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1. Introduction

In this paper we discuss recent progress in the understanding of Burgers turbu-
lence. Signi�cant part of this development is connected with applications of the
theory of dynamical systems. Certainly dynamical systems were used in hydrody-
namics for a very long time. However, the main features of the approach which we
describe below are connected with the fact that dynamical systems methods are
used not only to construct stationary distributions for solutions of hydrodynamic
equations, but also to obtain mathematical results on structure of singularities for
typical stationary solutions. The resulting geometrical picture leads to important
quantitative predictions for universal scaling exponents related to the pdf (prob-
ability distribution function) for the velocity gradients. It also allows to analyse
analytic properties of the structure functions. In this short article it is not possi-
ble to comment on all the important aspects of mathematical hydrodynamics. We
discuss here only problems which are related to turbulence driven by a random
force. The proofs of the results which we discuss here will be published in [22].
Results in the one-dimensional case are based on joint papers of one of us with
Weinan E, Alex Mazel and Yakov Sinai (see [9], [10]).

Most of the results which we discuss below are obtained for Burgers equation:

@tu+ (u � r)u = ��u+ f(y; t) (1)

where u(y; t) = (ui(y; t); 1 � i � d) is a velocity �eld, y = (yi; 1 � i � d) 2 Rd , and
f(y; t) = (fi(t; y); 1 � i � d) is an external force. However, for general discussion
we shall also refer to the Navier-Stokes equation:

@tu+ (u � r)u = ��u�rp+ f(y; t); div u = 0: (2)
1
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A general setting involves one of the hydrodynamics equations listed above
driven by random force. The forcing term is responsible for the constant pumping
of energy into the system. The energy also dissipates through di�erent dissipation
mechanisms. The balance between pumping and dissipation should in principle
lead to the establishment of a stationary probability distribution for solutions. This
is a general philosophy and the �rst task of a mathematical theory of turbulence
consists in establishing of the existence and, preferably, uniqueness of this sta-
tionary distribution, or, in dynamical systems terminology, the invariant measure.
The diÆculty of the problem depends on the mechanism of dissipation involved.
This mechanism obviously depends on the type of equation and the dimension
d. In general the diÆculty increases when one passes from Burgers equation to
Navier-Stokes equation, from viscous case � > 0 to inviscid limit � ! 0, and from
dimension d = 1 (for Burgers equation) or d = 2 (for Navier-Stokes) equation to
higher dimensions.

It is important to mention, that the construction of the stationary distri-
bution or the invariant measure corresponds to the limit t ! 1. At the same
time, the inviscid case, which is mostly interesting for turbulence theory, requires
another limiting process � ! 0. It is tempting, �rst, to construct an invariant
measure �� for � > 0, that is �rst to take limit as t!1 and then study limit of
�� as � ! 0. However, it is extremely diÆcult to control the last limiting process.
Experience of the random Burgers equation, for which invariant measure can be
constructed for both viscous and inviscid cases, suggests that it is more productive
to consider from the very beginning � = 0, construct unique invariant measure �,
and only later prove that �� ! � as � ! 0.

As we have mentioned above, a mathematical theory starts with establishing
the existence and uniqueness of an invariant measure. However, from the physical
point of view the most interesting problem is the analysis of statistical properties of
stationary solutions. In other words, how a typical solution looks like?What are the
leading singularities? How the power spectrum decays? What are the asymptotic
properties of pdf's and the structure functions? Those questions are much harder
to answer. They form the core of the problem of turbulence. It is probably fair to
say, that the problem of turbulence splits into \soft part" of existence-uniqueness
statements and a \hard part" of analysing properties of typical solutions. In the
rest of the paper we discuss only Burgers equation, where on can complete the
\soft part" in a very general situation, and also answer many of the \hard part"
questions (especially in the one-dimensional case). On the contrary, despite of re-
cent progress (see [23],[14],[5]), even situation with two-dimensional Navier-Stokes
equation remains largely open. In the most important case of �nite number of
modes being excited by the random force one can prove uniqueness of the sta-
tionary distribution only for large enough viscosity �. Correspondingly, in the case
of Navier-Stokes equation there are no mathematical results on the asymptotic
behaviour in the limit � ! 0.
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2. Random setting

To make the general discussion more precise we have to specify assumptions on
the random force f(y; t). The most natural, from the turbulence theory point of
view, is a setting where f(y; t) is a smooth function in space variable y and quite
irregular in time t. This brings us to a popular model, where

f(y; t) = �rF (y; t); F (y; t) =

NX
k=1

Fk(y)Bk(t): (3)

Here Fk(y) are smooth potentials and Bk(t) = _Wk(t) are independent white noises,
corresponding to independent Wiener processes Wk(t). Summation in (3) can be
�nite or in�nite. In the latter case one has to make sure that potentials Fk(y) decay
fast enough so that the series converges and de�nes a smooth forcing term f(y; t).
Under assumption (3) the hydrodynamics equations (1), (2) become stochastic
PDE's. However, one can essentially eliminate stochastic part by considering an-
other popular model for a random force, namely random kicking force. Let

f(y; t) = �rF (y; t); F (y; t) =
X
j2Z

F j(y)Æ(t� tj): (4)

The force in (4) corresponds to the situation when the system evolves without any
force between moments of kicks tj�1 and tj , so that u(y; tj�) is obtained from
u(y; tj�1+) as a result of free evolution of a system. Then, suddenly, we apply a
kicking force which change solution discontinuously, i.e.

u(y; tj+) = u(y; tj�)�rF
j(y): (5)

Smooth potentials fF j(y); j 2 Zg form a realization of some stationary potential-
valued random process. The simplest situation corresponds to Bernoulli process,
when di�erent F j are chosen independently according to some probability distri-
bution � 2 P(C1(T d)) in a space of smooth potentials. Here and below we denote
by P(M) the set of all probability distributions on the measure spaceM: One can
also make di�erent assumptions on kicking times tj . We shall just indicate two nat-
ural cases. The �rst one corresponds to a periodic sequence tj = �tj; j 2 Z. As we
shall see later, this assumption in the case of Burgers equation leads to a problem,
which is closely related to random Aubry-Mather theory. In the second situation
kicking times are determined by the realization of a stationary random process
which is independent from the random process F j(y). For example, ftj ; j 2 Zg
can be a realization of Poisson process. In this paper we consider only the sim-
plest case when kicking potentials form Bernoulli sequence, and kicking times are
periodic with �t = 1.

In both \white" and \kicked" settings the force is given by a stationary ran-
dom process. Denote by (
;B; P ) the probability space corresponding to this ran-
dom process. Sometimes we shall use the notation f!(y; t); F!(y; t); F j;!; ! 2 
;
for the forcing term and the potentials, indicating their randomness. The time shift
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f(y; t) ! f(y; t+ �) corresponds to the 
ow of automorphisms of the probability
space 
 :

�� : 
! 
; ��P = P; F!(y; t+ �) = F ��!(y; t); � 2 R; (6)

Equality ��P = P in (6) expresses the stationarity of the random force. Obviously,
in the case of periodic kicking times one should consider only the values � = j; j 2
Z in (6). We can de�ne now a standard skew-product structure which leads to
the de�nition of invariant measure. Consider the Cauchy problem for one of the
equations (1), (2). Denote by U some natural functional space, which is invariant
under the evolution given by (1), (2), or an invariant set in such space. This
means that u(y; t) 2 U for all t > 0; provided u(y; 0) 2 U . Denote by S!(�) a
nonlinear random transformation on U corresponding to the solution of the Cauchy
problem on the time interval [0; � ] with the random force f!(y; t). In other words,
u(y; �) = S!(�)u(y; 0). Clearly, solution of the equation for longer times implies
iteration of S!(�) for shifted !. It is easy to see that this process corresponds to

non-random transformation Ŝ acting on the product space U �
:

Ŝ(�)(u; !) = (S!(�)u; ��!): (7)

De�nition 2.1. A probability measure � 2 P(U �
) is called an invariant measure
for the random equation if

1. For any � , Ŝ(�) preserves � : Ŝ(�)� = �.
2. Marginal distribution of � on 
 is given by P , i.e.

�(du; d!) = �!(du)P (d!);

where �!(du) are the conditional distributions on U under the condition of �xed
!:

3. The conditional distributions �! are measurable with respect to the � -
algebra B0

�1 generated by the random process on the time interval (�1; 0]:

The last condition means that �! does not depend on the future distribution
of a random force f!(y; t); t > 0. It may look a bit arti�cial but one may say that
all physically relevant invariant measures always satisfy this condition.

We shall describe now a slightly di�erent point of view which also leads to
the notion of a stationary distribution for solutions of the random equation. It is
easy to see that S!(�) de�nes a stationary Markov process on U with transition
probabilities given by:

p� (A j u0) = P (! : u(y; �) = S!(�)u0(y) 2 A): (8)

De�nition 2.2. A probability measure � 2 P(U) is called a stationary distribution
for the random equation if it is a stationary distribution for the Markov process
(8), i.e.

�(A) =

Z
U

p� (A j uo)�(du0); � > 0:
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The notions of invariant measure and stationary distribution for a random
equation are closely connected. Namely, if � is an invariant measure then its mar-
ginal distribution �(du) =

R

 �

!(du)P (d!) is a stationary distribution for the
corresponding Markov process. Notice that this property holds only if an invariant
measure � satis�es condition 3 in De�nition 2.1.

3. Random Hamilton-Jacobi equation and minimizers

Our main results which we shall formulate in the next section are proven for the
Burgers equation on a compact connected Riemannian manifold. For simplicity we
consider here only the case of the torus T d = R

d=Zd which corresponds to periodic
potentials Fk in (3), or F j in (4). Everywhere below we assume that potentials
Fk; F

j in (3), (4) belong to C1(Rd ) and are Zd�periodic functions:

Fk(y +m) = Fk(y); F
j(y +m) = F j(y);m 2 Zd; y 2 Rd : (9)

We shall denote points of T d by x and points of the universal cover Rd by y.

It is well known that due to the creation of shocks the inviscid Burgers
equation has no strong, or, in other words, smooth solutions. However, there exists
a unique \physical" weak solution for the Cauchy problem, which is called the
\viscosity" solution. Given initial data u(x; 0) = u0(x) one can construct the
\viscosity" solutions by considering the viscous Burgers equation and taking the
limit as � ! 0. We shall always assume that u0 is a gradient-like function, i.e.
u0 = r�0, where �0 is a Lipschitz function. It is easy to see that the Burgers
equation with a potential force is an evolution equation in a space of gradient-like
functions. That means that the set of gradient-like functions is an invariant set.
Taking u(x; t) = r�(x; t) we obtain the Hamilton-Jacobi equation for �:

@t�(y; t) +
1

2
(r�(y; t))2 + F!(y; t) = 0: (10)

As in the case of the Burgers equation there are many weak solutions to the
Hamilton-Jacobi equation. However, there exists a unique \viscosity" solution cor-
responding to the Burgers viscosity solution. The exact expression for the viscosity
solution is given by the Hopf-Lax-Oleinik variational principle. That is, the \vis-
cosity" solution of the Cauchy problem for (10) in y 2 Rd ; t 2 [0; T ] with the initial
condition �(�; 0) = �0 is given by:

�(y; t) = inf

�
�0(
(0)) +

Z t

0

�
1

2
_
2 � F!(
(�); �)

�
d�

�
; t 2 [0; T ]; (11)

where the in�mum is taken over all absolutely continuous curves 
 : [0; t] ! R
d

such that 
(t) = y ([21, 24, 31]). Notice, that if potentials F! are Zd-periodic
functions, and �0(y) = b � y +  0(y), where b 2 R

d and  0(y) is Z
d-periodic, then

the solution (11) has the same form. Namely,

�(y; t) = b � y +  (y; t); t > 0 (12)
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where  (y; t) is a Zd-periodic function of y. The linear form b �y can be considered
as a �rst integral of the Hamilton-Jacobi equation. For the Burgers equation b
corresponds to the average velocity

b =

Z
Td
u(y; t)dx ;

which is well known to be a �rst integral. From now one we shall assume that the
value of the �rst integral b is �xed.

Using formula (11) we get the variational principle for  (x; t); which we
consider now as a function on the torus T d. For �xed b denote the action of a
curve 
 : [s; t]! T d by

A!;b
s;t (
) =

Z t

s

�
1

2
( _
(�) � b)2 � F!(
(�); �) �

b2

2

�
d�: (13)

Then,

 (x; t) = inf

2AC(0;x;t)

( 0(
(0)) + A!;b
0;t (
)); (14)

where AC(s;x; t) is the set of all absolutely continuous curves 
 : [s; t] ! T d

on the torus T d such that 
(t) = x. We shall also use the following notations.
Denote AC(x1; s;x2; t) the set of absolutely continuous curves 
 : [s; t]! T d such
that 
(s) = x1 and 
(t) = x2; AC(x; t) the set of absolutely continuous curves

 : (�1; t] ! T d such that 
(t) = x; AC the set of all absolutely continuous

curves 
 : (�1;+1)! T d: Finally, we de�ne the Lax operator L!;bs;t :

L!;bs;t  (x) = inf

2AC(s;x;t)

 (
(s)) +A!;b
s;t (
): (15)

Obviously, a function �(y; t); y 2 T d; t 2 [t1; t2] is a \viscosity" solution of the
Hamilton - Jacobi equation if �(y; t) = b � y +  (y; t), where  is Zd-periodic and
for all t1 � s < t � t2 :

L!;bs;t  (�; s) =  (�; t):

The variational principle (11, 14) can be easily extended to the \kicked" case.
Let u(y; n�) = r�(y; n�); �(y; n�) = b � y +  (y; n�);  (y; n+) =  (y; n�) �
Fn;!(y): Denote by A!;b

m;n(X) the \kicked" action of the sequence X = fxi 2

T d;m � i � ng :

A!;b
m;n(X) =

n�1X
i=m

�
1

2
�2b(xi+1; xi)� F i;!(xi)�

b2

2

�
; (16)

where �b(x; x
0) = mink2Zd(kx� x0 � b� kk): Then,

 (x; n) = inf
X2S(0;x;n)

�
 (x0; 0�) +A!;b

m;n(X)
�
; (17)

where S(m;x; n) is the set of sequences X = fxi 2 T d;m � i � ng such that
xn = x:

In analogy with the continuous case we shall also use the following notations:
S(x0;m;x; n) is the set of all sequences fxi 2 T d;m � i � ng such that xm =
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x0; xn = x; S(x; n) is the set of in�nite sequences fxi 2 T d;�1 < i � ng such
that xn = x; S is the set of all double-in�nite sequences fxi 2 T

d;�1 < i�1g:

We next de�ne an important notion of a minimizer.

De�nition 3.1. 1. A curve 
 : [s; t]! T d is called a minimizer if

A!;b
s;t (
) = min

�2AC(
(s);s;
(t);t)
A!;b
s;t (�):

2. A curve 
 : [s; t]! T d is called a  �minimizer if

 (
(s)) +A!;b
s;t (
) = min

�2AC(s;
(t);t)

�
 (�(s)) +A!;b

s;t (�)
�
:

3. A curve 
 : (�1; t0] ! T d is called a one-sided minimizer if it is a
minimizer for all (s; t);�1 < s < t � t0.

4. A curve 
 : (�1;1)! T d is called a global minimizer if it is a minimizer
for all (s; t);�1 < s < t <1.

Similar de�nitions apply to the \kicked" case. One has just to replace curves


 by sequences X, the action A!;b
s;t by the \kicked" action A!;b

m;n and pairs (s; t) by
the pairs of integer moments of time (m;n):

Clearly, minimizers are special trajectories of the Lagrangian 
ow L!s ; s 2 R
which is generated by solutions of the Euler-Lagrange system of equations:

_x = v

_v = �rF!(x; t): (18)

The Lagrangian 
ow L!s , is a stochastic 
ow of di�eomorphisms of T d � Rd :

L!s : (x0; v0) 7! (xs; vs); s 2 R: (19)

We shall also de�ne the skew-product extension L̂s of the Lagrangian 
ow. Namely,
we consider the 
ow of non-random transformations of T d � Rd �
 given by:

L̂s : (x0; v0; !) 7! (L!s (x0; v0); �
s!) = (xs; vs; �

s!); s 2 R: (20)

In the \kicked" case the Lagrangian dynamics is given by a random Standard-like
map (instead of Euler-Lagrange equation):

xn+1 = xn + vn �rF
n;!(xn)

vn+1 = vn �rF
n;!(xn): (21)

Then the Lagrangian 
ow L!n and its skew-product extension is de�ned exactly in
the same way as above

L!n : (x0; v0) 7! (xn; vn); L̂n : (x0; v0; !) 7! (xn; vn; �
n!); n 2 Z: (22)

We shall see in the next section that global minimizers correspond to non-trivial
invariant measures of L̂:
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4. Formulation of the main results

Consider the random Hamilton-Jacobi equation (10, 3) in a semi-in�nite interval
of time (�1; t0]. It turns out that for any b 2 R

d there exists a unique (up to a
constant) \viscosity" solution. More precisely, the following theorem holds.

Theorem 4.1. 1. For almost all ! and all b 2 Rd ; t0 2 R there exists a unique (up
to an aditive constant) function �!b (y; t); y 2 R

d ; t 2 (�1; t0]; such that

�!b (y; t) = b � y +  !b (y; t)

where  !b is a Zd�periodic function and for all �1 < s < t � t0

 !b (y; t) = L!s;t 
!
b (y; s):

2. The function �!b is Lipschitz in y. If x 2 T d is a point of di�erentiability
of �!b (x; t) then there exists a unique one-sided minimizer 
!x;t at (x; t) and its
velocity is given by the gradient of �: _
!x;t(t) = r�!b (x; t):

3. For almost all ! and arbitrary family of continuous functions �s(y) =
b � y+ �s(y), where �s are Zd�periodic functions, the following convergence holds:

lim
s!�1

L!s;t�s =  !b (x; t) (mod constant):

Moreover, if x is a point of di�erentiability of �!b (x; t) then

lim
s!�1

_
!�s;s;x;t(t) = _
!x;t(t) = r�!b (x; t);

where 
!�s;s;x;t is a �s�minimizer.

Similar theorem holds in the \kicked" case. Suppose the probability distri-
bution � for the kicking potentials F j;!(x) satisfy the following assumption.

Assumption 1. For any x 2 T d there exists a potential F belonging to the support
of � and such that F has a unique global non-degenerate maximum at x.

Theorem 4.2. Suppose probability distribution � 2 P(C1(T d)) satis�es Assump-
tion 1. Then all the statements of Theorem 4.1 remain true with replacement of t
by n+ and n�; n 2 Z:

The following statement is a simple consequence of Theorems 4.1, 4.2.

Corollary 4.3. 1. Consider the random Burgers equation (1, 3) or (1, 4) in a
semi-in�nite interval of time (�1; t0]. Assume that probability distribution � 2
P(C1(T d)) satis�es Assumption 1. Then in both \white" and \kicked" cases, al-
most surely for all b 2 Rd there exists a unique \viscosity" solution u!b (x; t) with
the average velocity b.

2. For Lebesgue-almost all x

u!b (x; t) = r�!b (x; t) = _
!x;t(t);

where 
!x;t is the unique one-sided minimizer at (x; t).
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3. Almost surely for all all b 2 R
d ; t 2 (1; t0] and arbitrary family of

gradient-like functions ws(x), such that
R
Td
ws(x)dx = b the following convergence

holds for Lebesgue-almost all x 2 T d:

lim
s!�1

ws(x; t) = u!b (x; t);

where ws(x; t) is the solution of the Cauchy problem for the forced Burgers equation
with the initial data at time s given by ws(x):

Corollary 4.3 implies uniqueness of the stationary distribution for the random
Burgers equation. Denote by Ub = fu(x) : u(x) = b + r (x);  2 Lip(T d)g.
Obviously, Ub is an invariant set for the Burgers dynamics. We shall regard Ub as
a subset of Lp(T d; dx); p > 0. This embedding de�nes a measurable structure on
Ub. It is easy to see that a mapping ! 7! u!b (x; 0) (or, u

!
b (x; 0+) in the \kicked"

case) gives a measurable transformation U : 
! Ub. Denote by Æ
!
b (du) the atomic

measure on Ub with the atom at u!b (x; 0) (or at the u
!
b (x; 0+) in the \kicked case"),

and de�ne a probability measure �b on P(Ub � 
) by �b(du; d!) = Æ!b (du)P (d!).
We shall also consider the marginal distribution of �b on Ub. Denote this marginal
distribution by �b : �b(du) =

R

 Æ

!
b (du)P (d!). As in the previous theorem we

assume that probability distribution � 2 P(C1(T d)) satis�es Assumption 1.

Theorem 4.4. Consider the evolution given by the random Burgers equation (1,
3), or (1, 4). Then for all b 2 Rd the following statements hold.

1. The probability measure �b 2 P(Ub � 
) is the unique invariant measure
for the skew-product dynamics (7) on P(Ub �
):

2. The probability measure �b 2 P(Ub) is the unique stationary distribution
for the Markov process (8) on Ub:

We next discuss the properties of minimizers. It follows from Theorem 4.1
that for a �xed time t and for Lebesgue-almost all points x there exists a unique
one-sided minimizer. In fact, an easy compactness argument gives the existence
of at least one one-sided minimizers for all x 2 T d. Points of non-uniqueness
are called shock waves, or simply shocks. Every one-sided minimizer 
x;t0 is a
trajectory of the Lagrangian 
ow corresponding to the Euler-Lagrange system
(18), or the random Standard map (21). It can be continued as a trajectory of
Lagrangian 
ow for all t. However, its continuation is likely not to be a one-sided
minimizer for large enough t > t0: Global minimizers correspond to exactly those
one-sided minimizers that can be continued as minimizers for all t. It turns out
that in a very general situation there exists a unique global minimizer. We shall
�rst formulate a theorem in the \white" force case.

Theorem 4.5. Suppose that the potentials Fk(x); 1 � k � N; satisfy the following
property: for some 1 � l � N a mapping

(F1(x); :::Fl(x); Fl+1(y); :::; FN (y)) : T
d � T d ! R

N

is an embedding. Then with probability 1 there exists only one global minimizer.
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In the \kicked" case we shall assume that the kicking potentials F j;!(x) are
given by linear combination of the smooth non-random potentials Fi; 1 � i � M
with random coeÆcients.

Assumption 2.

F j;!(x) =
MX
i=1

�ji (!)Fi(x); j 2 Z;

where the random vectors �j(!) = f�ji (!); 1 � i �Mg are independent identically
distributed vectors in RM with an absolutely continuous distribution.

Theorem 4.6. Assume that Assumptions 1,2 hold, and in addition the potentials
Fi(x); 1 � i �M; are such that the mapping

(F1(x); :::; FM (x)) : T d ! R
M

is one-to-one. Then with probability 1 there exist only one global minimizer.

Denote by x!g the position of the global minimizer at time t = 0. For �xed

t > 0 consider all one-sided minimizers 
!x;t; x 2 T d. Denote by A!(t) = fx0 =


!x;t(0)g the set of points at which one-sided minimizers cross T d at t = 0. Notice,
that x!g 2 A!(t) for all t � 0: The following statement follows immediately from
the uniqueness of the global minimizer.

Corollary 3. If there exists a unique global minimizer then diamA!(t) ! 0 as
t!1:

Corollary 3 implies that 
!x;t(0) approaches x
!
g as t ! 1: However, in the

multi-dimensional case we cannot control the rate of convergence. At the same
time, in the one-dimensional case convergence to the global minimizer is exponen-
tially fast. It follows from the hyperbolicity of the global minimizer. Denote by v!g
the velocity of the global minimizer at time t = 0. De�ne a probability measure
� 2 P(T d � Rd �
) by

�(dx; dv; d!) = Æx!g ;v!g (dx; dv)P (d!);

where Æx!g ;v!g (dx; dv) is an atomic measure in P(T d�Rd) with the atom at (x!g ; v
!
g ):

The following theorem holds if d = 1:

Theorem 4.7. (see [9]) 1. The probability measure � is a hyperbolic ergodic invari-
ant measure for the skew-product extension of the Lagrangian 
ow. In particular,
it implies that with probability 1 the global minimizer is a hyperbolic trajectory of
the Lagrangian 
ow with non-random positive Lyapunov exponent � > 0.

2. With probability 1 there exists a one-dimensional C1-smooth unstable
manifold passing through (x!g ; v

!
g ), which consists of all (x; v) whose Lagrangian

trajectories are asymptotic to the global minimizer as t! �1.
3. With probability 1 for all b the function u!b (x; 0) is piecewise C1-smooth

with �nite number of shocks (jump discontinuities). The graph of each smooth piece
of u!b (x; 0) belongs to the unstable manifold of the global minimizer.
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4. All the shocks except one correspond to double-folds of the unstable man-
ifold. The only special shock, which is called the main shock, has a topological
nature. It is the only shock which can be traced ever in the past. All other shocks
have �nite history and have appeared from preshocks at some negative moments of
time t.

Remark 4.8. Part of the statement 1 of theorem 4.7 remains valid in the multi-
dimensional case. Namely, it is still true that the probability measure � is an
ergodic invariant measure for the skew-product extension of the Lagrangian 
ow.
However, hyperbolicity of the measure � is still an open problem.

The proof of all the theorems (except the last one) will be published in [22].
The results of the last theorem have been proved in [9] for the \white" force case.
The proof requires an additional assumption (see nondegeneracy condition (A1)
in [9], p.900), which is of the same nature as the condition of Theorem 4.5 above.

5. Concluding remarks.

1. Most of the results which we have formulated in the previous section are related
to the multi-dimensional Burgers equation driven by a random force. Similar re-
sults in the one-dimensional case have been proven in [9]. However, the methods in
[9] were purely one-dimensional. The new approach which we apply here is more
general and straightforward. Advantage of the method is connected with a system-
atic use of Lagrangian formalism and the Hamilton-Jacobi equation. This allows
us to prove results on the uniqueness of stationary distribution in any dimension.
Our method also gives a proof of the uniqueness of global minimizer, which is a
fundamental property of random Lagrangian systems. In fact, one can consider
the work presented here as a study of minimizing orbits of random Lagrangian
systems. This problem is quite interesting on its own without any connection with
the hydrodynamics and the Burgers equation. The theory of minimizing orbits for
Lagrangian systems with autonomous or time-periodic potentials has a long his-
tory. It goes back to the works of M. Morse and G. Hedlund (see [30], [20])). In the
last 15 years this subject became a very active research area in connection with
Aubry-Mather theory (see [1, 28, 29, 26, 27, 15, 8]). R. Ma~n�e has conjectured that
for a generic time-periodic potential there exists a unique global minimizer which
is a hyperbolic periodic trajectory of the Lagrangian system. This conjecture re-
mains open. However, a related result on the uniqueness of a minimizing measure
have been proven in [26]. It was also shown in [7] that the invariant measure is hy-
perbolic provided it is supported by a single periodic orbit. In the random case we
can prove not only the uniqueness of a minimizingmeasure, but also show that this
measure is supported by the unique global minimizer. He hope that the unique-
ness of the global minimizer will make it possible to prove that it is a hyperbolic
trajectory with probability 1. There is an interesting connection between our hy-
perbolicity conjecture in the random case and Mane's conjecture. Indeed, random



12

Lagrangian systems are generic with probability 1 in the measure-theoretic sense,
while Mane's conjecture is related to topologically generic Lagrangian systems.

2. The case of \kicking" potentials corresponds to a random generalisation
of Aubry - Mather theory (see [1, 28]). The Lagrangian in this case can be con-
sidered as a random Frenkel-Kontorova type model, which describes an in�nite
chain of particles placed in periodic potentials and connected by elastic springs.
In the random situation the potentials are chosen independently for each parti-
cle, contrary to the classical case when one periodic potential serves all of them.
In the non-random case the structure of global minimizers is very complicated.
It crucially depends on the arithmetic properties of the rotation vector, which in
turn depends non-trivially on the vector b in the linear form b � y. In the case of
�xed Diophantine rotation number (d = 1) it is believed that one has transition
from elliptic minimizers for small potentials to hyperbolic global minimizers when
potentials are large enough. This transition is related to destruction of invariant
KAM curves which correspond to elliptic minimizers. All this complicated picture
should be compared with the uniqueness of the global minimizer for all b in the
random case (see Theorems 4.5, 4.6). In the random one-dimensional case one can
also prove (see Theorem 4.7) the hyperbolicity of the global minimizer, while in the
classical Aubry-Mather theory the hyperbolicity of minimizers after destruction of
KAM curves remains an outstanding open problem.

3. The uniqueness of the \viscosity" solutions of the random Hamilton-Jacobi
and Burgers equations for �1 < t � t0 (Theorems 4.1, 4.2, Corollary 4.3)
demonstrates the extreme stability of those equations. The uniqueness result can
be formulated as the \one force - one solution" principle. We just mention that in
the case of the Navier-Stokes equation situation is much more complicated. The
\one force - one solution" principle is valid only for large enough values of the
viscosity.

4. Finally, we shall discuss the quantitative predictions which we have men-
tioned at the beginning of the article. One-dimensional random Burgers equation
with large scale forcing have been discussed very intensively in the physical liter-
ature in the last 5 years (see [11, 32, 6, 19, 2, 18, 3, 4, 17]). The methods used
vary from numerical simulations to quantum �eld theoretic closure techniques. It
was shown that the pdf g(z) for the velocity gradient z = du!

dx
decays super ex-

ponentially for large positive values of z, and algebraically for negative values, i.e.
g(z) � C

jzj� as z ! �1: The critical exponent � is universal. It means that � is

independent of the precise formula for a driven force. In ([32], [2]) it was predicted
that � is equal to 5

2 or 3. However, as it was shown in [10]) the geometrical picture
formulated above (see Theorem 4.7) suggests that the main contribution to g(z)
for large negative values of z comes from small neighbourhoods of the preshock
events. Then an easy calculation implies that � = 7

2 (see also [12, 13]. This predic-
tion, although not rigorous, seems to be more and more accepted by the physical
community. The prediction for � is based on the hyperbolic geometrical picture
which implies that the number of shocks is �nite (rather than in�nite with shocks
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being everywhere dense on S1 = R=Z). This suggests that the preshocks events
form a set of isolated points on the (x; t) space, and, hence, leads to the predicted
value � = 7

2 . We hope that in the multidimensional case one will be able to get
nontrivial quantitative results, provided that the hyperbolicity is established.
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