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Force and impulse from an Aharonov-Bohm flux line
[Aharonov-Bohm force and impulse]
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Abstract. We calculate the force operator for a charged particle in the field of an
Aharonov-Bohm flux line. Formally this is the Lorentz force, with the magnetic field
operator modified to include quantum corrections due to anomolous commutation
relations. For stationary states, the magnitude of the force is proportional to the
product of the wavenumber k& with the amplitudes of the ‘pinioned’ components, the
two angular momentum components whose azimuthal quantum numbers are closest to
the flux parameter . The direction of the force depends on the relative phase of the
pinioned components. For paraxial beams, the transverse component of our expression
gives an exact version of Shelankov’s formula [Shelankov A 1998 Furophys. Lett. 43,
623 — 8], while the longitudinal component gives the force along the beam.

Nonstationary states are treated by integrating the force operator in time to obtain
the impulse operator. Expectation values of the impulse are calculated for two kinds of
wavepackets. For slow wavepackets, which spread faster than they move, the impulse is
inversely proportional to the distance from the flux line. For fast wavepackets, which
spread only negligibly before their closest approach to the flux line, the impulse is
proportional to the probability density transverse to the incident direction evaluated at
the flux line. In this case, the transverse component of the impulse gives a wavepacket
analogue of Shelankov’s formula. The direction of the impulse for both kinds of
wavepackets is flux dependent.

We give two derivations of the force and impulse operators, the first a simple
derivation based on formal arguments, and the second a rigourous calculation of
wavepacket expectation values. We also show that the same expressions for the force
and impulse are obtained if the flux line is enclosed in an impenetrable cylinder, or
distributed uniformly over a flux cylinder, in the limit that the radius of the cylinder
goes to zero.



Force and impulse from an Aharonov-Bohm fluz line 2

1. Introduction

There have been a number of investigations of the force exerted on a charged particle
by an Aharonov-Bohm flux line. Classically, of course, there is no force, so it, like the
Aharonov-Bohm effect itself, is essentially quantum mechanical, vanishing as A — 0.
Olariu & Popescu (1983, 1985) show that for certain localized wavepackets (these are the
fast wavepackets described in Section 4.2 below), the force, along with the momentum it
imparts, is negligible unless the centre of the wavepacket hits the flux line. Nielson and
Hedegard (1995) and Shelankov (2000) compute matrix elements of the force operator
for stationary states of the same energy. Shelankov (1998) calculates the transverse force
on a stationary incident beam of finite angular width using a paraxial approximation,
a result we refer to as Shelankov’s formula. This use of the paraxial approximation has
been justified by Berry (1999), who computes the asymptotic deflection of the beam
from an exact representation. Peshkin (1981, 1989) computes the expectation value of
the force when the flux line is enclosed in an impenetrable cylinder. Recent interest in
this problem has been stimulated by the analogy with the Iordanskii force (Tordanskii
1966) exerted on phonons by a vortex in a superfluid (see, eg, Sonin 1975, Sonin 1997,
Thouless et al 1997, Stone 1999), which has been the subject of some recent debate.

In this paper we add to these investigations in several ways. First, we obtain an
exact representations for the Lorentz force operator due to an Aharonov-Bohm flux
line; its matrix elements for stationary states of the same energy agree with previous
results. We also obtain an exact representation of the time integral of the force, the
impulse operator, and compute its expectation values for various kinds of wavepackets.
We show that the force operator can be simply derived, formally at least, from purely
kinematic considerations, and give a mathematically rigourous demonstration to justify
the results obtained in this way.

The paper is organized as follows. In Section 2, we give a formal derivation of
the (vector) Lorentz force operator due to an Aharonov-Bohm flux line. Pointing out
that the nominal magnetic field operator, (ahc/e)é?(r), is incompatible with gauge
invariance, we show that that a modification of the canonical commutation relations
restores gauge invariance and yields the Lorentz force. An explicit formula for the
expectation value for stationary states follows directly. Matrix elements between
stationary states of the same energy are seen to coincide with previous results. The
transverse component of the force is shown to coincide with Shelankov’s formula in the
paraxial limit (see also Shelankov (2000)). We then compute (Section 3) the impulse
operator, the integral of the force operator in infinite forward and backward time, in
the position representation. In Section 4 we compute the leading-order expectation
value of the impulse for two kinds of wavepackets. For slow wavepackets (Section 4.1),
which spread more quickly than they move, the impulse is inversely proportional to
the initial distance between the wavepacket and the flux line, with magnitude and
direction depending periodically on the flux parameter a. By treating the deflection of
a slow wavepacket as a classical scattering, we obtain an expression for the scattering
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cross-section which, surprisingly, coincides with the exact result. Fast wavepackets
(Section 4.2) move more quickly than they spread, so much so that the fractional increase
in their width as they pass the flux line is small. In this case, the impulse is proportional
to the transverse probability density at the flux line, and its transverse component gives
a wavepacket analogue of Shelankov’s formula.

In the Appendix, we give a rigourous derivation of the force and impulse expectation
values for a class of well-behaved wavefunctions. In Section 5, we compute matrix
elements of the force operator for two standard regularizations of the Aharonov-Bohm
flux line, the first where the flux is enclosed in an impenentrable cylinder, and the second
where it is distributed uniformly in a cylindrical tube. The Aharonov-Bohm results of
Section 2 and Section 3 are recovered in the limit that the radius of the cylinder goes
to zero.

2. Force operator

Consider a particle of charge e and mass M moving in the xy-plane in a magnetic
field along 2. Quantum mechanically, the particle is described by the Hamiltonian
H = MV -V, where MV = P — eA/c is the kinetic momentum and A(r) is the
vector potential. The force, ie the rate of change of the kinetic momentum, is given by
the appropriately symmetrized Lorentz force operator,

1
F:E[MV,H]:%(VA(BQ)—(BQ)AV), (1)
where the magnetic field operator is defined by
D
B=——[MV,, MV,]. 2
MV, M) )

Here &, = 2rhic/e is the magnetic flux quantum. The usual commutation relations for
position and canonical momentum lead to the usual relation between the magnetic field
and the vector potential, namely Bz =V A A.

However, this relation is incorrect for the vector potential of an Aharonov-Bohm
flux line (since we are restricting to the plane, we should perhaps say ‘flux point’, but
we will follow conventional usage). For a flux line at the origin of strength a®,, and in
a circularly symmetric gauge, the vector potential is given by

Alr)=a—¢ (3)

As is well known, physically meaningful quantities depend only on the fractional part,
a, of the flux parameter, «; a unit shift in the flux parameter, « — a + 1, is equivalent
to the gauge transformation ¢» — U1, where

(UP)(r, d) = (1, 9). (4)
As a consequence, a physically observable operator O(a) which depends on the flux
parameter must transform under U according to

UO(a)UT = O(a+1). (5)



Force and impulse from an Aharonov-Bohm fluz line 4

For example, the kinetic momentum MV satisfies this relation, as is easily verified. As
the magnetic field operator (2) is expressed in terms of the commutator of components
of kinetic momentum, it must also satisfy (5). However, V A A, which is given by
a®y?(r) z, clearly does not satisfy (5); it is invariant under the gauge transformation
U (like any operator which depends only on position), but is not periodic in a. It follows
that substituting VA A for B 2 in (1) cannot give the correct expression for the Lorentz
force operator.

The problem is caused, of course, by the singularity at » = 0, and can be avoided by
an explicit calculation of the time rate of change of the expectation value of the kinetic
momentum for suitably chosen wavefunctions. This is done in the Appendix. However,
we can obtain the same result more easily and more directly from formal arguments. If
the usual canonical commutation relations lead to a magnetic field operator which does
not transform correctly under gauge transformations, then the canonical commutation
relations must be modified by the flux line. In particular, we show below that, formally,
the components of the canonical momentum, p, and p,, do not commute — equivalently,
the partial derivatives 0, and 0, do not commute — in the presence of nonzero flux.

First, we note that the partial derivatives 0, and 0, certainly commute when applied
to smooth wavefunctions. That is,

[0x, 0]y =0 (6)
for ¢ (r) smooth. Applying the gauge transformation U to this relation m times, we get

[Uma, U™, uma,UT™] (e™1p) = 0. (7)
The partial derivatives transform according to

Umo,Ut" = 0, —imdy¢, U™9,UT" =0, — imd,¢. (8)
Substituting (8) into (7), and using the differential version of Stokes’ theorem,

194,0,]6 = (V A V). = 210%(r), (9)
we obtain

[0, 8,] (e71) = 276 (r)ime'™?1p = 2163 (r)0, (e™00) (10)

where the second equality follows because 0,1 vanishes at the origin for ¢(r) smooth.
This implies, formally, the operator relation

[0z, 0] = 2762 (r) Dy, (11)
or, equivalently,
[Py, P,] = —2mihd*(r) L, (12)
where L = (/1)0, is the canonical angular momentum.
Using the modified commutation relation (12) to evaluate the magnetic field
operator (2), we get, instead of the classical relation B = a®,d*(r), the result

_ _
B= [P, P+ (VA A) = =225 (r)A, (13)
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where
Az=rANMV =(L—ah)z (14)

is the kinetic angular momentum. It is evident that A, and hence B, satisfy the
transformation law (5).

Throughout this and the following sections, it will be convenient to represent vectors
in the zy-plane as complex scalars. For example, W = W,  + W, y will be represented
by W = W, +iW,. If W is a vector of hermitian operators (as opposed to real scalars),
then W is the nonhermitian scalar operator whose hermitian and antihermitian parts
are W, and ilW, respectively. In this way, the kinetic momentum MV is represented by
the scalar operator

MY = ?ew (a, 4+ 10 F O‘) . (15)

r

It is useful to note that, in general, 2 A W is represented by iWV.
We proceed to compute the expectation value of the Lorentz force. Substituting
(13) for the magnetic field and (15) for the kinetic momentum into the expression (1),

we get
(I F ) = ~i= (¥ BV |v)
2'h2 2T 00 5 ' ) )

=20 [ [Tra oo M@ - i (0.4 222 ) w0
where we have used §?(r) = §(r)/(7r). With 1) resolved into its angular momentum
components,

Y(r,g) = D thn(r)e™, (17)
the integrals in (16) are trivially evaluated (note that [°d(r) dr = 3), with the result
21 —
WF =5 Y [ona@m+1-a) (v - "= nm)| o ay)
m=—00 r=0

Like any vector operator, F couples only consecutive angular momentum components, m
and m+1, and, as one would expect, depends only on the behaviour of the wavefunction
at the flux line. For well-behaved wavefunctions, the leading-order behaviour of ¢, (r)
as r — 0 is given by

U (r) ~ C,rim=el, (19)

Sufficient conditions for (19) are discussed in the Appendix. Here, we note that (19)
ensures that the energy density, *(r)(Ht)(r), is finite at 7 = 0. Substituting (19) into
(18), we get

B 2mh?
M

m=—00

x O:1+1Cmr|m+lfa|+\mfa\fl ‘r:() . (20)

oo

(VI F ) (m+1—a)(lm—af—(m-a))
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The terms in the sum (20) vanish unless m = a, where a = a—d& denotes the integer
part of the flux parameter. Thus, only the ‘pinioned’ components of the wavefunction,
1, and 1,1 — those whose angular momentum quantum numbers are nearest the flux
parameter v — contribute to the force expectation value (18). From (20),

4rh? N

(Wl FI9) = a1 = a)Ci oy (21)

or, equivalently,
4R? _ -

F =570 =a) &) Gl (22)

where the state |,,) corresponds to the singular wavefunction
_ o(r) ime
é‘m(’ra ¢) - We ) (23)

so that (&, [¢) = Cp,. It is readily verified that the force operator (22) transforms
according to (5) under the gauge transformation (4). A rigourous derivation of the
expectation value (21) for suitably chosen wavefunctions is given in the Appendix.

In the preceding derivation, the force operator due to a flux line, like the force for
a nonsingular potential, is derived from kinematics, specifically from the commutation
relations. The derivation does not require the solution of the Schrodinger equation.
Thus, it is straightforward to generalize to the case of more than one flux line (for which
solutions of the Schrédinger equation are, in general, not available); the force operator
is just a sum of contributions (22) centred around each flux line.

However, to calculate the force on stationary states, or the time dependence of the
force on nonstationary states, it is necessary to solve the Schrodinger equation. As is
well known, eigenstates of the Aharonov-Bohm Hamiltonian with energy h*k?/2M and
angular momentum m#h are given by

Xkem (1) = Jjm—aqf (kr)e™?, (24)

where J,(z) is a Bessel function. From the small-z behaviour, J,(z) ~ (2/2)"/T'(v + 1),
and the reflection formula, I'(v)I'(1 — v) = 7/sin v, we obtain from (22) the matrix
elements

2% . .
F\Xtkym) = ﬁkap @ Sin T 6y 00n,041- (25)

For k = p, ie for stationary states with the same energy,
2R
<Xk,n| f |Xk,m> - ﬁk S o 5m,a6n,a+17 (26)

(Xpn

in agreement with results of Nielson and Hedegard (1995) and Shelankov (2000).
A general stationary state |¥) is a superposition of eigenstates with & fixed, and
may be taken to be of the form

o0

[0 = D ()" b xm) - (27)

m=—0oo
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For b,, = 1, ¥(r) corresponds to a scattered plane wave incident from the right
(Aharonov & Bohm 1959). From (25),
2ih% . .
(0| F |¥) = lﬁe_lmksin 7@ b, b (28)

Shelankov (1998) has obtained an approximate formula for the transverse
component of the force acting on a stationary beam of finite angular width. His analysis
is carried out in a singular gauge, in which the vector potential vanishes everywhere
except along the y-axis. A stationary beam incident from the right (in fact, Shelankov
takes the beam incident from the left, but we revert to the convention of Aharonov and
Bohm) is taken to be of the form e *%¢(x,y). Treating v, as small compared to ki,
amounts to a paraxial approximation, in which the wave evolves freely in = (with z
playing the role of time) for x # 0, and is scattered by the vector potential at z = 0.
The change Ap, in the transverse kinematic momentum, (%/i) ffooo (@, y) iy (x, v) dy,
is then calculated to be

in 0 ?
Ap, = hsin2ra— [Vin (0)] 5 (29)
Joo [ ()] dy
where
1 o .
Yin(y) = o / a(k,)e™¥ dk, (30)
is the incident wave at x = 0%, expressed here in terms of its transverse Fourier

amplitudes a(k,). Multiplying Ap, by the incident flux, which is given paraxially by
(hk/M) [T i (y)|° dy, gives Shelankov’s formula for the transverse force,
2

h
S : ~ 2
F{® = 7 sin 26 [ (0)[° (31)

We now show that the y-component of the exact force expectation value, ie the
imaginary part of (28), coincides with Shelankov’s formula (31) in the paraxial regime.
(Shelankov (2000) gives the same argument.) As discussed by Berry (1999), the state
(27) can alternatively be viewed as a superposition of scattered waves incident from the
directions (cosf, — sin #), with amplitudes A(f) related to the coefficients b, according
to

1 g .
b, = —— [ A(0)e™ 2 qp. 32
Vor / )e (32

The paraxial approximation is valid for A(f) strongly peaked around 6 = 0, with angular
width w << 1. In this case, Berry (1999) has shown that A(f) ~ a(k#). From (30)
and (32), it then follows that b, ~ Yw((m — a)/k) for |m — a| << 1/w, so that

bo1ba ~ [¥in(0)].
3. Impulse operator

For nonstationary wavepackets ¢ (r), whose wavefunctions are not eigenfunctions of
the Hamiltonian, the expectation value of the force does not itself have much physical
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significance. It depends on the behaviour of the wavefunction near the flux line,
regardless of where the wavepacket is localized, and can oscillate rapidly as the
wavepacket evolves. Of greater physical interest is the impulse imparted to the particle
over the course of its evolution, either in the past or future. Let

f(t) _ eth/ﬁf'efth/ﬁ, MV(t) — eth/ﬁMVefth/h (33)

denote the time-evolved force and kinetic momentum operators. Then MV(t) = F(t).

The forward (+) and backward (-) impulse operators are defined by
+o0

I, = MV(too)— MV(0) = F(t)dt. (34)

Let us compute the kernal of the impulse operator in the position representation,
Z.(s,r) = (s|Zy |r). From the completeness relation,

 — %
L / X Ot Bl = 1, (35)
7rm:—oo 0

we obtain

Lan=gm Y Y [

m=—00 N=—00

// 5 D) (ol F i) (ko ) explGh(s” — K2)¢/20) Kdkpdp. - (36)

From the expression (25) for the matrix elements (xp.n|F |Xk.m), the only contribution
to the double sum in (36) is from the term n = a + 1, m = a. Substituting the
eigenfunctions (24), and letting (s, #) denote the polar coordinates of s, we get

hZ : ~ 00
Z.(s,7)= i% exp(i(a + 1)8 — iag) /0 dt
> fip? . o hk? .
X /0 exp (iiﬁt) J1_a(ps)p* @ dp/0 exp <2Fimt> Ja(kr)k e dEk. (37)
The k- and p-integrals are of the form (Abramowitz & Stegun 1970)
oo bl/
—c2u? v+1 _ —b2/4c2
Substituting this result into (37), we get
Tu(s,7) = ooz sind expli(a + 10 a9 % ind)s' =
+(8,7) = 557 sinmd exp(i(a lap Fird)s ~r
o0 M(’I“2 _ 82) 3
i——= )t dt. 39
<[ exp(m - ) (39)
With the substitution ¢ = 1/w, the remaining integral in (39) is of the elementary form
, > e +i(r?* — s*w ot
| — dw = 40
eor Jy P ( = =0 i — s2)) (40)
with o2 = 2h/M. Substituting (40) into (39), we obtain
2ih riglt-a

(41)

Zi(s,r) = — sinwa exp(i(a + 1)0 — iagp F iﬂ'd)(
m
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One can verify that this expression transforms correctly, ie according to (5), under the
gauge transformation (4).
The denominator in (41) can be alternatively expressed as

1
(0F £i(r? — s%))?

Here P'(1/x), the derivative of the principal part, acts on functions f(z) according to
[ ropamas=- [ /e (43

where fl,(z) = 3(f'(z) — f'(—=)) denotes the odd part of f'(z). For subsequent
calculations, however, the integral representation (40) will be more convenient.

= P'(1/(r* — s%)) £ ind'(r* — 57). (42)

4. Expectation values of impulse for wavepackets

We parameterize wavepackets by their position R, width ¢ and kinetic momentum hk.
A convenient form is

oty =21 (”

Here f(u) is a smooth normalized function localized at the origin with unit width and

-R

o

) exp(—ik - r + iag). (44)

vanishing average (dimensionless) momentum, ie

//ffdQu—l//ffudQu—O //ffu d’u =1, //fodZU— . (45)

We assume that 0 << R, so that the wavepacket ¢ (r) is localized far from the flux
line. The phase factor exp(iag) in (44) insures that /ik is the kinetic, rather than the
canonical, momentum of the wavepacket; its branch is chosen so that the phase factor
is continuous over the region where t)(r) is appreciable.

From (41) and (44), the expectation value of the impulse is given by

TRk, 0, 0) = (] Ty [1)) = f FG gin 1

_ ik-(r—s) ) B o B
////f ( > (’l" R) e e1(17a)9+1a¢>70a817a d27”d28. (46)

o (0F £i(r? — s2))?
Since f has unit width, the integrand in (46) is appreciable only for |s — R| ~ ¢ and

|r — R| ~ 0. In this region, we can, to leading order in o/R, replace the phase factors
exp(i(1 — &)#) and exp(iag) by exp(i(1 — @)®) and exp(ia®), respectively, where P is
the polar angle of R. Likewise, we can replace the factor r%s!=% by R. With the change
of variables u = (r — R)/o and v = (s — R)/o and the integral representation (40),
(46) becomes

2ih R

(Iy)= — e *F M gin 16
12 52
T o

[ e

2

2) d?u

(47)



Force and impulse from an Aharonov-Bohm flux line 10

Thus, the direction of the impulse, arg (Zy), is given by

arg (Zy) =P+ (: Fa)m. (48)
For a = %, the forward impulse is directed away from the flux line, and the
backwards impulse towards the flux line. There are two parameter regimes where the
expression (47) has a simple asymptotic form, namely ko << 1, which corresponds to
slow wavepackets, and ko >> R/o, which corresponds to fast wavepackets. These cases

are discussed separately below.

4.1. Slow wavepackets.

The condition ko << 1 implies that the wavepacket spreads (with velocity ~ i/Mo)
more quickly than it moves (with velocity iik/M). Since f has unit width, the integrand
in (47) is appreciable only for u of order one. In this case, for ko << 1, the phase factor
exp(ick-u) is nearly equal to one. On the other hand, the phase factor exp(F2iwR-u/0)
oscillates rapidly in this region, and hence renders the integral small, unless w is small,
of order o/R. For w of order o/R, the phase factor exp(iuw) is nearly equal to one for
u of order one. To leading order in o/R and ko, (47) becomes

2ih R .4 - 00 .
<Ii> = L_elq>$17ra sin & / dw w ‘//f(u)e$21wR.u/tr dZu
0

w2 o2
()
o

where f(&) denotes the normalized Fourier transform, (1/27) [ f(u)exp(—i€ - u)d?u,
of f(u). Letting

o= [ |fecal ca (50)

denote the probability distribution for the direction, é, of the dimensionless momentum,

2

R . . . o0
— 8ih—2e“ﬁ‘m sin o / w dw, (49)
g 0

& = e, we can write
AT .
(I.) = %e@ﬁm sinra j(+ R). (51)

Note that if f(u) is circularly symmetric, then p( é) is equal to 1/2.

To leading order in o/R and ko, the impulse (51) is independent of the width
and momentum of the wavepacket, and is of order h/R (ie, inversely proportional
to the distance from the flux line). This is much smaller than the dispersion of the
momentum, which is of order f/o. Therefore, to detect the impulse on slow wavepackets
experimentally, one would have to perform a large number of measurements (on the
order of (R/c)?) of the asymptotic momentum on an ensemble of identically prepared
systems.

By treating the motion of the centre of a slow wavepacket as a classical trajectory,
we can derive an expression for the scattering cross-section o(f) using the classical
formula,

_|db

o(0) = @(9)‘.

(52)
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Figure 1. At t = 0 the wavepacket is centred at Y ¢ and moves in the — & direction.
B+ are the angles of the incoming and outgoing velocities with respect to — &.

Here b is the impact parameter, and # is the angular direction of the outgoing trajectory.
Consider a slow wavepacket (44) centred on the y-axis at Yy at t = 0 (thus, R = |Y|
and ® = sgn(Y)7n/2), moving in the — & direction with kinetic momentum #hk. For
simplicity, we take f(u) to be circularly symmetric, so that p = 1/2x. Let 5 denote
the angle between the velocities at t = —oo and ¢ = 0, and (3, the angle between the
velocities at ¢ = 0 and ¢t = oo (see Fig 1). From (51), these are given by

Re (| Iy |¢p) — hk  sinmacosma — mkY

cot By =+ = 23

be Tm (0] Zs [) s rd (53)

(thus /- = (). Because the impulse is circularly symmetric, the angles (. are
unchanged if we rotate the entire system so that the incoming velocity, at ¢t = —oo,

is in the — @ direction. In this case, the direction of the outgoing beam is given by
0=m+0y+B =m+28. (54)

To determine the impact parameter b, we appeal to classical angular momentum
conservation, MV_b = sgnb MV, Ry, where V_ is the speed at t = —o0, and Ry and Vj
are the distance and speed at the point of closest approach to the flux line. For the
Aharonov-Bohm Hamiltonian (and, indeed, for any purely magnetic Hamiltonian), the
speed V = +/V -V is a conserved quantity. Thus b = sgnb Ry,. We take the point of
closest approach to occur at ¢ = 0 (when the velocity of the wavepacket is orthogonal
to its position), so that b =Y. Then, from (52), (53) and (54),

db|  do|7" | dB. | d(cot 3,) |7
= |—| = |— 22— = |2sin?p3, — T/
0= 1%~ w| |*av ‘ Sin” 4 =47
sin? ré&v
__~nTe 55
27k cos? 02 (55)

Surprisingly, the expression (55) agrees with the exact result found by Aharonov &
Bohm (1959). Of course, the preceding should not be regarded as a legitimate derivation
of the scattering cross-section. Apart from certain ad hoc elements (eg, circularly
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symmetric f(u), the determination of the impact parameter), a proper derivation of
the cross-section from time-dependent solutions of the Schrodinger equation requires
wavepackets (unlike the slow ones used here) whose momentum is sharp. Still, it is
interesting to ask whether this agreement is entirely fortuitous or not.

4.2. Fast wave packets

A wavepacket initially at a distance R from the flux line with kinetic momentum hk
reaches its point of closest approach to the flux line after a time 7 of order R/(hk/M).
It spreads at a speed W on the order of ii/Mo. Thus, at closest approach it will have
spread a distance of order W ~ R/(ko). For this to be much less than the width o,
we require R << ko?, which is just the condition for fast wavepackets.

Let
2

L= ‘// f(u)exp (iok - u F 2iwR - u/o F iwu®) d*u (56)

denote the u-integral which appears in the impulse expectation value (47). Because f
is of unit width, the integrand is appreciable only for u of order 1. For ko >> R/o, the
phase factor exp(ick - u) in (47) is rapidly oscillating, and hence leads to a vanishingly
small integral unless it is balanced by the phase factor exp(Fi2iwR - u/o). For such a
balancing to take place, w must be large, of order ko?/R. Therefore, the quadratic phase
factor exp(Fiwu?) is rapidly oscillating, so (56) can be evaluated using the stationary
phase approximation. To leading order in 1/w ~ R/(ko?), we obtain

w2 o?k/2w — R\ |
L= T | (FRR2=R) 57
w o
Substituting into (47), we get
) s 00 2 2w — 2
(I..) :2ih£2e‘q’¢msmm / ‘f (W k/2w R) dw
o 0 o w
g < [ A
= 2ihRe T sin v ‘1,/)($rk) —, (58)
0 r

where we have used (44) to express the integral in terms of the wavefunction (7).
Note that 1(r) behaves for small r as r® or 1% (cf (19)), so that the integral in (58)
is convergent.

In what follows, let us assume for concreteness that k is directed along - &, so that
the wavepacket is moving to the left. We write R = X & + Y y. Unless the wavepacket
is centred near the z-axis (specifically, unless |Y'| ~ o), ¢ (Fr k) will be negligible over
the range of integration in (58). Thus, to leading order in o/R, we may take Re!® = X
Substituting this result into (58), we obtain the expression

o +o0 d
(T.) = 2he™ ™ X sin i / (z, 0)2 92 (59)
0

T

for the impulse.
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Since the wavepacket is centred near X @, the z-integral in (59) is negligible unless
X > 0 in the forward (+) case (so that the wavepacket is moving towards the flux line),
or unless X < 0 in the backward (-) case (so that the wavepacket is moving away from
the flux line). Assuming that £X > 0, the main contribution to the integral comes
from |x — X| ~ o, so that, to leading order in o/R, we can replace the factor 1/x by
1/X in (59), and extend the lower limit of the z-integral to Foo. Letting

Prans(y) = / " de [z, )P (60)

oo
denote the wavepacket’s probability density in y (the direction transverse to the incident
velocity), we obtain, to leading order in /R and R/(ko?), the expression

<I:i:> = j:2ihe:':17rd sin T @(j:X)f)trans(O) (61)

for the impulse on fast wavepackets. Here O(z) is the unit step function.

The impulse (61) is independent of the wavenumber k. To leading order, it vanishes
for wavepackets which miss the flux line (eg, |Y'| >> o, or £X > 0), as shown previously
by Olariu & Popescu (1983, 1985). For fast wavepackets which hit the flux line, taking
Pirans(Y) to be of order 1/0 for |Y| ~ o, we get that the impulse is of order fi/o.
Therefore, it is of the same order as the dispersion in momentum, in contrast with
slow wavepackets, for which the impulse is much smaller (by a factor of o/R) than the
dispersion.

The y-component of the forward impulse, ie the imaginary part of (61), is given in
the forward case by

(Y] Iy |) = £hsin 20a O(£X) Pirans(y)- (62)

This can be regarded as an analogue in the time domain of Shelankov’s formula (29) for
the transverse momentum imparted to a stationary paraxial beam.

5. Enclosed and distributed fluxes

Two well-known regularizations of the Aharonov-Bohm flux line are to enclose the flux
in an impenetrable cylindrical barrier, or to distribute the flux uniformly in a cylindrical
tube. Here we show that the force and impulse operators in both cases approach
the Aharonov-Bohm limit, in a sense to be explained, as the radius € of the cylinder
approaches zero.
In a circularly symmetric gauge, the vector potential for both models is of the form
A(r) = A%(r) ¢. The kinetic momentum is given by
MV® = M (Vi +iVy) = ?ei‘b <ar + % + %A%r)) : (63)

and the regularized Hamiltonian by

He = SM((Vy)?+(Vy)?) = " (a,? + % + <(1% + %:Af(r))2> .(64)
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The eigenfunctions of the Hamiltonian and kinetic angular momentum, with energy
E = h*k?/2M and kinetic angular momentum mf, are of the form

Xieyn (1) = R ()€™ (65)
The radial eigenfunctions Rj , (r) are taken to be real and normalized, like the
Aharonov-Bohm radial eigenfunctions Jj,,—q((kr), according to

/0 R, (1) Ry, (r)r dr = M, (66)
These conditions determine the radial eigenfunctions up to an overall sign, which is fixed
by requiring that Ry, (r) approach Ji,_o|(kr) as € approaches zero.

Let ¢p,(k) denote a smooth, normalized probability amplitude for energy and
angular momentum. Let ¢(r) and ¢¢(r) denote the corresponding coordinate
wavefunctions for the Aharonov-Bohm and regularized Hamiltonians, respectively. That
is,

W (r) :% > /0 h Cm (§) Jyn—a) (k7)™ kdk, (67)
=5 Y /Ooocm(k)Rz,m(r)eim%dk- (68)

From the preceding discussion, it is clear that ¢¢(r) approaches ¥ (r) pointwise as €
approaches zero. It turns out that their force and impulse expectation values also
coincide as € — 0, ie

lim (| < [0) = (V] F [$). (69)
lim (4] Z¢ o) = (4] Ze ). (70)

Note that (69) and (70) do not imply, nor is it the case, that F¢ and Z¢ approach their
Aharonov-Bohm counterparts, F and Z., as € approaches 0. Indeed, neither does the
regularized Hamiltonian H¢ approach the Aharonov-Bohm Hamiltonian H; given € > 0,
one can construct wavefunctions whose energy expectation values with respect to H¢
and H differ by arbitrarily large amounts.

Instead of (69) and (70), we show below, for the enclosed and distributed fluxes
separately, that the eigenstate matrix elements of the regularized force operator

approach the Aharonov-Bohm limit as € — 0, ie,
2

2h - -
F | Xeym) = 83 sin W&kapl_a(Sm,aén,aH. (71)

lim (x| F* [Xiem) = (o
Formally, of course, (69) and (71) are equivalent. However, for the sake of brevity
we shall omit the details required for a rigourous demonstration. These details are
straightforward to supply, and are similar to those given in the first part of the Appendix.
The result (70) for the impulse follows from the corresponding result (69) for the
force, once it has been established that the force expectation values ()| F¢(t) [1)¢) and
(| F(t) |1) are integrable in time. In the Appendix it is shown that, in the Aharonov-
Bohm case, the force expectation value decays as 1/t?; a similar argument may be given
for the regularized force.
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5.1. Enclosed fluz.

The kinetic momentum MV and Hamiltonian H¢ have the same operational form as
in the Aharonov-Bohm case, but act on wavefunctions defined on r > € which vanish
at r = €. For two such wavefunctions, ¢¢(r) and n°(r), assumed to be smooth and

normalized, we have
d 7
WAF ) = 3 W7 IMVD°) = £ [(H 9" [MVD°) — (° [MV*(H))]
?
= = ((H MV — (e | a0V 7)) ). (72)
The last equality follows from the fact that the commutator [H¢, MV¢] is proportional

to the Lorentz force operator (1), which vanishes for the enclosed flux. However, the
final expression in (72) does not vanish; the relation (H)¢ |£¢) = (¢ |[H€S), where

§(r) = (MV)(r), (73)
need not hold, because £°() need not vanish at r = e (alternatively, |£) is not in the
domain of H¢). Indeed, integration by parts in (64) gives

(o e - e ey = — g [ [ [( 2 (B 6

€ €\2
(e S “ﬁf@“)]rm

h2 o €k €
= - W . 1/)r (67 ¢)§ (67 ¢) d¢ (74)
From (63) and (73),
B
é—E(E, d)) = Tel¢77r (67 ¢) (75)
Substituting this result into (74 we get
W17 1) = e [ v o (010 a0, (76)

a result obtained previously by Peshkin (1981, 1989). Note that if we were to substitute,
for ¢¢(r) and n°(r), the leading-order behaviour (19) of Aharonov-Bohm wavefunctions,
we would recover, formally, the Aharonov-Bohm result (21) for the force expectation
value.

Instead, we take ¢¢(r) and n°(r) in (76) to be eigenfunctions of the regularized
Hamiltonian. Then

mh?
Ol F [N = e 11 (O R ()i (77)

(Strictly speaking, this is not legitimate, as there would appear boundary terms at
r = o0 in (74). However, these vanish when we consider expectation values, as in (69).)

To evaluate (77) we need the derivatives of the radial eigenfunctions at r = €. The
radial wavefunctions themselves are given by

Ry (1) = O (Nom-a) (k€) Jym—a) (k1) = Tim-af (k€) Njm—al (k7)) , (78)
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where N,(z) is the Neumann function. The constant Cf , is determined by the

normalization condition (66), and is given by
1

Crim = (Jin_a(ke) + Nj,_ oy (ke)) 2, (79)
and, to leading order in €, by
ke Im—a|
= Noalhe) = ———— (= .
Chan = Wl = o () (80
The Wronskian relation, J,(2)N)(z) — J!(2)N,(z) = 2/(7z), implies that
/ 1 / 1
€ —_ _ € € —_ _ € ) 1
k,m (6) 7T(6/2) Clc,mv Rp,m+1 (6) 71'(6/2) Cp,m—l—l (8 )
Substituting (80) and (81) into (77), we obtain, to leading order in e,
o h2 k\m—a\plmﬂ—al €\ Im+1—al+m—a|-1
I Fele )= ¢ P 82
<Xp’n ‘Xk’m> M T(lm+1—-a|)T(jm—al) <2) ol (82)

In the limit € — 0, only the m = a term survives, and the reflection formula for the
[-function gives

2mh2 kdplfé}
li ol FC X - 6m a(sn a
lity (X | 7 [Xim) = =7 L(1—a)l(a) ™t

n i
= ﬁ Sin 71'& kapl_aém,a(sn,a—l—la (83)

in accord with (71).

5.2. Distributed flux

The distributed flux model was used by Nielsen and Hedegard (1995) to obtain, from
the force balance equations, the on-shell matrix elements of the force in the limit ¢ — 0.
Here we carry out a different calculation to obtain the general matrix elements of the
force.

It suffices to consider the case o > 0 (the case of negative flux is obtained from
time-reversal). The vector potential is given by

A(r) = a®or/(2m€%), 1 <e, (84)

= ady/27r, r > e, (85)

corresponding to the magnetic field B¢(r) = (a®q/me*)O(e — r), where O(xz) is the
unit step function. In this case, the force operator is just the Lorentz force (1). It

is convenient to introduce the dimensionless radial coordinate u = 72/€?, so that the
interior of the flux tube is given by 0 < u < 1. The kinetic momentum is given by

B ul/? i0
MY = Zel?—— <28u + ¢ + a> (86)
1 € u
Then
&
— ;3 MYVE B¢ BEMYVe
F T (MV°B® + V)
2h?

- ey {@(1 — ) <2au + i% + a) —6(u — 1)] : (87)
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The matrix elements of the force are then given by

€ € € h2
<Xp,n‘ F ‘Xk,m> = _QWMO“Sn,mH
' 1 m 1
X [/0 T;,erl <2T;§,m + (a — E) kam> u2 du — t;7m+1t;7m} , (88)

where Ty, (u) denotes the radial eigenfunction expressed in terms of the scaled variable
u, and t = Tg (1)

Inside the flux tube, the radial eigenfunctions are given by (Landau & Lifschitz
1965)

ke)?  Im|—m+1
_|_
4o 2

where M (a, b, z) is the confluent hypergeometric function (Abramowitz & Stegun 1970).
Outside the flux tube,

T () = Cf e 2l 2 0 <—( m|+1, au) L 0<u<l1, (89)

Ry, (1) = Dy, . Jim—a)(k7) + Ef 1, Njm—a)(k7), 7> € (90)
The coefficients Cf ,,, Dy, and Ej, are determined by requiring the radial

eigenfunction and its first derivative to be continuous at r = € (the second derivative is
then continuous there as well, as it turns out), and by the normalization condition

(Dim)” + (B m)® =1, (91)

which follows from (66).
To evaluate the force matrix element (88), we only require the function inside the

flux cylinder. Straightforward algebra gives the coefficient C . to leading order in ¢,

k,m>
as
262/2( L f¢)Im—al
cc = (ko) _ (92)
o T(m = al) [(Im — a| + |m| — @) fm + 217,]
where
Fo(u) = M(3(Im| = m +1),|m| + 1, au), (93)

and f,, and f/ denote the values of F}, and F, atu = 1.
Substituting (89) and (92) into (88), we find that that (x§,| F* ‘Xim> is of order
glm—altlm+i-al=1 " and therefore vanishes in the limit € — 0 unless m = a. We obtain

. € € € 2h2 : ~ 1.0 —dL(a)
lim (05, | F* [Xim) = 7 sinmé k%p! mfsm,afsn,aﬂa (94)
where
1
L(a) = — Qa/ F'Foe®Y Wy du 4 afy fora,
0
R(a) = 2(p(1) far1 + fos1fa), (95)
and

pu) =a+1— au. (96)
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As we show below, L(a) = R(«), or, equivalently,

1
/ 2aFéFa+1ea(1_“)u“+1 du = afoforr = 2(p(1) fag1 + foii) fo- (97)
0

With this identity, (94) gives the required result (71).
To establish the identity (97), it is convenient to express Fyi in terms of F, by
means of the recurrence relation (Abramowitz & Stegun 1970)

(a+HMS,a+2,u)=(a+1) (M(3,a+1,u) — M'(3,a+1,u)), (98)
which implies that

(a+ %)Faﬂ =(a+1)(F, — F/a). (99)
With the differential equation
uF, = —p(u)F, + %F (100)

it is straightforward to show that the integrand on the left-hand side of (97) is given by
W'(u), where
1
Wi(u) = 2a—+1u“+160‘(1_“) (gFa2 — p(u)F,F. — uF;Z,) : (101)
a—+ 5 2
W (0) vanishes, whereas W (1), with the aid of (99), is seen to be equal to the right-hand
side of (97).
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Appendix A. Wavepacket expectation values

The force and impulse due to an Aharonov-Bohm flux line can be calculated rigourously

for suitably well-behaved wavefunctions (7). We will take these to be such that
cm (k) = (Xk.m 1) is smooth in k and falls off, along with its derivatives, (A1)
faster than any power of k& and m. '

Using standard arguments, one can show that (A.1) implies the following properties of
Y(r) and (H)(r), where H is the Aharonov-Bohm Hamiltonian.

Y(r) and (Hv)(r) are smooth for » > 0 and fall off, along with their

A2

derivatives, faster than any power of r. (4.2)
U (1) — O, rmal L0 (rlm—a|+1) ,

(HY)m(r) = Dyrl™=l 40 (rIm=alt1y | (A.3)

where, in general,

1

ml) =5 [ (0 " do (A1)
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(In fact, properties (A.2) and (A.3) are also shared by (H’w)(r), for 5 > 1.) The
argument to follow would hold under weaker conditions, but we assume (A.1) for
simplicity.)

The expectation value of force is given by

(] F o) = // {(MVY) + o (V)
- / / — (HY")(MVY) + " (MVHY) ) dr, (A.5)

where MV is given by (15). From (A.2) and (A.3), it is evident that the r-integral
in (A.5) converges absolutely. This allows us to introduce a factor exp(—e*r?) in the
integrand, and then take the limit of the integral as e — 0. The Gaussian factor will
justify subsequent reorderings of operations. Note that the integral cannot be expressed
in terms of the expectation value of the commutator [H, MV)|, because of singularities in
the radial derivatives of ¢)(r) at the origin (specifically, (MV)(r) is not in the domain
of H).
We introduce the eigenfunction expansion

Z / Con (k) T o (k7)™ kdk, (A.6)

and a similar expansion for (H)(r), with ¢,,(k) replaced by —(h?/2M)k?*c,, (k). Using
standard arguments, one can show that (A.1) implies that the differential operator
MY, when applied to ©» and H, can be taken inside the m-sum and k-integral. The
recurrence relation,

Jusa(2) = F (SR F S002)) (A7)
implies that
MY (T (k7)e™®) = sgn(m — a)ilikJpy1 o (kr)e ™2 m +£a,
= —ihkJs_(kr)el@rD)?, m = a. (A.8)

Substituting (A.6) and (A.8) into (A.5), along with the eigenfunction expansion of )*(r)
with coefficients ¢, (p) we obtain

Wi =t [ oot [Tao 3050 e My [

m=—0o0 Nn=—00

Sgn(m - a)J|m+1—a|(k7n)7 m#a

—Ja1(kr), m=a. (A.9)

XCp(P)em (k)R p(k* — D) Jjn—a) (pr) X {

The sums and integrals in (A.9) are uniformly and absolutely convergent, and can
be interchanged. On performing the ¢-integral, the sum on n collapses to the single
term n = m + 1. We obtain

1 ) = 2 tim Z/ | Kk p e dbdp, - (A.10)
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where, for m # a,
K& (k,p) = sgn(m — a)k*p(k* — p*) /00 e I, (pr), (kr)rdr, v=|m—a+1|,(A.11)
and, for m = a, :

KE(k,p) = k*p(p* — k?) /000 e ", (pr) gy (kr)rdr, v=1-—a. (A.12)

Below, in Appendix A.1 and Appendix A.2, we show that the contributions from the
m # a terms vanish in the limit, ie

lgroln%;/o /0 K, (k, p)ciy (p)ca (k) dkdp = 0, (A.13)
while for the term m = a,
iy [ Kelhp)eiatvlea ) abap
0

=0/,
= —sm7ra/ / ko act  (p)ea(k) dkdp. (A.14)

Substitution of (A.13) and (A.14) into (A.10) gives

(V| F ) = 2Ms1nm/ / EHap?aer  (p)ea(k) dkdp. (A.15)

This is equivalent to the matrix element (25), obtained formally in Section 2.

We note that, with € = 0, the integrals in (A.11) and (A.12) correspond to singular
(ie, not absolutely convergent) cases of the discontinuous Weber-Schafheitlin integral
(Abramowitz & Stegun 1970). Formal evaluation of these integrals would give (A.13)
and (A.14) immediately. The arguments in Appendix A.1 and Appendix A.2 serve to
justify these formal results.

To obtain the the force expectation value (21), we express c,(k) and ¢ ,(p) in
(A.15) in terms of ¥(7) to obtain

<1/)|-7:|¢> —Slnﬂahm/ / k1+a 2—& 75 (k2+p?)

e—0

(/ a1 (8)Ji-a(ps sds) (/ Vo (1) Ja(kr) rdr) dkdp, (A.16)

Note that the convergence factor exp(—e?(k? + p*)) can be introduced, and the limit
¢ — 0 taken outside the integral, since, by (A.1), the k- and p-integrals in (A.15) are
absolutely convergent. By (A.2) and (A.3), the r- and s-integrals in (A.16) are absolutely
convergent, so that, for € > 0, we can interchange the order of integration. The k- and
p-integrals can be evaluated using (38), with the result

2h2 - o 0o @Z}a(r) e r2 a r2
w71 =2 sweaty [ (%) e (53) o (42)

> @Z)ZH(S) —s2/4¢? 2\ 52
Lo S € . d .
X/U < sia )¢ 4e? 4e?
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2 2
= 7](; sintaC,Cy  I'(14+ a)I'(2 — @)
A2
= L a1 — @)C,Cxy ., (A.17)

where the coefficients C, and C,;; are given in (A.3). This is just the result (21) of
Section 2.

Concerning the impulse, it is straightforward to justify, using arguments like the
preceding ones, the calculations of Section 3 leading to (46). It is only necessary to
check that the time-dependent expectation value (i(t)|F |1(t)), is integrable in t.
(P(t)| Fp(t)) is given by (A.15), with c,(k) and ¢}, ,(p) modulated by the factors
exp(—ihik?*t/2M) and exp(ihip*t/2M) respectively. We have that

A fik?
k', (k —i—t ) dk
/0 Cm( )exp< Y )
iM [ d

=5 ), em(k) exp (‘i%t> dk = O(1/1) (A.18)

for large t (the integration by parts is justified by (A.2) and (A.3)). Similarly,
I 0 (p) exp(ifip?t/2M) dp is O(1/t). It follows that (1(t)| F[4(t)) falls off as
1/t2

Appendiz A.1. Proof of (A.13)

Given functions f and g defined on a domain D, we will say that f is dominated by g
if, for some constant C', |f| < Cg throughout D. For functions indexed by an integer
m, eg fm and g, we will say that f,, dominated by g, if | fim| < C'gp, for some C' which
does not depend on m. Thus, from (A.1),

cm(k)c, 1 (p) is dominated by (1 +m?)~'(1 + k? + p*)~* for k,p > 0. (A.19)
The integral in (A.11) can be evaluated (Gradshteyn and Ryzhik 1980) to give

sgn(m—a), 5 1o —(k*+p?)/4¢> kp
K; (k,p) = —————k"p(k* — PR — ), A2
m (kD) 53 p(k* —ple 5e2 (A.20)
where I,(z) is a modified Bessel function, and ¥ = |m — «|. From the asymptotic
behaviour of I, (z) for large argument, it follows that I,,(z) is dominated by e*/,/z for z
real. Therefore, the left-hand side of (A.13) is dominated by

) N L Ul TR
1+m2 / / eXp( 2¢? )(1+k2 ) (A.21)

Let us divide the domain of the domain of the (k,p)-integral into the region inside the
2/3

m=—0oQ

strip |k — p| < €#/% and the region outside. Inside the strip, the integrand is dominated
by €2/3k3/(1 4 k?)*; thus the integral over the strip is dominated by €*/3. Outside the

2
strip, the integrand is dominated by exp (—65) /(1+k*+p?)?%; thus the (k, p)-integral
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2
outside the strip is dominated by exp (—6_5). Therefore, the expression in (A.21) is
dominated by

> 1 1 2

E — <e4/3 + exp(—63)> : (A.22)
€

which vanishes as € — 0.

Appendiz A.2. Proof of (A.14)

Substituting the series expansion
2

Tolz) = (g)y Z ull'(u i v+1) <_ZZ> ’ (4.23)

u=0

and a similar expansion for J_,(z), we get that

k”/ e~ I, (pr) J_ (kr)r dr
0
2

1 D(u+v+1) AN
_ v - ——) . (A.24
2¢2" uz::()vz:;u!v!f‘(u— v+ 1)l'(v+v+1) < 462) ( 4e? ( )

For € > 0, the r-integral and » and v-sums are absolutely convergent for all k,p > 0.

Inserting in (A.24) the integral representation for the reciprocal of the beta-function
(Gradshteyn and Ryzhik 1980)

MNu+v+1) 1

Tu—v+1)l(v+v+1) (u+v+1)Blu—v+1lLv+v+1)

2 /2 . . .
= —Re / (2isinte™)" (—2isinre”)" 2T =m/2) 47, (A.25)
T 0
we may perform the sums to obtain

k”/ e " 0, (pr)J_ (kr)r dr
0

v w/2 2 kZ 2 _ 1.2
= %Re / exp <_p 2—; sin27 4 iL v sin 27 + 2iv (1 — 7r/2)> dr. (A.26)
0

Substituting this result into (A.12), we get

1 y ; w/2
Kt(k,p) = — k' %p*%(p* — k*)Re / e 5/ dr, (A.27)
0

me2

where the exponent S is given by

S = L(k*+p*) (1 —cos 27) — 3i(p* — k*) sin 27 — 2ie*(1 — &) (T — 7/2).(A.28)

It is clear that the main contribution to the 7-integral in (A.27) comes from the
neighbourhood of 7 = 0. If S is expanded about 7 = 0 to second order, the T-integral
yields an error function, whose leading-order asymptotics as € — 0 leads directly to
the required result (A.14). However, the next term in the asymptotic expansion is not
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uniformly bounded in k and p — it contains a factor (k? — p?)~2 — so we must take some
additional care.

To proceed, we divide the domain of the k, p-integral into three regions, which we
specify below, and write the left hand side of (A.14) as

(1 [ [ <tim [ [t [ [ ) s st i, (20

We analyze the contribution from each region separately.
Let D; denote the region k,p > 0, k2 4+ p? < €, where 3 is chosen to satisfy

1<p< (A.30)

In this region, the exponential factor in (A.27) is bounded, and k'*%p*>=%(p? — k?) is
dominated by €#/2. The coefficients |c,(k)| and |c¢f_;(p)| are bounded, and the area of
D, is dominated by €’ so that the contribution from D; in (A.29) is dominated by
€#/2=2_ Given the choice of 3, this vanishes as € — 0.

Let Dj be the region k,p > 0, k? +p? > €’ and |p? — k?| < €7, where 7 is chosen to
satisfy

l+ig<y<1-1p (A.31)

(since ff < %, the inequality (A.31) can be always be satisfied). Since 1 —cos 27 > 72 for
0 < 7 < 7/2, the factor exp(—S/e?) is dominated by the Gaussian exp(—o?7?), where
o = 1271 Thus foﬁ/Q exp(—S/e?) dr is dominated by €' =#/2. Then, from (A.27),
K¢(k,p) is dominated by ¢'=A/2=1gltep?=a in Dy From (A.1), p>~%ci ,(p)ca(k) is
integrable over the region k,p > 0. Therefore, the contribution from D, to (A.29)
is dominated by 627_%ﬁ_1 (the additional factor of € is due to the fact that the integral
is confined to |k* — p?| < €7). Given the choice of v, this vanishes as ¢ — 0.

The remaining region Dj is given by k,p > 0, k? + p? > € and [p? — k%] > €.
Integrating by parts with respect to 7 in (A.27), we get that

1 - -
K (k,p) = —k0p* 0 (p* — &)

e S/ e 5/ T2 ¢S,
x Re 5 -5 - /0 e 52 dr | . (A.32)
7=0 T=m/2
The first term gives
2 e oa 41 —a)e !
— Elrop?e (14 2 . A.33
—sinma k% + prpE (A.33)

Its contribution to the integral over Ds in (A.29) yields, in the limit e — 0, the required
result (A.14).

It remains to show that contribution to the Ds-integral from the remaining terms
in (A.32) vanishes in the limit ¢ — 0, It is readily seen that the contribution from the
second term vanishes exponentially with e. For the third term, we note that, on the
interval 0 < 7 < 7/2, S,,/S? is dominated by (k? + p?)/(k* — p?)?, and exp(—S5/¢?)
is dominated by exp(—e’~272/2). Therefore, the integral foﬂ/Q e=5/€(S,./82)dr is
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dominated by elf%ﬁ(k2 +p?)/(p* — k%)% Thus, the third term in (A.32) is dominated
by ﬁlféﬁ(kQ + p?)kTap?=a/|k? — p?|, which on Dj is dominated by elféﬁﬂ(k2 +p2)%.
The contribution to the integral over D3 in (A.29) is dominated by 617%577, which, by
the choice of v, vanishes as € — 0.
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