

spent at either boundary and hence choose a value of T which is optimal in

an approximate sense.

This problem turns out to be a kind of two-sided variant of the single-server

queue with �nite waiting space. De�ne

t1
q
= infft � 0 : n( ~Sn(t)� c1t) = qg;

and

t0
q
= infft � 0 : n(c0t� ~Sn(t)) = q:

Now set

Q+
0 = inffq 2 [0; B � T ] : t1

q�B+T < tqg;

and

Q�

0 = inffq 2 [0; T ] : t0
q�T

< tqg:

Finally, we de�ne

Q0 = T +Q+
0 �Q�

0 :

Note that minfQ+
0 ; Q

�

0 g = 0 (this follows from the de�nition).

Exercise 2.8 Argue that this represents a stable equilibrium for the system

de�ned by (28).

Note that Q+
0 and Q�

0 are queue-lengths in single-server queues with �nite

waiting space. We can thus analyse this system as in Section 2.6.2 to obtain:
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Exercise 2.9 Write QB

0 to express the dependence on B, and let T = aB

for some 0 < a < 1. Show that

lim
B!1

1

B
logP (QB

0 = B) = �Æ1(1� a)

and

lim
B!1

1

B
logP (QB

0 = 0) = �Æ0a;

where

Æ1 = inf
x>0

��(x + c1)=x = supf� > 0 : �(�) � c1�g

and

Æ0 = inf
x>0

��(c0 � x)=x = supf� > 0 : �(��) � �c0�g:

By the principle of the largest term, the overall frequency of hitting either

boundary is given approximately by

exp(�maxfÆ0a; Æ1(1� a)gB):

This is minimised, assuming Æ0 and Æ1 are �nite, by choosing the threshold

aB such that Æ0a = Æ1(1� a), or

a =
Æ1

Æ0 + Æ1
:

2.8 Scaling properties of networks

Often the variational problems that arise in networks are too complicated to

be of practical use. However, there are some elementary observations which

can be made from the abstract theory which turn out to be surprisingly use-

ful for providing heuristics, and these can really be used in practical network
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management situations. Imagine a complicated network, and suppose we are

interested in the contents of a bu�er at a particular location. As before, we

assume the inputs to the network, and the service capacities in the network2,

can be represented by a sequence of random variables (Xk) in R
d and ~Sn

is de�ned to be the corresponding partial sums process (19). We also ap-

proximate the network by assuming the bu�ers are in�nite. Although the

queue-length at this bu�er is a complicated function of the inputs to network,

it will generally be of the formQ = f(n ~Sn). Moreover, since the queue-length

is expressed in the same units as the inputs and service capacities, the func-

tion f will be homogeneous: F (a�) = aF (�) for any a > 0. From this alone,

assuming the mapping f is continuous, we can deduce that this queue-length

has exponential tails! Indeed, the normalised queue-length, by homogene-

ity, is given by Q=n = f( ~Sn). From this we deduce that the sequence Q=n

satis�es the LDP with rate function given by

J(q) = inf

�Z
1

0

��( _�)ds : f(�) = q

�
:

It follows that

lim
n!1

1

n
logP (Q > n) = �J(1);

and of course that J(q) = J(1)q.

To establish that J(1) is strictly positive and �nite, we need `stability, con-

tinuity, and non-degeneracy'. By stability we mean the following: if � is

the path with constant gradient �, then f(�) = 0. Continuity refers to the

continuity of the mapping f . By non-degeneracy we mean there exists a

2In what follows, as will become clear when we introduce the homogeneity requirement

below, it is important to include the service capacities in ~Sn, even if they are deterministic.
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� 2 A�(R+) for which Z
1

0

��( _�)ds <1

and f(�) > 0. Roughly speaking these conditions are equivalent to the

requirement that there exists a non-trivial equilibrium, which is reasonable.

For more on this, see [49].

2.9 Heavy traÆc models

All of the above can be applied to heavy traÆc models. The canonical model

for a single server queue which is heavily loaded evolves as follows: for t 2 R,

Qt = sup
s<t

[Bs �Bt � (t� s)]

where (Bt; t � 0) and (Bt; t � 0) are two independent standard Brow-

nian motions started from 0. This arises as a di�usion approximation to

the single-server queue described in Section 1, provided the sequence X is

suÆently mixing (weakly dependent) with �nite variance, and EX0 is close

to zero. Heavy-traÆc approximation theorems are usually stated in terms of

continuous-time queues, such as the M=M=1 queue, but they are equivalent.

See [58] for a recent survey of heavy traÆc queueing models. The queue-

length process Q is in fact a re
ected Brownian motion with negative drift.

For this model, the equilibrium distribution is exactly exponential. For more

complicated networks one can apply the techniques outlined in this section

with the basic sample path LDP for partial sums replaced by Schilder's the-

orem, which states that if B is a standard Brownian motion started at zero,
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the sequence B=
p
n satis�es the LDP in A0 with good convex rate function

I(�) =
1

2

Z
1

0

_�2ds: (29)

(See, for example, [15].) See [1] and references therein for more details.
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3 Long range dependence

In the early nineties, a collection of papers ([38] and references therein) pub-

lished by researchers at AT&T caused quite a stir in the world of communica-

tions networking and traÆc modelling. Based on a huge collection of traÆc

measurements taken from broadband networks, it was claimed that internet

traÆc exhibits long range dependence (LRD). Confusion and controversy

ensued. Networking engineers, familiar with traditional Markovian queueing

models (which do not exhibit LRD), were worried because the implication-

s of this �nding were unclear. The controversy arose naturally because of

deep philosophical diÆculties associated with �tting models to data which

exhibits long range dependence. It was soon realised that this was not a new

dilemma. For example, a similar controversy arose in the hydrology literature

some twenty years earlier (see, for example, [37]).

In this section we explain the notion of LRD, its implications for networks,

how it can arise and the philosophical issues associated with �tting LRD

models to data.

3.1 What is long range dependence?

Let Xn be a stationary sequence of random variables, which we assume to be

bounded for simplicity, and set Sn = X1+� � �Xn. If theXn's are independent,

then varSn = nvarX1. In particular, the variance of Sn grows linearly with

n, a property which is not speci�c to the iid case: this property holds quite

generally for Markov chains and other weakly dependent sequences.
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There is no standard de�nition for long range dependence. Rather, it is a

loosely used term to refer to the case where the variance grows non-linearly.

The most common LRD models used for teletraÆc have varSn � ct2H , where

1=2 < H < 1 (the Hurst parameter).

LRD sequences typically have 
uctuations at every time scale.

In the case of unbounded variables, where variances may not even exist, one

has to be a little more careful in de�ning LRD.

3.2 Implications for networks

In the large deviations framework of the last chapter, the existence of a

suÆciently smooth limiting cumulant generating function

�(�) = lim
n!1

1

n
logEe�Sn ;

implies (by Taylor expansion) that varSn ' �00(0)n. Thus, everything we

have presented so far does not apply to LRD models.

There is an analogue of Theorem 1.2 (actually it follows from that theorem)

in the case where the limit

�(�) = lim
n!1

1

a(n)
logEe�a(n)Sn=n

exists and is well-behaved, for sequences a(n) ! 1. In this case the log-

probabilities logP (Sn=n 2 F ) are normalised by a(n). If the variance is

growing non-linearly, we can expect (from the Taylor expansion again) to

have

a(n) = n2=varSn:
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This new framework can be used to prove an analogue of Theorem 1.4 (see,

for example, [20]). The bottom line, in the case

varSn � ct2H ;

is that the tails of the queue-length distribution do not decay exponentially

if H > 1=2. Instead, we have

logP (Q0 > q) � �Æq
;

where 0 < 
 = 2(1�H) < 1 and Æ = inf�>0 �

��(1=�). It is possible to state

and prove this result using techniques similar to those presented earlier. (You

may wish to regard this as a challenging exercise!) Instead, we will focus on

the most popular and well-known LRD queueing model, which is based on

fractional Brownian motion.

This is a continuous time model which has been widely adopted for its par-

simonious structure, as it depends on just three parameters: mean, variance

and Hurst parameter. The Hurst parameter re
ects the degree of LRD.

A Gaussian process is any stochastic process whose �nite-dimensional distri-

butions are all multivariate normal.

Standard fBM can be characterised as the centered (zero mean) Gaussian

process (Wt; t 2 R) with W0 = 0, stationary increments, continuous paths

and EW 2
t
= jtj2H , for some 1=2 � H < 1. The case H = 1=2 corresponds to

standard Brownian motion.

In the corresponding queueing model, introduced by Norros [44], the queue-

38



length at time t is given by

Qt = sup
s<t

[�(Ws �Wt)� �(t� s)];

where � and � are strictly positive. This is a stationary ergodic process with

equilibrium distribution characterised by

Q = sup
t>0

[�Wt � �t]:

For H > 1=2, the tails of the queue-length distribution for this model are

not exponential. In general, we have:

Theorem 3.1

lim
q!1

1

q

logP (Q > q) = ��2=2�2

where 
 = 2(1�H) and

� =
�H

HH(1�H)(1�H)
:

Proof | We follow the proof given in [42]. By scaling we can set � = 1.

Lower bound. Set

�'(x) =
1p
2�

Z
1

x

e�x
2=2;

and recall that Wt is Gaussian with mean zero and variance t2H .

P (Q > q) = P (sup
t>0

[Wt � �t] > q)

= P
[
t>0

fWt � �t > qg

� sup
t>0

P (Wt � �t > q)

= sup
t>0

�'

�
q + �t

tH

�
= �'(q1�H�):
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At the last step we minimise the argument in �'. The lower bound now follows

from the fact that log �'(x) � �x2=2 as x!1.

Upper bound. To prove the upper bound we use Borell's inequality : if Xt

is a Gaussian process (on any index set) and v2 = sup
t
varXt < 1, then

m = E suptXt <1 and

P (sup
t

Xt > x) � 2 exp

�
�x�m

2v2

�
;

for all x > m. Observe that

P (Q > q) = P (sup
t>0

[Wt � �t] > q)

= P
[
t>0

fWt � �t > qg

= P
[
t>0

�
Wt

q + �t
> 1

�

= P

�
sup
t>0

Wt

q + �t
> 1

�

Why did we rewrite the probability in this way? Because now we can apply

Borell's inequality: the variance of Wt � �t is unbounded, whereas

v2 = sup
t

var
Wt

q + �t
= sup

t

t2H

(q + �t)2
= q�
��2:

Moreover,

jmj =
����E sup

t

Wt

q + �t

���� � E sup
t

jWtj
q + �t

which goes to zero as q ! 1 by monotone convergence. Applying Borell's

inequality, for q suÆciently large,

P (Q > q) � 2 exp

�
�1�m

2v2

�
= 2 exp(�(1�m)�2q
=2);
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and the result follows. �

The case H = 1=2 coresponds to the heavy traÆc model discussed in Section

2.9; in this case, as expected, the tails do indeed decay exponentially.

3.2.1 Sample path large deviations for fBM

The statement of Theorem 3.1 tells us how the tails of the queue-length

distribution decay, but it tells us nothing about how large queue-lengths occur.

What is the most likely path? Is is linear?

There is an analogue of Schilder's theorem for fBM (see, for example, [15])

and the rate function is not of the form (29). In particular, for fBM, the

most likely path between two points is not linear.

This sample path LDP can be used to compute most likely paths. An alter-

native approach is presented in [48], which uses a representation of fBM as

a stochastic integral against standard Brownian motion, Schilders theorem

and the contraction principle. See also [9].

There is an even easier way to compute geodesics, which was pointed out to

me by Peter Glynn (personal communication). We use the following fact:

if (X; Y ) has a bivariate normal distribution with EX = EY = 0, EX2 =

EY 2 = 1 and cov(X; Y ) = �, then the conditional law of X given Y = y is

normal with mean �y and variance 1� �2.

Exercise 3.1 Use this fact to show that, for � 2 [0; 1],

g(�; x) := lim
t!1

E(W�t=tj Wt=t = x) = [�2H + 1� (1� �)2H ]x=2;
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and

lim
t!1

sup
�

var (W�t=tj Wt=t = x) = 0:

Deduce, using Borell's inequality, that

lim
t!1

P (sup
�

jW�t=t� g(�; x)j > �j Wt=t = x) = 0:

(You may assume that f(W�t=tjWt=t = x); 0 � � � 1g is a Gaussian

process.) Use this to describe how large queues build up in the fBM queueing

model.

3.3 How does long range dependence arise in natural

systems?

A concrete example from everyday life where LRD arises naturally is traÆc

patterns on country roads. Local interactions (cars cannot overtake each

other) can give rise to long-range interactions (huge backlogs followed by

long stretches without any cars at all).

Another example from everyday life is a magnet. Microscopic local interac-

tion between molecules can lead to macroscopic organisation: this is LRD. In

statistical physics, magnets are modelled as a Markov random �eld (higher

dimensional analogue of a Markov chain) and it can be shown that, if the

local interaction (dependence) is strong enough, the system will exhibit long

range dependence. This does not occur in one dimension (recall Exercise 1.5).

In the context of teletraÆc, the following observation is relevant. The aggre-

gation of many independent traÆc sources, each with heavy-tailed interar-

rival times, can be approximated by fractional Brownian motion with Hurst
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parameter H > 1=2 (see [33] and references therein). To make this more

precise, supppose we have N sources, each an independent copy of station-

ary renewal process with inter-renewal time distribution F , and F lies in the

domain of attraction of a stable law with index 1 + �, 0 < � < 1, that is

1� F (t) � t�(1+�)L(t)

where L is slowly varying at in�nity:

lim
t!1

L(xt)=L(t) = 1;

for any x > 0. Note that F has a mean � but no variance. Denote the number

of arrivals in the time interval [0; t) by AN (t). A scaling sequence aN can be

chosen such that a
�

N
� L(aN )m. In [33] it is shown that the the sequence of

processes Y N , de�ned by Y N (s) = AN(aNs)=aN �Ns=� for s > 0, converges

in law to centered fractional Brownian motion with variance parameter

�2 =
2

�3(1� �)(2� �)
;

and Hurst parameter H = 1� �=2.

3.4 Philosophical diÆculties with LRD modelling

First let us suppose that we have observed a high empirical value for the Hurst

paremeter associated with a particular time series. There are various schemes

for estimating Hurst parameters, but whichever one has been adopted, a large

empirical Hurst parameter indicates that there is a 
uctuation at the time-

scale over which the data is observed. To �t a LRD model to this data is to
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regard this 
uctuation as random. The alternative is to regard the data as

non-stationary.

Without any further information about the data and where it came from,

the fact that there is a 
uctuation at the time-scale over which the data is

observed makes prediction beyond the short term3 a diÆcult task; to hope

to say something useful about future 
uctuations at the same time-scale

is somewhat optimistic. It is a sample-size problem: with one sample (of


uctuations at this time scale) we don't have very much information (about


uctuations at this time scale).

In general, it is impossible to distinguish between LRD and non-stationarity.

If there is a 
uctuation at the time-scale over which the data is observed,

then either proposition is consistent with the data. For all practical purposes

they are equivalent. See [37] for an excellent discussion on this point.

Having said that, there is a fundamental di�erence at the philosophical level,

similar in nature to the di�erence between frequentist and Bayesian statistic-

s. I claim that, in this context, to take the LRD view and regard the single,

unexplained 
uctuation as random, is to be Bayesian. The alternative view-

point is essentially frequentist.

Suppose, on the other hand, we have some reason to believe that the data

is, in a truly statistical sense, long-range dependent in nature. For exam-

ple, suppose we know that the data is an aggregate of many independent

sources with heavy-tailed inter-arrival times, as discussed in the previous

3Ironically, as one of the students pointed out, short term prediction is often consider-

ably easier with such data sets because of the presence of `trends'.
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section. Then things are somewhat di�erent. Modelling and prediction will

be diÆcult, but no more diÆcult that modelling heavy-tailed distributions,

and as such one can hope to have some success. Robustness is now the key

issue. Domains of attraction of heavy-tailed stable laws (or as we saw in the

last section, fractional Brownian motion) are, in a sense which is diÆcult to

formulate precisely but which is nevertheless meaningful, much smaller than

the domain of attraction of the usual central limit theorem (and standard

Brownian motion), and for that reason predictions based on the former are

in practise more prone to error.

Note that these issues are a function of the data, not the approach. If a

time series appears non-stationary, exhibits LRD or heavy tails, there will

be diÆculties with prediction no matter what approach is adopted. There

are many instances in practise where it preferable to try something, even if

con�dence is limited, rather than throw our arms in the air and say \this is

impossible!".
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