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Abstract. We calculate the force operator for a charged particle in the �eld of an

Aharonov-Bohm 
ux line. Formally this is the Lorentz force, with the magnetic �eld

operator modi�ed to include quantum corrections due to anomolous commutation

relations. For stationary states, the magnitude of the force is proportional to the

product of the wavenumber k with the amplitudes of the `pinioned' components, the

two angular momentum components whose azimuthal quantum numbers are closest to

the 
ux parameter �. The direction of the force depends on the relative phase of the

pinioned components. For paraxial beams, the transverse component of our expression

gives an exact version of Shelankov's formula [Shelankov A 1998 Europhys. Lett. 43,

623 { 8], while the longitudinal component gives the force along the beam.

Nonstationary states are treated by integrating the force operator in time to obtain

the impulse operator. Expectation values of the impulse are calculated for two kinds of

wavepackets. For slow wavepackets, which spread faster than they move, the impulse is

inversely proportional to the distance from the 
ux line. For fast wavepackets, which

spread only negligibly before their closest approach to the 
ux line, the impulse is

proportional to the probability density transverse to the incident direction evaluated at

the 
ux line. In this case, the transverse component of the impulse gives a wavepacket

analogue of Shelankov's formula. The direction of the impulse for both kinds of

wavepackets is 
ux dependent.

We give two derivations of the force and impulse operators, the �rst a simple

derivation based on formal arguments, and the second a rigourous calculation of

wavepacket expectation values. We also show that the same expressions for the force

and impulse are obtained if the 
ux line is enclosed in an impenetrable cylinder, or

distributed uniformly over a 
ux cylinder, in the limit that the radius of the cylinder

goes to zero.
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1. Introduction

There have been a number of investigations of the force exerted on a charged particle

by an Aharonov-Bohm 
ux line. Classically, of course, there is no force, so it, like the

Aharonov-Bohm e�ect itself, is essentially quantum mechanical, vanishing as ~ ! 0.

Olariu & Popescu (1983, 1985) show that for certain localized wavepackets (these are the

fast wavepackets described in Section 4.2 below), the force, along with the momentum it

imparts, is negligible unless the centre of the wavepacket hits the 
ux line. Nielson and

Hedeg�ard (1995) and Shelankov (2000) compute matrix elements of the force operator

for stationary states of the same energy. Shelankov (1998) calculates the transverse force

on a stationary incident beam of �nite angular width using a paraxial approximation,

a result we refer to as Shelankov's formula. This use of the paraxial approximation has

been justi�ed by Berry (1999), who computes the asymptotic de
ection of the beam

from an exact representation. Peshkin (1981, 1989) computes the expectation value of

the force when the 
ux line is enclosed in an impenetrable cylinder. Recent interest in

this problem has been stimulated by the analogy with the Iordanskii force (Iordanskii

1966) exerted on phonons by a vortex in a super
uid (see, eg, Sonin 1975, Sonin 1997,

Thouless et al 1997, Stone 1999), which has been the subject of some recent debate.

In this paper we add to these investigations in several ways. First, we obtain an

exact representations for the Lorentz force operator due to an Aharonov-Bohm 
ux

line; its matrix elements for stationary states of the same energy agree with previous

results. We also obtain an exact representation of the time integral of the force, the

impulse operator, and compute its expectation values for various kinds of wavepackets.

We show that the force operator can be simply derived, formally at least, from purely

kinematic considerations, and give a mathematically rigourous demonstration to justify

the results obtained in this way.

The paper is organized as follows. In Section 2, we give a formal derivation of

the (vector) Lorentz force operator due to an Aharonov-Bohm 
ux line. Pointing out

that the nominal magnetic �eld operator, (�hc=e)�2(r), is incompatible with gauge

invariance, we show that that a modi�cation of the canonical commutation relations

restores gauge invariance and yields the Lorentz force. An explicit formula for the

expectation value for stationary states follows directly. Matrix elements between

stationary states of the same energy are seen to coincide with previous results. The

transverse component of the force is shown to coincide with Shelankov's formula in the

paraxial limit (see also Shelankov (2000)). We then compute (Section 3) the impulse

operator, the integral of the force operator in in�nite forward and backward time, in

the position representation. In Section 4 we compute the leading-order expectation

value of the impulse for two kinds of wavepackets. For slow wavepackets (Section 4.1),

which spread more quickly than they move, the impulse is inversely proportional to

the initial distance between the wavepacket and the 
ux line, with magnitude and

direction depending periodically on the 
ux parameter �. By treating the de
ection of

a slow wavepacket as a classical scattering, we obtain an expression for the scattering
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cross-section which, surprisingly, coincides with the exact result. Fast wavepackets

(Section 4.2) move more quickly than they spread, so much so that the fractional increase

in their width as they pass the 
ux line is small. In this case, the impulse is proportional

to the transverse probability density at the 
ux line, and its transverse component gives

a wavepacket analogue of Shelankov's formula.

In the Appendix, we give a rigourous derivation of the force and impulse expectation

values for a class of well-behaved wavefunctions. In Section 5, we compute matrix

elements of the force operator for two standard regularizations of the Aharonov-Bohm


ux line, the �rst where the 
ux is enclosed in an impenentrable cylinder, and the second

where it is distributed uniformly in a cylindrical tube. The Aharonov-Bohm results of

Section 2 and Section 3 are recovered in the limit that the radius of the cylinder goes

to zero.

2. Force operator

Consider a particle of charge e and mass M moving in the xy-plane in a magnetic

�eld along ẑ. Quantum mechanically, the particle is described by the Hamiltonian

H = 1
2
MV � V , where MV = P � eA=c is the kinetic momentum and A(r) is the

vector potential. The force, ie the rate of change of the kinetic momentum, is given by

the appropriately symmetrized Lorentz force operator,

F =
1

i~
[MV ; H] =

e

2c
(V ^ (B ẑ)� (B ẑ) ^ V ) ; (1)

where the magnetic �eld operator is de�ned by

B =
�0

2�i~2
[MVx;MVy]: (2)

Here �0 = 2�~c=e is the magnetic 
ux quantum. The usual commutation relations for

position and canonical momentum lead to the usual relation between the magnetic �eld

and the vector potential, namely B ẑ = r ^A.

However, this relation is incorrect for the vector potential of an Aharonov-Bohm


ux line (since we are restricting to the plane, we should perhaps say `
ux point', but

we will follow conventional usage). For a 
ux line at the origin of strength ��0, and in

a circularly symmetric gauge, the vector potential is given by

A(r) = �
�0

2�r
�̂ (3)

As is well known, physically meaningful quantities depend only on the fractional part,

~�, of the 
ux parameter, �; a unit shift in the 
ux parameter, �! �+ 1, is equivalent

to the gauge transformation  ! U , where

(U )(r; �) = ei� (r; �): (4)

As a consequence, a physically observable operator O(�) which depends on the 
ux

parameter must transform under U according to

UO(�)U y = O(�+ 1): (5)
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For example, the kinetic momentum MV satis�es this relation, as is easily veri�ed. As

the magnetic �eld operator (2) is expressed in terms of the commutator of components

of kinetic momentum, it must also satisfy (5). However, r ^ A, which is given by

��0�
2(r) ẑ, clearly does not satisfy (5); it is invariant under the gauge transformation

U (like any operator which depends only on position), but is not periodic in �. It follows

that substituting r^A for B ẑ in (1) cannot give the correct expression for the Lorentz

force operator.

The problem is caused, of course, by the singularity at r = 0, and can be avoided by

an explicit calculation of the time rate of change of the expectation value of the kinetic

momentum for suitably chosen wavefunctions. This is done in the Appendix. However,

we can obtain the same result more easily and more directly from formal arguments. If

the usual canonical commutation relations lead to a magnetic �eld operator which does

not transform correctly under gauge transformations, then the canonical commutation

relations must be modi�ed by the 
ux line. In particular, we show below that, formally,

the components of the canonical momentum, px and py, do not commute { equivalently,

the partial derivatives @x and @y do not commute { in the presence of nonzero 
ux.

First, we note that the partial derivatives @x and @y certainly commute when applied

to smooth wavefunctions. That is,

[@x; @y] = 0 (6)

for  (r) smooth. Applying the gauge transformation U to this relation m times, we get

[Um
@xU

ym
; U

m
@yU

ym]
�
eim�

 
�
= 0: (7)

The partial derivatives transform according to

U
m
@xU

ym = @x � im@x�; U
m
@yU

ym = @y � im@y�: (8)

Substituting (8) into (7), and using the di�erential version of Stokes' theorem,

[@x; @y]� = (r^r)z� = 2��2(r); (9)

we obtain

[@x; @y]
�
eim�

 
�
= 2��2(r)imeim�

 = 2��2(r)@�
�
eim�

 
�
; (10)

where the second equality follows because @� vanishes at the origin for  (r) smooth.

This implies, formally, the operator relation

[@x; @y] = 2��2(r)@�; (11)

or, equivalently,

[Px; Py] = �2�i~�2(r)L; (12)

where L = (~=i)@� is the canonical angular momentum.

Using the modi�ed commutation relation (12) to evaluate the magnetic �eld

operator (2), we get, instead of the classical relation B = ��0�
2(r), the result

B =
�0

2�i~2
[Px; Py] + (r^A)z = ��0

~
�
2(r)�; (13)
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where

� ẑ = r ^MV = (L� �~) ẑ (14)

is the kinetic angular momentum. It is evident that �, and hence B, satisfy the

transformation law (5).

Throughout this and the following sections, it will be convenient to represent vectors

in the xy-plane as complex scalars. For example,W = Wx x̂+Wy ŷ will be represented

by W = Wx+iWy. IfW is a vector of hermitian operators (as opposed to real scalars),

then W is the nonhermitian scalar operator whose hermitian and antihermitian parts

are Wx and iWy respectively. In this way, the kinetic momentumMV is represented by

the scalar operator

MV =
~

i
ei�
�
@r +

i@� + �

r

�
: (15)

It is useful to note that, in general, ẑ ^W is represented by iW.

We proceed to compute the expectation value of the Lorentz force. Substituting

(13) for the magnetic �eld and (15) for the kinetic momentum into the expression (1),

we get

h j F j i = �ie
c
h jBV j i

= �2i~2

M

Z 2�

0

d�

Z 1

0

r dr �(r; �)

�
�(r)

r
(@� � i�)ei�

�
@r +

i@� + �

r

��
 (r; �); (16)

where we have used �
2(r) = �(r)=(�r). With  resolved into its angular momentum

components,

 (r; �) =
1X

m=�1

 m(r)e
im�

; (17)

the integrals in (16) are trivially evaluated (note that
R1
0
�(r) dr = 1

2
), with the result

h j F j i = 2�~2

M

1X
m=�1

�
 
�
m+1(r)(m+ 1� �)

�
 
0
m
(r)� (m� �)

r
 m(r)

��
r=0

: (18)

Like any vector operator, F couples only consecutive angular momentum components, m

and m+1, and, as one would expect, depends only on the behaviour of the wavefunction

at the 
ux line. For well-behaved wavefunctions, the leading-order behaviour of  m(r)

as r! 0 is given by

 m(r) � Cmr
jm��j

: (19)

Su�cient conditions for (19) are discussed in the Appendix. Here, we note that (19)

ensures that the energy density,  �(r)(H )(r), is �nite at r = 0. Substituting (19) into

(18), we get

h j F j i = 2�~2

M

1X
m=�1

(m+ 1� �)(jm� �j � (m� �))

� C
�
m+1Cmr

jm+1��j+jm��j�1
��
r=0

: (20)
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The terms in the sum (20) vanish unless m = a, where a = �� ~� denotes the integer

part of the 
ux parameter. Thus, only the `pinioned' components of the wavefunction,

 a and  a+1 { those whose angular momentum quantum numbers are nearest the 
ux

parameter � { contribute to the force expectation value (18). From (20),

h j F j i = 4�~2

M
~�(1� ~�)C�

a+1Ca; (21)

or, equivalently,

F =
4~2

M
~�(1� ~�) j�a+1i h�aj ; (22)

where the state j�mi corresponds to the singular wavefunction

�m(r; �) =
�(r)

�rjm��j+1
eim�

; (23)

so that h�m j i = Cm. It is readily veri�ed that the force operator (22) transforms

according to (5) under the gauge transformation (4). A rigourous derivation of the

expectation value (21) for suitably chosen wavefunctions is given in the Appendix.

In the preceding derivation, the force operator due to a 
ux line, like the force for

a nonsingular potential, is derived from kinematics, speci�cally from the commutation

relations. The derivation does not require the solution of the Schr�odinger equation.

Thus, it is straightforward to generalize to the case of more than one 
ux line (for which

solutions of the Schr�odinger equation are, in general, not available); the force operator

is just a sum of contributions (22) centred around each 
ux line.

However, to calculate the force on stationary states, or the time dependence of the

force on nonstationary states, it is necessary to solve the Schr�odinger equation. As is

well known, eigenstates of the Aharonov-Bohm Hamiltonian with energy ~
2
k
2
=2M and

angular momentum m~ are given by

�k;m(r) = Jjm��j(kr)e
im�

; (24)

where J�(z) is a Bessel function. From the small-z behaviour, J�(z) � (z=2)�=�(� +1),

and the re
ection formula, �(�)�(1 � �) = �= sin��, we obtain from (22) the matrix

elements

h�p;nj F j�k;mi =
2~2

M
k
~�
p
1�~� sin �~� �m;a�n;a+1: (25)

For k = p, ie for stationary states with the same energy,

h�k;nj F j�k;mi =
2~2

M
k sin �~� �m;a�n;a+1; (26)

in agreement with results of Nielson and Hedeg�ard (1995) and Shelankov (2000).

A general stationary state j	i is a superposition of eigenstates with k �xed, and

may be taken to be of the form

j	i =
1X

m=�1

(�i)jm��jbm j�k;mi : (27)
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For bm = 1, 	(r) corresponds to a scattered plane wave incident from the right

(Aharonov & Bohm 1959). From (25),

h	j F j	i = 2i~2

M
e�i�~�k sin �~� b�

a+1ba: (28)

Shelankov (1998) has obtained an approximate formula for the transverse

component of the force acting on a stationary beam of �nite angular width. His analysis

is carried out in a singular gauge, in which the vector potential vanishes everywhere

except along the y-axis. A stationary beam incident from the right (in fact, Shelankov

takes the beam incident from the left, but we revert to the convention of Aharonov and

Bohm) is taken to be of the form e�ikx (x; y). Treating  xx as small compared to k x
amounts to a paraxial approximation, in which the wave evolves freely in x (with x

playing the role of time) for x 6= 0, and is scattered by the vector potential at x = 0.

The change �py in the transverse kinematic momentum, (~=i)
R1
�1

 
�(x; y) y(x; y) dy,

is then calculated to be

�py = ~ sin 2��
j in(0)j2R1

�1
j in(y)j2 dy

(29)

where

 in(y) =
1p
2�k

Z 1

�1

a(ky)e
ikyy dky (30)

is the incident wave at x = 0+, expressed here in terms of its transverse Fourier

amplitudes a(ky). Multiplying �py by the incident 
ux, which is given paraxially by

(~k=M)
R1
�1

j in(y)j2 dy, gives Shelankov's formula for the transverse force,

F
(S)
y

=
~
2

M
k sin 2�~� j in(0)j2 : (31)

We now show that the y-component of the exact force expectation value, ie the

imaginary part of (28), coincides with Shelankov's formula (31) in the paraxial regime.

(Shelankov (2000) gives the same argument.) As discussed by Berry (1999), the state

(27) can alternatively be viewed as a superposition of scattered waves incident from the

directions (cos �;� sin �), with amplitudes A(�) related to the coe�cients bm according

to

bm =
1p
2�

Z
�

��

A(�)ei(m��)� d�: (32)

The paraxial approximation is valid for A(�) strongly peaked around � = 0, with angular

width w << 1. In this case, Berry (1999) has shown that A(�) � a(k�). From (30)

and (32), it then follows that bm �  in((m � �)=k) for jm � �j << 1=w, so that

b
�
a+1ba � j in(0)j2.

3. Impulse operator

For nonstationary wavepackets  (r), whose wavefunctions are not eigenfunctions of

the Hamiltonian, the expectation value of the force does not itself have much physical
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signi�cance. It depends on the behaviour of the wavefunction near the 
ux line,

regardless of where the wavepacket is localized, and can oscillate rapidly as the

wavepacket evolves. Of greater physical interest is the impulse imparted to the particle

over the course of its evolution, either in the past or future. Let

F(t) = eiHt=~Fe�iHt=~
; MV(t) = eiHt=~

MVe�iHt=~ (33)

denote the time-evolved force and kinetic momentum operators. Then M _V(t) = F(t).
The forward (+) and backward (-) impulse operators are de�ned by

I� =MV(�1)�MV(0) =
Z �1

0

F(t) dt: (34)

Let us compute the kernal of the impulse operator in the position representation,

I�(s; r) = hsj I� jri. From the completeness relation,

1

2�

1X
m=�1

Z 1

0

j�k;mi h�k;mj k dk = 1; (35)

we obtain

I�(s; r) =
1

4�2

1X
m=�1

1X
n=�1

Z �1

0

dt

�
Z 1

0

Z 1

0

hs j�p;ni h�p;nj F j�k;mi h�k;m jri exp(i~(p2 � k
2)t=2M) kdk pdp: (36)

From the expression (25) for the matrix elements h�p;nj F j�k;mi, the only contribution

to the double sum in (36) is from the term n = a + 1, m = a. Substituting the

eigenfunctions (24), and letting (s; �) denote the polar coordinates of s, we get

I�(s; r) = �~
2 sin �~�

2�2M
exp(i(a+ 1)� � ia�)

Z 1

0

dt

�
Z 1

0

exp

�
�i~p

2

2M
t

�
J1�~�(ps)p

2�~� dp

Z 1

0

exp

�
�i~k

2

2M
t

�
J~�(kr)k

1+~� dk: (37)

The k- and p-integrals are of the form (Abramowitz & Stegun 1970)Z 1

0

e�c
2u2

J�(bu)u
�+1 du =

b
�

(2c2)�+1
e�b

2=4c2
: (38)

Substituting this result into (37), we get

I�(s; r) =
iM2

2�2~
sin �~� exp(i(a+ 1)� � ia�� i�~�)s1�~�

r
~�

�
Z 1

0

exp

�
�iM(r2 � s

2)

2~t

�
t
�3 dt: (39)

With the substitution t = 1=w, the remaining integral in (39) is of the elementary form

lim
�!0+

Z 1

0

exp

�
��� i(r2 � s

2)w

�2

�
w dw =

�
4

(0+ � i(r2 � s2))2
; (40)

with �2 = 2~=M . Substituting (40) into (39), we obtain

I�(s; r) =
2i~

�2
sin�~� exp(i(a+ 1)� � ia�� i�~�)

r
~�
s
1�~�

(0+ � i(r2 � s2))2
: (41)
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One can verify that this expression transforms correctly, ie according to (5), under the

gauge transformation (4).

The denominator in (41) can be alternatively expressed as

1

(0+ � i(r2 � s2))2
= P

0(1=(r2 � s
2))� i��0(r2 � s

2): (42)

Here P 0(1=x), the derivative of the principal part, acts on functions f(x) according toZ 1

�1

f(x)P 0(1=x) dx = �
Z 1

�1

f
0
odd(x)=x dx; (43)

where f 0odd(x) = 1
2
(f 0(x) � f

0(�x)) denotes the odd part of f 0(x). For subsequent

calculations, however, the integral representation (40) will be more convenient.

4. Expectation values of impulse for wavepackets

We parameterize wavepackets by their position R, width � and kinetic momentum ~k.

A convenient form is

 (r) =
1

�
f

�
r �R
�

�
exp(�ik � r + i��): (44)

Here f(u) is a smooth normalized function localized at the origin with unit width and

vanishing average (dimensionless) momentum, ieZ Z
f
�
f d2u = 1;

Z Z
f
�
fu d2u = 0;

Z Z
f
�
fu

2 d2u = 1;

Z Z
f
�rf d2u = 0: (45)

We assume that � << R, so that the wavepacket  (r) is localized far from the 
ux

line. The phase factor exp(i��) in (44) insures that ~k is the kinetic, rather than the

canonical, momentum of the wavepacket; its branch is chosen so that the phase factor

is continuous over the region where  (r) is appreciable.

From (41) and (44), the expectation value of the impulse is given by

hI�i(R;k; �; �) = h j I� j i =
2i~

�2�2
e�i�~� sin�~�

�
Z Z Z Z

f
�

�
s�R
�

�
f

�
r �R
�

�
eik�(r�s)

(0+ � i(r2 � s2))2
ei(1�~�)�+i~��

r
~�
s
1�~� d2r d2s: (46)

Since f has unit width, the integrand in (46) is appreciable only for js �Rj � � and

jr �Rj � �. In this region, we can, to leading order in �=R, replace the phase factors

exp(i(1� ~�)�) and exp(i~��) by exp(i(1� ~�)�) and exp(i~��), respectively, where � is

the polar angle of R. Likewise, we can replace the factor r~�s1�~� by R. With the change

of variables u = (r � R)=� and v = (s �R)=� and the integral representation (40),

(46) becomes

hI�i =
2i~

�2

R

�2
ei��i�~� sin �~�

�
Z 1

0

dww

����
Z Z

f(u) exp

�
i�k � u� 2iw

R � u
�

� iwu2
�
d2u

����
2

: (47)
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Thus, the direction of the impulse, arg hI�i, is given by

arg hI�i = � + (1
2
� ~�)�: (48)

For ~� = 1
2
, the forward impulse is directed away from the 
ux line, and the

backwards impulse towards the 
ux line. There are two parameter regimes where the

expression (47) has a simple asymptotic form, namely k� << 1, which corresponds to

slow wavepackets, and k� >> R=�, which corresponds to fast wavepackets. These cases

are discussed separately below.

4.1. Slow wavepackets.

The condition k� << 1 implies that the wavepacket spreads (with velocity � ~=M�)

more quickly than it moves (with velocity ~k=M). Since f has unit width, the integrand

in (47) is appreciable only for u of order one. In this case, for k� << 1, the phase factor

exp(i�k�u) is nearly equal to one. On the other hand, the phase factor exp(�2iwR�u=�)
oscillates rapidly in this region, and hence renders the integral small, unless w is small,

of order �=R. For w of order �=R, the phase factor exp(iu2w) is nearly equal to one for

u of order one. To leading order in �=R and k�, (47) becomes

hI�i =
2i~

�2

R

�2
ei��i�~� sin �~�

Z 1

0

dww

����
Z Z

f(u)e�2iwR�u=� d2u

����
= 8i~

R

�2
ei��i�~� sin �~�

Z 1

0

���� ~f
�
�2R

�
w

�����
2

w dw; (49)

where ~f(�) denotes the normalized Fourier transform, (1=2�)
RR

f(u) exp(�i� � u)d2u,
of f(u). Letting

~�( ê) =

Z 1

0

��� ~f(� ê)���2 � d� (50)

denote the probability distribution for the direction, ê, of the dimensionless momentum,

� = � ê, we can write

hI�i =
2i~

R
ei��i�~� sin�~� ~�(� R̂): (51)

Note that if f(u) is circularly symmetric, then ~�( ê) is equal to 1=2�.

To leading order in �=R and k�, the impulse (51) is independent of the width

and momentum of the wavepacket, and is of order ~=R (ie, inversely proportional

to the distance from the 
ux line). This is much smaller than the dispersion of the

momentum, which is of order ~=�. Therefore, to detect the impulse on slow wavepackets

experimentally, one would have to perform a large number of measurements (on the

order of (R=�)2) of the asymptotic momentum on an ensemble of identically prepared

systems.

By treating the motion of the centre of a slow wavepacket as a classical trajectory,

we can derive an expression for the scattering cross-section �(�) using the classical

formula,

�(�) =

����dbd� (�)
���� : (52)
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�+
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y

x

V
�
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Figure 1. At t = 0 the wavepacket is centred at Y ŷ and moves in the � x̂ direction.

�� are the angles of the incoming and outgoing velocities with respect to � x̂.

Here b is the impact parameter, and � is the angular direction of the outgoing trajectory.

Consider a slow wavepacket (44) centred on the y-axis at Y ŷ at t = 0 (thus, R = jY j
and � = sgn(Y )�=2), moving in the � x̂ direction with kinetic momentum ~k. For

simplicity, we take f(u) to be circularly symmetric, so that ~� = 1=2�. Let �� denote

the angle between the velocities at t = �1 and t = 0, and �+ the angle between the

velocities at t = 0 and t =1 (see Fig 1). From (51), these are given by

cot�� = �Re h j I� j i � ~k

Im h j I� j i
=

sin�~� cos �~�� �kY

sin2 �~�
(53)

(thus �� = �+). Because the impulse is circularly symmetric, the angles �� are

unchanged if we rotate the entire system so that the incoming velocity, at t = �1,

is in the � x̂ direction. In this case, the direction of the outgoing beam is given by

� = � + �+ + �� = � + 2�+: (54)

To determine the impact parameter b, we appeal to classical angular momentum

conservation, MV�b = sgnbMV0R0, where V� is the speed at t = �1, and R0 and V0
are the distance and speed at the point of closest approach to the 
ux line. For the

Aharonov-Bohm Hamiltonian (and, indeed, for any purely magnetic Hamiltonian), the

speed V =
p
V � V is a conserved quantity. Thus b = sgnbR0. We take the point of

closest approach to occur at t = 0 (when the velocity of the wavepacket is orthogonal

to its position), so that b = Y . Then, from (52), (53) and (54),

�(�) =

����dbd�
���� =

����d�db
����
�1 ����2d�+dY

����
�1

=

����2 sin2 �+d(cot�+)dY

����
�1

=
sin2 �~�

2�k cos2 �=2
: (55)

Surprisingly, the expression (55) agrees with the exact result found by Aharonov &

Bohm (1959). Of course, the preceding should not be regarded as a legitimate derivation

of the scattering cross-section. Apart from certain ad hoc elements (eg, circularly
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symmetric f(u), the determination of the impact parameter), a proper derivation of

the cross-section from time-dependent solutions of the Schr�odinger equation requires

wavepackets (unlike the slow ones used here) whose momentum is sharp. Still, it is

interesting to ask whether this agreement is entirely fortuitous or not.

4.2. Fast wave packets

A wavepacket initially at a distance R from the 
ux line with kinetic momentum ~k

reaches its point of closest approach to the 
ux line after a time � of order R=(~k=M).

It spreads at a speed W on the order of ~=M�. Thus, at closest approach it will have

spread a distance of order W� � R=(k�). For this to be much less than the width �,

we require R << k�
2, which is just the condition for fast wavepackets.

Let

L� =

����
Z Z

f(u) exp
�
i�k � u� 2iwR � u=� � iwu2

�
d2u

����
2

(56)

denote the u-integral which appears in the impulse expectation value (47). Because f

is of unit width, the integrand is appreciable only for u of order 1. For k� >> R=�, the

phase factor exp(i�k �u) in (47) is rapidly oscillating, and hence leads to a vanishingly

small integral unless it is balanced by the phase factor exp(�i2iwR � u=�). For such a

balancing to take place, w must be large, of order k�2=R. Therefore, the quadratic phase

factor exp(�iwu2) is rapidly oscillating, so (56) can be evaluated using the stationary

phase approximation. To leading order in 1=w � R=(k�2), we obtain

L� =
�
2

w2

����f
���2k=2w �R

�

�����
2

: (57)

Substituting into (47), we get

hI�i = 2i~
R

�2
ei��i�~� sin �~�

Z 1

0

����f
���2k=2w �R

�

�����
2
dw

w

= 2i~Rei��i�~� sin�~�

Z 1

0

��� (�r k̂)���2 dr

r
; (58)

where we have used (44) to express the integral in terms of the wavefunction  (r).

Note that  (r) behaves for small r as r~� or r1�~� (cf (19)), so that the integral in (58)

is convergent.

In what follows, let us assume for concreteness that k is directed along - x̂, so that

the wavepacket is moving to the left. We write R = X x̂+ Y ŷ. Unless the wavepacket

is centred near the x-axis (speci�cally, unless jY j � �),  (�r k̂) will be negligible over
the range of integration in (58). Thus, to leading order in �=R, we may take Rei� = X.

Substituting this result into (58), we obtain the expression

hI�i = 2i~e�i�~�X sin�~�

Z �1

0

j (x; 0)j2 dx

x
: (59)

for the impulse.
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Since the wavepacket is centred near X x̂, the x-integral in (59) is negligible unless

X > 0 in the forward (+) case (so that the wavepacket is moving towards the 
ux line),

or unless X < 0 in the backward (-) case (so that the wavepacket is moving away from

the 
ux line). Assuming that �X > 0, the main contribution to the integral comes

from jx � Xj � �, so that, to leading order in �=R, we can replace the factor 1=x by

1=X in (59), and extend the lower limit of the x-integral to �1. Letting

Ptrans(y) =

Z 1

�1

dx j (x; y)j2 (60)

denote the wavepacket's probability density in y (the direction transverse to the incident

velocity), we obtain, to leading order in �=R and R=(k�2), the expression

hI�i = �2i~e�i�~� sin�~��(�X)Ptrans(0) (61)

for the impulse on fast wavepackets. Here �(x) is the unit step function.

The impulse (61) is independent of the wavenumber k. To leading order, it vanishes

for wavepackets which miss the 
ux line (eg, jY j >> �, or �X > 0), as shown previously

by Olariu & Popescu (1983, 1985). For fast wavepackets which hit the 
ux line, taking

Ptrans(Y ) to be of order 1=� for jY j � �, we get that the impulse is of order ~=�.

Therefore, it is of the same order as the dispersion in momentum, in contrast with

slow wavepackets, for which the impulse is much smaller (by a factor of �=R) than the

dispersion.

The y-component of the forward impulse, ie the imaginary part of (61), is given in

the forward case by

h j I+y j i = �~ sin 2�~��(�X)Ptrans(y): (62)

This can be regarded as an analogue in the time domain of Shelankov's formula (29) for

the transverse momentum imparted to a stationary paraxial beam.

5. Enclosed and distributed 
uxes

Two well-known regularizations of the Aharonov-Bohm 
ux line are to enclose the 
ux

in an impenetrable cylindrical barrier, or to distribute the 
ux uniformly in a cylindrical

tube. Here we show that the force and impulse operators in both cases approach

the Aharonov-Bohm limit, in a sense to be explained, as the radius � of the cylinder

approaches zero.

In a circularly symmetric gauge, the vector potential for both models is of the form

A
�(r) = A

�(r) �̂. The kinetic momentum is given by

MV� =M(V �

x
+ iV �

y
) =

~

i
e
i�

�
@r +

i@�
r

+
2�

�0

A
�(r)

�
; (63)

and the regularized Hamiltonian by

H
� = 1

2
M((V �

x
)2+(V �

y
)2) = � ~

2

2M

 
@
2
r
+
@r

r
+

�
(i@�
r

+
2�

�0

A
�(r)

�2
!
:(64)
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The eigenfunctions of the Hamiltonian and kinetic angular momentum, with energy

E = ~
2
k
2
=2M and kinetic angular momentum m~, are of the form

�
�

k;m
(r) = R

�

k;m
(r)eim�

: (65)

The radial eigenfunctions R
�

k;m
(r) are taken to be real and normalized, like the

Aharonov-Bohm radial eigenfunctions Jjm��j(kr), according toZ 1

0

R
�

p;m
(r)R�

k;m
(r)r dr =

�(k � p)

k
; (66)

These conditions determine the radial eigenfunctions up to an overall sign, which is �xed

by requiring that R�

k;m
(r) approach Jjm��j(kr) as � approaches zero.

Let cm(k) denote a smooth, normalized probability amplitude for energy and

angular momentum. Let  (r) and  
�(r) denote the corresponding coordinate

wavefunctions for the Aharonov-Bohm and regularized Hamiltonians, respectively. That

is,

 (r) =
1

2�

1X
m=�1

Z 1

0

cm(k)Jjm��j(kr)e
im�

kdk; (67)

 
�(r) =

1

2�

1X
m=�1

Z 1

0

cm(k)R
�

k;m
(r)eim�

kdk: (68)

From the preceding discussion, it is clear that  �(r) approaches  (r) pointwise as �

approaches zero. It turns out that their force and impulse expectation values also

coincide as �! 0, ie

lim
�!0

h �j F � j �i = h j F j i ; (69)

lim
�!0

h �j I�� j �i = h j I� j i : (70)

Note that (69) and (70) do not imply, nor is it the case, that F � and I�� approach their

Aharonov-Bohm counterparts, F and I�, as � approaches 0. Indeed, neither does the

regularized Hamiltonian H� approach the Aharonov-Bohm HamiltonianH; given � > 0,

one can construct wavefunctions whose energy expectation values with respect to H�

and H di�er by arbitrarily large amounts.

Instead of (69) and (70), we show below, for the enclosed and distributed 
uxes

separately, that the eigenstate matrix elements of the regularized force operator

approach the Aharonov-Bohm limit as �! 0, ie,

lim
�!0



�
�

p;n

��F �
����

k;m

�
= h�p;nj F j�k;mi =

2~2

M
sin �~�k~�

p
1�~�

�m;a�n;a+1: (71)

Formally, of course, (69) and (71) are equivalent. However, for the sake of brevity

we shall omit the details required for a rigourous demonstration. These details are

straightforward to supply, and are similar to those given in the �rst part of the Appendix.

The result (70) for the impulse follows from the corresponding result (69) for the

force, once it has been established that the force expectation values h �j F �(t) j �i and
h j F(t) j i are integrable in time. In the Appendix it is shown that, in the Aharonov-

Bohm case, the force expectation value decays as 1=t2; a similar argument may be given

for the regularized force.
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5.1. Enclosed 
ux.

The kinetic momentum MV� and Hamiltonian H� have the same operational form as

in the Aharonov-Bohm case, but act on wavefunctions de�ned on r � � which vanish

at r = �. For two such wavefunctions,  �(r) and �
�(r), assumed to be smooth and

normalized, we have

h �j F � j��i = d

dt
h � jMV�

�
�i = i

~
[hH�

 
� jMV�

�
�i � h � jMV�(H�

�
�)i]

=
i

~

�
hH�

 
� jMV�

�
�i � h � jH� (MV�

�
�)i
�
: (72)

The last equality follows from the fact that the commutator [H�
;MV�] is proportional

to the Lorentz force operator (1), which vanishes for the enclosed 
ux. However, the

�nal expression in (72) does not vanish; the relation hH�
 
� j��i = h � jH�

�
�i, where

�
�(r) = (MV�

�
�)(r); (73)

need not hold, because ��(r) need not vanish at r = � (alternatively, j��i is not in the

domain of H�). Indeed, integration by parts in (64) gives

hH�
 
� j��i � h � jH�

�
�i = � ~

2

2M

Z 2�

0

Z 1

�

��
 
��
rr
+
 
��
r

r
+ (

i ��
�
+ � 

��)

r2

�
�
�

� ��

�
�
�

rr
+
�
�

r

r
+
(i��

�
+ ��

�)2

r2

��
r dr d�

= � ~
2

2M

Z 2�

0

 
��
r
(�; �)��(�; �) d� (74)

From (63) and (73),

�
�(�; �) =

~

i
ei��r(�; �): (75)

Substituting this result into (74), we get

h �j F � j��i = ~
2

2M
�

Z 2�

0

 
��
r
(�; �)���

r
(�; �)ei� d�; (76)

a result obtained previously by Peshkin (1981, 1989). Note that if we were to substitute,

for  �(r) and ��(r), the leading-order behaviour (19) of Aharonov-Bohm wavefunctions,

we would recover, formally, the Aharonov-Bohm result (21) for the force expectation

value.

Instead, we take  �(r) and �
�(r) in (76) to be eigenfunctions of the regularized

Hamiltonian. Then

�
�

p;n

��F �
����

k;m

�
=
�~

2

M
�R

�

p;m+1
0(�)R�

k;m

0(�)�n;m+1: (77)

(Strictly speaking, this is not legitimate, as there would appear boundary terms at

r =1 in (74). However, these vanish when we consider expectation values, as in (69).)

To evaluate (77) we need the derivatives of the radial eigenfunctions at r = �. The

radial wavefunctions themselves are given by

R
�

k;m
(r) = C

�

k;m

�
Njm��j(k�)Jjm��j(kr)� Jjm��j(k�)Njm��j(kr)

�
; (78)
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where N�(z) is the Neumann function. The constant C
�

k;m
is determined by the

normalization condition (66), and is given by

C
�

k;m
=
�
J
2
jm��j(k�) +N

2
jm��j(k�)

��1
2 ; (79)

and, to leading order in �, by

C
�

k;m
= jNm��(k�)j�1 =

�

�(jm� �j)

�
k�

2

�jm��j
: (80)

The Wronskian relation, J�(z)N
0
�
(z)� J

0
�
(z)N�(z) = 2=(�z), implies that

R
�

k;m

0(�) = � 1

�(�=2)
C

�

k;m
; R

�

p;m+1
0(�) = � 1

�(�=2)
C

�

p;m+1: (81)

Substituting (80) and (81) into (77), we obtain, to leading order in �,

�
�

p;n

��F �
����

k;m

�
=

2�~2

M

k
jm��j

p
jm+1��j

�(jm+ 1� �j)�(jm� �j)
�
�

2

�jm+1��j+jm��j�1

�m;n+1: (82)

In the limit � ! 0, only the m = a term survives, and the re
ection formula for the

�-function gives

lim
�!0



�
�

p;n

��F �
����

k;m

�
=

2�~2

M

k
~�
p
1�~�

�(1� ~�)�(~�)
�m;a�n;a+1

=
2~2

M
sin �~� k~�

p
1�~�

�m;a�n;a+1; (83)

in accord with (71).

5.2. Distributed 
ux

The distributed 
ux model was used by Nielsen and Hedeg�ard (1995) to obtain, from

the force balance equations, the on-shell matrix elements of the force in the limit �! 0.

Here we carry out a di�erent calculation to obtain the general matrix elements of the

force.

It su�ces to consider the case � > 0 (the case of negative 
ux is obtained from

time-reversal). The vector potential is given by

A
�(r) = ��0r=(2��

2); r < �; (84)

= ��0=2�r; r � �; (85)

corresponding to the magnetic �eld B
�(r) = (��0=��

2)�(� � r), where �(x) is the

unit step function. In this case, the force operator is just the Lorentz force (1). It

is convenient to introduce the dimensionless radial coordinate u = r
2
=�

2, so that the

interior of the 
ux tube is given by 0 � u � 1. The kinetic momentum is given by

MV� =
~

i
ei�
u
1=2

�

�
2@u +

i@�
u

+ �

�
(86)

Then

F = � i
e

2Mc
(MV�

B
� +B

�
MV�)

= � 2~2

M�3
�ei�u

1
2

�
�(1� u)

�
2@u + i

@�

u
+ �

�
� �(u� 1)

�
: (87)
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The matrix elements of the force are then given by

�
�

p;n

��F �
����

k;m

�
= �2� ~

2

M�
��n;m+1

�
�Z 1

0

T
�

p;m+1

�
2T �

k;m

0 +
�
�� m

u

�
T
�

k;m

�
u
1
2 du� t

�

p;m+1t
�

k;m

�
; (88)

where T �

k;m
(u) denotes the radial eigenfunction expressed in terms of the scaled variable

u, and t�
k;m

= T
�

k;m
(1):

Inside the 
ux tube, the radial eigenfunctions are given by (Landau & Lifschitz

1965)

T
�

k;m
(u) = C

�

k;m
e��u=2ujmj=2M

�
�(k�)2

4�
+
jmj �m + 1

2
; jmj+ 1; �u

�
; 0 � u � 1; (89)

whereM(a; b; z) is the con
uent hypergeometric function (Abramowitz & Stegun 1970).

Outside the 
ux tube,

R
�

k;m
(r) = D

�

k;m
Jjm��j(kr) + E

�

k;m
Njm��j(kr); r � �: (90)

The coe�cients C
�

k;m
, D

�

k;m
and E

�

k;m
are determined by requiring the radial

eigenfunction and its �rst derivative to be continuous at r = � (the second derivative is

then continuous there as well, as it turns out), and by the normalization condition

(D�

k;m
)2 + (E�

k;m
)2 = 1; (91)

which follows from (66).

To evaluate the force matrix element (88), we only require the function inside the


ux cylinder. Straightforward algebra gives the coe�cient C�

k;m
, to leading order in �,

as

C
�

k;m
=

2e�=2(1
2
k�)jm��j

�(jm� �j) [(jm� �j+ jmj � �)fm + 2f 0
m
]
; (92)

where

Fm(u) =M(1
2
(jmj �m + 1); jmj+ 1; �u); (93)

and fm and f 0
m
denote the values of Fm and F 0

m
at u = 1.

Substituting (89) and (92) into (88), we �nd that that


�
�

p;n

��F �
����

k;m

�
is of order

�
jm��j+jm+1��j�1, and therefore vanishes in the limit �! 0 unless m = a. We obtain

lim
�!0



�
�

p;n

��F �
����

k;m

�
=

2~2

M
sin�~� k~�

p
1�~�L(�)

R(�)
�m;a�n;a+1; (94)

where

L(�) = � 2�

Z 1

0

F
0
a
Fa+1e

�(1�u)
u
a+1 du+ �fafa+1;

R(�) = 2(p(1)fa+1 + f
0
a+1f

0
a
); (95)

and

p(u) = a + 1� �u: (96)
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As we show below, L(�) = R(�), or, equivalently,Z 1

0

2�F 0
a
Fa+1e

�(1�u)
u
a+1 du = �fafa+1 � 2(p(1)fa+1 + f

0
a+1)f

0
a
: (97)

With this identity, (94) gives the required result (71).

To establish the identity (97), it is convenient to express Fa+1 in terms of Fa by

means of the recurrence relation (Abramowitz & Stegun 1970)

(a+ 1
2
)M(1

2
; a+ 2; u) = (a + 1)

�
M(1

2
; a+ 1; u)�M

0(1
2
; a+ 1; u)

�
; (98)

which implies that

(a+ 1
2
)Fa+1 = (a + 1)(Fa � F

0
a
=�): (99)

With the di�erential equation

uF
00
a
= �p(u)F 0

a
+
�

2
Fa; (100)

it is straightforward to show that the integrand on the left-hand side of (97) is given by

W
0(u), where

W (u) = 2
a+ 1

a+ 1
2

u
a+1

e
�(1�u)

�
�

2
F

2
a
� p(u)FaF

0
a
� uF

0
a

2
;

�
: (101)

W (0) vanishes, whereas W (1), with the aid of (99), is seen to be equal to the right-hand

side of (97).
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Appendix A. Wavepacket expectation values

The force and impulse due to an Aharonov-Bohm 
ux line can be calculated rigourously

for suitably well-behaved wavefunctions  (r). We will take these to be such that

cm(k) = h�k;m j i is smooth in k and falls o�, along with its derivatives,

faster than any power of k and m.
(A.1)

Using standard arguments, one can show that (A.1) implies the following properties of

 (r) and (H )(r), where H is the Aharonov-Bohm Hamiltonian.

 (r) and (H )(r) are smooth for r > 0 and fall o�, along with their

derivatives, faster than any power of r.
(A.2)

 m(r) = Cmr
jm��j +O

�
r
jm��j+1

�
;

(H )m(r) = Dmr
jm��j +O

�
r
jm��j+1

�
; (A.3)

where, in general,

�m(r) =
1

2�

Z 2�

0

�(r; �)e�im� d�: (A.4)
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(In fact, properties (A.2) and (A.3) are also shared by (Hj
 )(r), for j > 1.) The

argument to follow would hold under weaker conditions, but we assume (A.1) for

simplicity.)

The expectation value of force is given by

h j F j i =
Z Z �

_ �(MV ) +  
�(MV _ )

�
d2r

=
1

i~

Z Z �
� (H �)(MV ) +  

�(MVH )
�
d2r; (A.5)

where MV is given by (15). From (A.2) and (A.3), it is evident that the r-integral

in (A.5) converges absolutely. This allows us to introduce a factor exp(��2r2) in the

integrand, and then take the limit of the integral as � ! 0. The Gaussian factor will

justify subsequent reorderings of operations. Note that the integral cannot be expressed

in terms of the expectation value of the commutator [H;MV], because of singularities in
the radial derivatives of  (r) at the origin (speci�cally, (MV )(r) is not in the domain

of H).

We introduce the eigenfunction expansion

 (r) =
1

2�

1X
m=�1

Z 1

0

cm(k)Jjm��j(kr)e
im�

kdk; (A.6)

and a similar expansion for (H )(r), with cm(k) replaced by �(~2=2M)k2cm(k). Using

standard arguments, one can show that (A.1) implies that the di�erential operator

MV, when applied to  and H , can be taken inside the m-sum and k-integral. The

recurrence relation,

J��1(z) = �
�
J
0
�
(z)� �

z
J�(z)

�
; (A.7)

implies that

MV
�
Jjm��j(kr)e

im�
�
= sgn(m� a)i~kJjm+1��j(kr)e

i(m+1)�
; m 6= a;

= �i~kJ~��1(kr)e
i(a+1)�

; m = a: (A.8)

Substituting (A.6) and (A.8) into (A.5), along with the eigenfunction expansion of  �(r)

with coe�cients c�
n
(p), we obtain

h j F j i = lim
�!0

~
2

8�2M

Z 1

0

e��
2r2

rdr

Z 2�

0

d�
1X

m=�1

1X
n=�1

ei(m+1�n)�

Z 1

0

dp

Z 1

0

dk

�c�
n
(p)cm(k)k

2
p(k2 � p

2)Jjn��j(pr)�
(

sgn(m� a)Jjm+1��j(kr); m 6= a

�J~��1(kr); m = a.
(A.9)

The sums and integrals in (A.9) are uniformly and absolutely convergent, and can

be interchanged. On performing the �-integral, the sum on n collapses to the single

term n = m + 1. We obtain

h j F j i = ~
2

4�M
lim
�!0

1X
m=�1

Z 1

0

Z 1

0

K
�

m
(k; p)c�

m+1(p)cm(k) dkdp; (A.10)
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where, for m 6= a,

K
�

m
(k; p) = sgn(m� a)k2p(k2� p2)

Z 1

0

e��
2
r
2

J�(pr)J�(kr)r dr; � = jm��+1j;(A.11)

and, for m = a,

K
�

a
(k; p) = k

2
p(p2 � k

2)

Z 1

0

e��
2r2

J�(pr)J��(kr)r dr; � = 1� ~�: (A.12)

Below, in Appendix A.1 and Appendix A.2, we show that the contributions from the

m 6= a terms vanish in the limit, ie

lim
�!0

X
m6=a

Z 1

0

Z 1

0

K
�

m
(k; p)c�

a+1(p)ca(k) dkdp = 0; (A.13)

while for the term m = a,

lim
�!0

Z 1

0

Z 1

0

K
�

a
(k; p)c�

a+1(p)ca(k) dkdp

=
2

�
sin �~�

Z 1

0

Z 1

0

k
1+~�

p
2�~�

c
�
a+1(p)ca(k) dkdp: (A.14)

Substitution of (A.13) and (A.14) into (A.10) gives

h j F j i = ~
2

2�2M
sin�~�

Z 1

0

Z 1

0

k
1+~�

p
2�~�

c
�
a+1(p)ca(k) dkdp: (A.15)

This is equivalent to the matrix element (25), obtained formally in Section 2.

We note that, with � = 0, the integrals in (A.11) and (A.12) correspond to singular

(ie, not absolutely convergent) cases of the discontinuous Weber-Schafheitlin integral

(Abramowitz & Stegun 1970). Formal evaluation of these integrals would give (A.13)

and (A.14) immediately. The arguments in Appendix A.1 and Appendix A.2 serve to

justify these formal results.

To obtain the the force expectation value (21), we express ca(k) and c
�
a+1(p) in

(A.15) in terms of  (r) to obtain

h j F j i = 2~2

M
sin �~� lim

�!0

Z 1

0

Z 1

0

k
1+~�

p
2�~�e��

2(k2+p2)

�
�Z

 
�
a+1(s)J1�~�(ps)s ds

��Z
 a(r)J~�(kr)r dr

�
dkdp; (A.16)

Note that the convergence factor exp(��2(k2 + p
2)) can be introduced, and the limit

� ! 0 taken outside the integral, since, by (A.1), the k- and p-integrals in (A.15) are

absolutely convergent. By (A.2) and (A.3), the r- and s-integrals in (A.16) are absolutely

convergent, so that, for � > 0, we can interchange the order of integration. The k- and

p-integrals can be evaluated using (38), with the result

h j F j i = 2~2

M
sin�~� lim

�!0

Z 1

0

�
 a(r)

r~�

�
e�r

2=4�2
�
r
2

4�2

�~�

d

�
r
2

4�2

�

�
Z 1

0

�
 
�
a+1(s)

s1�~�

�
e�s

2
=4�2
�
s
2

4�2

�1�~�

d

�
s
2

4�2

�
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=
2�~2

M
sin�~�CaC

�
a+1�(1 + ~�)�(2� ~�)

=
4�~2

M
~�(1� ~�)CaC

�
a+1; (A.17)

where the coe�cients Ca and Ca+1 are given in (A.3). This is just the result (21) of

Section 2.

Concerning the impulse, it is straightforward to justify, using arguments like the

preceding ones, the calculations of Section 3 leading to (46). It is only necessary to

check that the time-dependent expectation value h (t)j F j (t)i, is integrable in t.

h (t)j F j (t)i is given by (A.15), with ca(k) and c
�
a+1(p) modulated by the factors

exp(�i~k2t=2M) and exp(i~p2t=2M) respectively. We have thatZ 1

0

k
1+~�

cm(k) exp

�
�i~k

2

2M
t

�
dk

=
iM

~t

Z 1

0

d

dk

�
k
~�
cm(k)

�
exp

�
�i~k

2

2M
t

�
dk = O(1=t) (A.18)

for large t (the integration by parts is justi�ed by (A.2) and (A.3)). Similarly,R1
0
p
2�~�

c
�
a+1(p) exp(i~p

2
t=2M) dp is O(1=t). It follows that h (t)j F j (t)i falls o� as

1=t2.

Appendix A.1. Proof of (A.13)

Given functions f and g de�ned on a domain D, we will say that f is dominated by g

if, for some constant C, jf j < Cg throughout D. For functions indexed by an integer

m, eg fm and gm, we will say that fm dominated by gm if jfmj < Cgm for some C which

does not depend on m. Thus, from (A.1),

cm(k)c
�
m+1(p) is dominated by (1 +m

2)�1(1 + k
2 + p

2)�4 for k; p > 0. (A.19)

The integral in (A.11) can be evaluated (Gradshteyn and Ryzhik 1980) to give

K
�

m
(k; p) =

sgn(m� a)

2�2
k
2
p(k2 � p

2)e�(k
2+p2)=4�2

I�

�
kp

2�2

�
; (A.20)

where I�(z) is a modi�ed Bessel function, and � = jm � �j. From the asymptotic

behaviour of I�(z) for large argument, it follows that I�(z) is dominated by ez=
p
z for z

real. Therefore, the left-hand side of (A.13) is dominated by
1X

m=�1

1

1 +m2

1

�

Z 1

0

Z 1

0

exp

�
�(k � p)2

2�2

�
k
3=2
p
1=2jk2 � p

2j
(1 + k2 + p2)4

dkdp: (A.21)

Let us divide the domain of the domain of the (k; p)-integral into the region inside the

strip jk � pj < �
2=3 and the region outside. Inside the strip, the integrand is dominated

by �2=3k3=(1 + k
2)4; thus the integral over the strip is dominated by �4=3. Outside the

strip, the integrand is dominated by exp

�
���

2
3

�
=(1+k2+p2)2; thus the (k; p)-integral
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outside the strip is dominated by exp

�
���

2
3

�
. Therefore, the expression in (A.21) is

dominated by
1X

m=�1

1

1 +m2

1

�

�
�
4=3 + exp(���

2
3 )

�
; (A.22)

which vanishes as �! 0.

Appendix A.2. Proof of (A.14)

Substituting the series expansion

J�(z) =
�
z

2

�� 1X
u=0

1

u!�(u+ � + 1)

�
�z

2

4

�u

; (A.23)

and a similar expansion for J��(z), we get that

k
�

Z 1

0

e��
2
r
2

J�(pr)J��(kr)r dr

=
1

2�2
p
�

1X
u=0

1X
v=0

�(u+ v + 1)

u!v!�(u� � + 1)�(v + � + 1)

�
� k

2

4�2

�u�
� p

2

4�2

�v

: (A.24)

For � > 0, the r-integral and u and v-sums are absolutely convergent for all k; p � 0.

Inserting in (A.24) the integral representation for the reciprocal of the beta-function

(Gradshteyn and Ryzhik 1980)

�(u+ v + 1)

�(u� � + 1)�(v + � + 1)
=

1

(u+ v + 1)B(u� � + 1; v + � + 1)

=
2

�
Re

Z
�=2

0

�
2i sin �e�i�

�u ��2i sin �ei��v e2i�(���=2) d�; (A.25)

we may perform the sums to obtain

k
�

Z 1

0

e��
2r2

J�(pr)J��(kr)r dr

=
p
�

��2
Re

Z
�=2

0

exp

�
�p

2 + k
2

2�2
sin2 � + i

p
2 � k

2

4�2
sin 2� + 2i�(� � �=2)

�
d�: (A.26)

Substituting this result into (A.12), we get

K
�

a
(k; p) =

1

��2
k
1+~�

p
2�~�(p2 � k

2)Re

Z
�=2

0

e�S=�
2

d�; (A.27)

where the exponent S is given by

S = 1
4
(k2+p2)(1�cos 2�)� 1

4
i(p2�k2) sin 2��2i�2(1� ~�)(���=2):(A.28)

It is clear that the main contribution to the � -integral in (A.27) comes from the

neighbourhood of � = 0. If S is expanded about � = 0 to second order, the � -integral

yields an error function, whose leading-order asymptotics as � ! 0 leads directly to

the required result (A.14). However, the next term in the asymptotic expansion is not
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uniformly bounded in k and p { it contains a factor (k2� p2)�2 { so we must take some

additional care.

To proceed, we divide the domain of the k; p-integral into three regions, which we

specify below, and write the left hand side of (A.14) as�
lim
�!0

Z Z
D1

+ lim
�!0

Z Z
D2

+ lim
�!0

Z Z
D3

�
K

�

a
(k; p)c�

a+1(p)ca(k) dkdp; (A.29)

We analyze the contribution from each region separately.

Let D1 denote the region k; p � 0, k2 + p
2 � �

�, where � is chosen to satisfy

4
7
< � <

2
3
: (A.30)

In this region, the exponential factor in (A.27) is bounded, and k
1+~�

p
2�~�(p2 � k

2) is

dominated by �5�=2. The coe�cients jca(k)j and jc�a+1(p)j are bounded, and the area of

D1 is dominated by �2�, so that the contribution from D1 in (A.29) is dominated by

�
7�=2�2. Given the choice of �, this vanishes as �! 0.

Let D2 be the region k; p � 0, k2+ p
2 � �

� and jp2� k2j � �

, where 
 is chosen to

satisfy

1
2
+ 1

4
� < 
 < 1� 1

2
�: (A.31)

(since � < 2
3
, the inequality (A.31) can be always be satis�ed). Since 1� cos 2� � �

2 for

0 � � � �=2, the factor exp(�S=�2) is dominated by the Gaussian exp(��2� 2), where
� = 1

2
�
�=2�1. Thus

R
�=2

0
exp(�S=�2) d� is dominated by �

1��=2. Then, from (A.27),

K
�

a
(k; p) is dominated by �


��=2�1
k
1+�

p
2�� in D2. From (A.1), p2��c�

a+1(p)ca(k) is

integrable over the region k; p � 0. Therefore, the contribution from D2 to (A.29)

is dominated by �2
�
1
2
��1 (the additional factor of �
 is due to the fact that the integral

is con�ned to jk2 � p
2j � �


). Given the choice of 
, this vanishes as �! 0.

The remaining region D3 is given by k; p � 0, k2 + p
2 � �

� and jp2 � k
2j � �


 .

Integrating by parts with respect to � in (A.27), we get that

K
�

a
(k; p) =

1

�
k
1+~�

p
2�~�(p2 � k

2)

� Re

0
@ e�S=�

2

S�

�����
�=0

� e�S=�
2

S�

�����
�=�=2

�
Z

�=2

0

e�S
S��

S2
�

d�

1
A : (A.32)

The �rst term gives

2

�
sin �~� k1+~�

p
2�~�

�
1 +

4(1� ~�)�2

p2 � k2

��1
: (A.33)

Its contribution to the integral over D3 in (A.29) yields, in the limit �! 0, the required

result (A.14).

It remains to show that contribution to the D3-integral from the remaining terms

in (A.32) vanishes in the limit � ! 0, It is readily seen that the contribution from the

second term vanishes exponentially with �. For the third term, we note that, on the

interval 0 � � � �=2, S��=S
2
�
is dominated by (k2 + p

2)=(k2 � p
2)2, and exp(�S=�2)

is dominated by exp(����2� 2=2). Therefore, the integral
R
�=2

0
e�S=�

2

(S��=S
2
�
)d� is



Force and impulse from an Aharonov-Bohm 
ux line 24

dominated by �1�
1
2
�(k2 + p

2)=(p2 � k
2)2. Thus, the third term in (A.32) is dominated

by �1�
1
2
�(k2 + p

2)k1+~�
p
2�~�

=jk2 � p
2j, which on D3 is dominated by �1�

1
2
��
(k2 + p

2)
7
2 .

The contribution to the integral over D3 in (A.29) is dominated by �1�
1
2
��
 , which, by

the choice of 
, vanishes as �! 0.
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