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1 Introduction

The statistical distribution of quantum energy levels is a much studied topic.

It has been conjectured that generic, classically integrable systems give rise to

uncorrelated quantum spectra [1], while the energy levels of generic classically

chaotic systems have the same statistical properties as the eigenvalues of

random matrices [2]. This has been con�rmed by semiclassical theory [3, 4],

and in a large number of numerical studies, but classes of systems have also

been found for which it is not true; these include geodesic motion on surfaces

of constant negative curvature [5], and the cat maps [6].

Quantum graphs [7, 8] are mathematical models introduced in order to

explore the connection between the periodic orbits of a system and the sta-

tistical properties of its energy levels. The trace formula, in which the level

density is connected to a sum over periodic orbits, is exact for graphs, rather

than a semiclassical approximation, and the orbits can be classi�ed straight-

forwardly. However, despite the fact that numerical computations have re-

vealed good conformance of the spectral statistics of many quantum graphs

to the predictions of Random Matrix Theory (RMT), few conclusive analyt-

ical results have been obtained so far. This is due to the fact that although

some individual �nite graphs can be shown to reproduce certain features of

RMT behaviour [9, 10, 11], the full RMT results can only be recovered in

a limit in which one is forced to consider larger and larger graphs, and this

necessitates �nding general, combinatorial asymptotic techniques for dealing

with the (non-trivial) length degeneracies of the periodic orbits.

One family of graphs in which this goal has been achieved are the star

graphs [12] (de�ned below and shown in Fig. 1), but in this case the resulting

spectral statistics are neither RMT nor Poissonian (i.e. those of random num-

bers). It turns out, however, that it is not the �rst time that such statistics

have arisen in the connection with the study of quantum chaos. Our purpose

here is to demonstrate that the star graphs have exactly the same two point

spectral correlations as a large class of quantum systems, which we will refer

to as �Seba billiards.

The original �Seba billiard, a rectangular quantum billiard perturbed by

a point singularity (also illustrated in Fig. 1), was introduced in [13] as an

example of a system whose classical counterpart is integrable (the singularity

a�ects only a set of measure zero of the orbits) but which nonetheless exhibits

properties of quantum chaos. This construction was later generalized to all

integrable systems [14] perturbed in the same way. We will refer to any
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system in this class as a �Seba billiard.

The energy levels of a �Seba billiard can be found by solving an explicit

equation which depends on the levels of the original unperturbed system and

on the boundary conditions imposed at the singularity. This equation takes

the general form

��(z) = 1; (1)

where �(z) is the meromorphic function

�(z) =
X
n

j n(x0)j2
En � z ; (2)

the sum being suitably regularized to ensure convergence. Here fEig are the
eigenvalues of the unperturbed system,  n(x0) is the value of the nth unper-

turbed eigenfunction at the position x0 of the singularity, and the coupling

constant � parametrizes the boundary conditions [13, 14]. Assuming that

fEig are given by a Poisson process, one can then calculate the associated

spectral statistics, such as the joint level distribution, asymptotics of the level

spacing distribution [14], and the two-point spectral correlation function [15].

The results show the presence of spectral correlations but are substantially

di�erent from the RMT forms.

Here we apply the methods developed for �Seba billiards in [15] to calculate

the two-point spectral correlation function for star graphs, starting from an

expression which is analogous to (2). The formula obtained will be shown to

be a resummation of the expansion computed from the periodic orbit sum

in [12]. Our main result will be that this correlation function is the same as

that already found for �Seba billiards in the case when j n(x0)j2 = constant

(e.g. when the billiard is rectangular with periodic boundary conditions) and

�!1. We �nish with a discussion of reasons for this coincidence.

2 Quantum star graphs

Star graphs are metric graphs of the type shown on Fig. 1 with a Schr�odinger

equation

� d2

dx2
j

	j = k2	j; xj 2 [0; Lj]; (3)
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Figure 1: A star graph with v edges (a) and a �Seba billiard (b).

de�ned on the bonds and boundary conditions, for example

	j(0) = 	k(0); (4)X
j

@

@xj
	j(0) = 0; (5)

@

@xj
	j(Lj) = 0; (6)

speci�ed on the vertices. Here Lj is the length of the j-th bond, j = 1 : : : v,

and the real variable xj varies from 0 to Lj, with 0 corresponding to the

central vertex and Lj to the outer vertex. The lengths Lj are assumed to be

incommensurate; see [12] for further details. We refer to positive values of

the parameter k for which the system (3)-(6) is solvable as eigenvalues of the

quantum star graph.

Denoting the ordered sequence of eigenvalues by fkig1i=1, we de�ne the

spectral density by

d(k) =

1X
i=1

�(k � ki): (7)

The statistic we shall mainly be concerned with is the two-point correlation
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function

R2(x) =
1

d
2

�
d(k)d

�
k +

x

d

��
� �(x); (8)

where d = hd(k)i is the mean density, �(x) is the Dirac �-function, and the

average h � i is either over k, or over the bond lengths Lj (we shall specify

which in each particular context). R2(x) is an even function and hence so is

its Fourier transform,

K(�) = 1 + 2<
Z

1

0

(R2(x)� 1)e2�ix�d�; (9)

which is called the form factor.

A complete series expansion of the v ! 1 limit of K(�) in powers of �

around � = 0 was derived for the star graphs in [12] using the trace formula

and a classi�cation of the periodic orbits:

K(�) = exp(�4�) +
1X
j=2

1X
M=0

4j

j!
Cj;M�

M+j+1; (10)

where

Cj;M = (�2)M
MX
K=0

(K + j � 1)!(M �K + j � 1)!

(M + j � 1)!
Fj(K;M �K); (11)

with

F1(K;N) =

�
K+N

N

�
(N + 1)!(K + 1)!

; (12)

and

Fj(K;N) =

KX
k=0

NX
n=0

F1(k; n)Fj�1(K � k;N � n): (13)

Explicitly,

K(�) = e�4� + 8� 3 � 32

3
� 4 +

16

3
� 5 � 128

15
� 6 +

16

9
� 7 +

64

63
� 8 + o(� 8): (14)
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Figure 2: The sum of the �rst 30 terms in the expansion (10) (dashed line),

which converges in the range � � � � � 0:63, compared to the results of

a numerical computation [8] of K(�) (circles). Also shown are the Pad�e

approximations to the series of order [21=20] (thin solid line) and [23=23]

(thick solid line).

In this calculation, the average in (8) was over k. The result is in excellent

agreement with the numerical data (see Fig. 2) but is limited by the fact

that the radius of convergence of the series is �nite, being approximately 0:63

(found by applying Cauchy's test to the coe�cients in the series, but see also

Fig. 2). The range of convergence can be extended using Pad�e approximation

(again, see Fig. 2), which suggests that the singularity causing the divergence

is not on the positive real line [16].

Here we approach the problem from a di�erent direction: it is possible to

solve equations (3)-(6) to derive an explicit condition on k to be an eigenvalue.

Indeed, the general solution of (3) on a star graph can be written in the form

	j(x) = Aj cos(k(x + �j)), j = 1; : : : ; v. Applying condition (6), we obtain

�j = �Lj while condition (4) on the central vertex implies Aj cos(Ljk) =
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const. Finally, applying condition (5) and dividing by Aj cos(Ljk) we obtain

vX
j=1

tanLjk = 0: (15)

Similar expressions can easily be found when di�erent boundary conditions

are applied at the central vertex. The general equation reads

vX
j=1

tanLjk =
1

�
; (16)

where � is arbitrary parameter. However, in the limit as v ! 1, � �xed,

the two-point correlation function turns out to be independent of � (see

the comment following equation (49)). Our calculations will therefore be

performed for ��1 = 0.

Note the similarity between (16) and the quantization condition (1) for
�Seba billiards when j n(x0)j2 = constant.

Condition (15) means that k is an eigenvalue if and only if it is a zero of

the function F (k) =
P

v

j=1 tanLjk, and so we can express the density d(k)

as

d(k) =
1

2�

Z
jF 0(k)jeizF (k)dz = 1

2�

Z vX
s=1

Ls

cos2 Lsk
eiz

P
v

j=1
tanLjkdz: (17)

Our analysis of the spectral correlations will be based on this representation.

3 Mean density.

As an example of the techniques to be employed later, we begin by calculating

the mean density d de�ned as

d = lim
�L!0;k!1

D
d(k)

E
fLjg

(18)

where now the average is with respect to the individual lengths of the bonds,

rather than over k:

h � ifLjg =
Z

L0+�L

L0

� � �
Z

L0+�L

L0

� dL1

�L
� � � dLv

�L
: (19)
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That is, we assume that the lengths are independent random variables dis-

tributed uniformly on the interval [L0; L0 + �L]. We also assume that �L

and k tend to their respective limits in such a way that �Lk !1.

Applying this averaging to (17) we obtainD
d(k)

E
fLjg

=
1

2�

Z
1

�1

dz

vX
s=1

Z
� � �
Z

L0+�L

L0

Ls
eiz

P
v

j=1
tan kLj

cos2 kLs

dL1

�L
� � � dLv

�L

=
v

2�

Z
1

�1

dz

�Z
L0+�L

L0

eiz tan kL
dL

�L

�v�1 �Z L0+�L

L0

L
eiz tan kL

cos2 kL

dL

�L

�
� v

2�

Z
1

�1

~f v�1(z)~g(z) dz: (20)

Here

~g(z) =

Z
L0+�L

L0

L
eiz tan kL

cos2 kL

dL

�L
� L0

�Lk

Z tan k(L0+�L)

tan kL0

eiz tan kL d tan kL; (21)

where we were able to approximate L by L0 because it is slowly varying

(compared with tan kL) and ultimately we will take the limit �L! 0. Now,

since tan kL is a periodic function with the period of �=k, and the integration

is performed over the interval containing approximately �Lk=� periods, we

can further approximate

~g(z) =
L0

�Lk

�
�Lk

�

Z
1

�1

eiz tan kL d tan kL +O(1)

�
� 2L0�(z); (22)

where O(1) is a quantity which is bounded as k�L!1. Similarly,

~f(z) =

Z
L0+�L

L0

eiz tan kL
dL

�L
=

L0

�Lk

Z tan k(L0+�L)

tan kL0

eiz tan kL
d tan kL

1 + tan2 kL

� 1

�

Z
1

�1

eiz�

1 + �2
d� = e�jzj; (23)

where the last integral was evaluated by closing the contour in either the

upper (z > 0) or lower (z < 0) half-plane.

Substituting the results into (20) we obtain for the average density

d =
v

2�
2L0

Z
1

�1

e�(v�1)jzj�(z)dz =
L0v

�
; (24)

which coincides with the result of averaging over k with the bond-lengths

�xed [7, 8, 12].
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4 Two-point correlation function

The two-point correlation function is given by

R2(x) = lim
�L!0;k!1

1

d
2
R

�
k; k +

x

d

�
; (25)

where d is the mean density, the limit is taken in such a way that k�L!1,

and we take

R(k1; k2) = hd(k1)d(k2)ifLjg (26)

=

*Z
1

�1

vX
r;s=1

LrLse
i
P

v

j=1
(z1 tan k1Lj+z2 tan k2Lj)

cos2 k1Lr cos2 k2Ls

dz

4�2

+
fLjg

;

with z = (z1; z2).

In this case, the analogue of (20) is that

R(k1; k2) =

Z
1

�1

�
vg(z)f v�1(z) + v(v � 1)�1(z)�2(z)f

v�2(z)
	 dz

4�2
; (27)

where

f(z) =
1

�L

Z
L0+�L

L0

ei(z1 tan(k1L)+z2 tan(k2L))dL; (28)

g(z) =
1

�L

Z
L0+�L

L0

L2

cos2 k1L cos2 k2L
ei(z1 tan(k1L)+z2 tan(k2L))dL; (29)

�1(z) =
1

�L

Z
L0+�L

L0

L

cos2 k1L
ei(z1 tan(k1L)+z2 tan(k2L))dL; (30)

�2(z) =
1

�L

Z
L0+�L

L0

L

cos2 k2L
ei(z1 tan(k1L)+z2 tan(k2L))dL: (31)

Substituting k1 = k, k2 = k + �x=(vL0), where x is �xed, and taking the

limits k !1, �L! 0 (while k�L!1), we obtain for the �rst integral

f(z) =
1

�L

Z
L0+�L

L0

e
i

�
z1 tan(kL)+z2 tan

�
kL+�xL

vL
0

��
dL

� 1

�

Z
�=2

��=2

ei(z1 tan�+z2 tan(�+
�x

v
))d�; (32)
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where we have again used L=L0 � 1 and, as in the transition from (21) to

(22), we have approximated f by the integral over one period. We now write

tan
�
�+

�x

v

�
=

tan�+ tan
�
�x

v

�
1� tan� tan

�
�x

v

� = �� +
1 + �2

� � tan�
; (33)

where � = (tan(�x=v))�1 / v=(�x) (we are interested in the v !1 limit).

Performing the change of variables � = tan�� �, we arrive at

f(z) � ei�(z1�z2)

�

Z
1

�1

eiz1��iz2
�
2
+1

�

d�

(� + �)2 + 1
: (34)

Note that f(z) is invariant under the exchange z1 $ z2 and � ! ��, which
can be veri�ed by the change of variables � = (�2 + 1)=y in (34).

To evaluate the integral in (34) we di�erentiate it with respect to z1 and

z2 to get

@f

@z1
� @f

@z2
=

iei�(z1�z2)

�

Z
1

�1

eiz1��iz2
�
2
+1

�

�
2� + �+

�2 + 1

�

�
d�

(� + �)2 + 1

=
iei�(z1�z2)

�

Z
1

�1

eiz1��iz2
�
2
+1

�

d�

�
= �ei�(z1�z2)�(z1; z2); (35)

where

�(z1; z2) � � i
�

Z
1

�1

eiz1��iz2
�
2
+1

�

d�

�
(36)

= 2 sign(z1)H(�z1z2)J0
�
2
p
�(�2 + 1)z1z2

�
;

J0(x) being the Bessel function of the �rst kind and H(x) the Heaviside

function (characteristic function of the half axis [0;1)).

Applying the method of characteristics to the PDE

@f

@z1
� @f

@z2
= �ei�(z1�z2)�(z1; z2); (37)

we obtain the solution

f(z) = e�jz1+z2j �
Z

z1

0

ei�(2y�z1�z2)� (y; z1 + z2 � y) dy: (38)
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Treating the integral for g(z) (see (29)) in a fashion similar to the one

used to obtain (34) leads us to

g(z1; z2) � L2
0

�

Z
�=2

��=2

ei(z1 tan(�)+z2 tan(�+�x=v))

cos2(�) cos2(�+ �x=v)
d� (39)

= L2
0

ei�(z1�z2)

�

Z
1

�1

eiz1��iz2
�
2
+1

�

 
1 +

�
1 + �2

�
+ �

�2
!
d�:

Comparing this integral to the one in (36), and noting that

1 +

�
1 + �2

�
+ �

�2

=
�2 + 1

�

�
�+ � +

�2 + 1

�
+ �

�
; (40)

we have that

g(z) = L2
0(�

2 + 1)

�
@

@z1
� @

@z2

��
ei�(z1�z2)�(z1; z2)

�
: (41)

One can derive a similar expression for the functions �1(z),

�1(z) � L0

ei�(z1�z2)

�

Z
1

�1

eiz1��iz2
�
2
+1

� d� = L0e
i�(z1�z2)

@

@z1
�(z1; z2); (42)

and �2(z),

�2(z) � L0

ei�(z1�z2)

�

Z
1

�1

eiz1��iz2
�
2
+1

�

(�2 + 1)d�

�2

= �L0e
i�(z1�z2)

@

@z2
�(z1; z2): (43)

Now we have all the ingredients necessary for evaluating the integral in

(27). Substituting the expression for g(z), (41), into the �rst half of the

integral and integrating it by parts we obtainZ
dz

4�2
vf v�1g = vL2

0

Z
dz

4�2
f v�1(�2 + 1)

�
@

@z1
� @

@z2

��
ei�(z1�z2)�

�
= �vL2

0

Z
dz

4�2
(�2 + 1)ei�(z1�z2)�

�
@

@z1
� @

@z2

��
f v�1(z)

�
= v(v � 1)L2

0

Z
dz

4�2
(�2 + 1)f v�2e2i�(z1�z2)�2: (44)
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Thus

R2(x) =
v(v � 1)L2

0

d
2

Z
dz

4�2
f v�2e2i�(z1�z2)

�
(�2 + 1)�2 � @�

@z1

@�

@z2

�
: (45)

Now we need to take the limit v !1. To do so we write f v�2(z) = e(v�2) ln f

and rescale f(z)

f(u=�) = e�
ju
1
+u

2
j

� � 1

�

Z
u1

0

ei(2y�u1�u2)	(y; u1 + u2 � y)dy; (46)

and hence, to the leading order in 1=� = �x=v, we have

(v � 2) ln f(u) � ��x
�
ju1 + u2j+

Z
u1

0

ei(2y�u1�u2)	(y; u1 + u2 � y)dy
�

� ��xQ; (47)

where 	 is the rescaled function �,

	(u) = �

�
u

�

�
= 2 sign(u1)H(�u1u2)J0

�
2
p�u1u2

�
; (48)

and we have taken the limit v !1 (� !1).

Renormalizing the rest of (45) and taking the limit v !1 we obtain

R2(x) =
1

4

Z
due��xQe2i(u1�u2)

�
	2 � @	

@u1

@	

@u2

�
: (49)

The only change when the above calculation is generalized to other boundary

conditions at the central vertex (i.e. to nonzero values of ��1 in (16)) is the

appearance of a factor e��
�1(z1+z2) next to every occurrence of dz in the

above integrals. For � �xed, this factor disappears after rescaling z = u=�

and taking the limit � !1. Hence equation (49) is then independent of �.

In the case when ��1 = ~��1v, the dependence of the spectral statistics on the

boundary conditions at the central vertex persists. The above expressions

then coincide with those for those for �Seba billiards with a renormalized

coupling consant, given in [15].

For the derivatives of the function 	 one has

@	

@u1
= 2

�
J0(0)�(u1) + sign(u1)H(�u1u2)u2J

0

0 (2
p�u1u2)p�u1u2

�
; (50)

@	

@u2
= 2

�
�J0(0)�(u2) + sign(u1)H(�u1u2)u1J

0

0 (2
p�u1u2)p�u1u2

�
; (51)
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therefore, using J0(0) = 1 and J 00(x) = �J1(x),
@	

@u1

@	

@u2
= �4 ��(u1)�(u2) +H(�u1u2)J2

1

�
2
p�u1u2

��
: (52)

Thus

R2(x) = 1 +

Z
e��xQ+2i(u1�u2)

�
J2
0

�
2
p�u1u2

�
+ J2

1

�
2
p�u1u2

��
H(�u1u2)du:

(53)

Now we perform the change of variables u2 7! �u2 arriving at the following
integral representation of the two-point correlation function,

R2(x) = 1 +

Z
D

e��xM(u)+2i(u1+u2)
�
J2
0 (2
p
u1u2) + J2

1 (2
p
u1u2)

�
du: (54)

Here the domain of integration D includes �rst and third quadrants of the

u1u2-plane and M(u) is given by

M(u) � M(u1; u2) = ju1 � u2j+
Z

u1

0

ei(2y�u1+u2)	(y; u1 � u2 � y)dy

= ju1j+ ju2j � 2i sign(u1)

1X
r;s=1

(iu1)
r(iu2)

s(r + s� 2)!

r!s!(r � 1)!(s� 1)!
: (55)

Equation (54) constitutes an exact formula for R2(x) for star graphs in

the limit v !1. It is our main result. The point we seek to draw attention

to is that it is exactly the same as the one obtained in [15] for �Seba billiards

when j n(x0)j2 = constant in (2) and � ! 1. We will expand on this

observation later. First, we consider some of the properties of the two-point

correlation function and the form factor in more detail.

5 Expansion for large x

To derive an expansion of the two point correlation function R2(x) for large

x we notice that since M(�u) =M(u), the integral over the third quadrant

in (54) is equal to the complex conjugate of the integral over second quarter-

plane, i.e.

R2(x) = 1 + 2<
Z Z

1

0

e��xM(u)+2i(u1+u2)J(u)du; (56)
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where

J(u) = J2
0 (2
p
u1u2) + J2

1 (2
p
u1u2) =

1X
n=0

(�1)nun1un2 (2n)!
(n+ 1)!(n!)3

: (57)

Now we can use the expansion ofM(u), (55), to expand R2(x) in the powers

of 1=x. We substitute ui = 
i=(x�) and obtain

R2(x) = 1 + 2< 1

x2�2

Z Z
1

0

d
1d
2e
�
1�
2

�
1 +

2i (
1 + 
2 � 
1
2)
x�

� (5
1
2 + 2
21 + 2
22 � 5
1

2
2 � 5
21
2 + 2
21


2
2)

x2�2
+O

�
1

x3

��
= 1 + 2<

�
1

x2�2
+

2i

x3�3
� 1

x4�4
+ : : :

�
: (58)

To compare this to the expansion (14) of K(�) we note that if K(�) =

1 +
P

1

k=1 ak�
k for � > 0 then, inverting the Fourier transform in (9),

R2(x)� 1 = 2< lim
�!0

Z
1

0

(K(�)� 1)e�2�i(x�i�)�d� (59)

= 2<
1X
k=1

��i
2�

�k+1
akk!

xk+1
: (60)

Applying this to

K(�) = 1� 4� + 8� 2 � 8

3
� 3 +O(� 4); (61)

we see that the �rst few coe�cients of the two expansions agree. The proof

that it is so for all coe�cients is given by the following proposition.

Proposition 1. The asymptotic expansion (58) of the two-point correlation

function and the expansion (10) of the form factor coincide under the Fourier

transformationZ Z
1

0

e��xM(u)+2i(u1+u2)J(u)du =

Z
1

0

(K(� 0)� 1) e�2�ix�
0

d� 0: (62)

Proof. The Fourier transform in (62) establishes the correspondence between

the terms in the asymptotic expansion of

fR2(x) =

Z Z
1

0

e��xM(u)+2i(u1+u2)J(u)du (63)
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and the terms of the small � expansion of K(�). This correspondence is

1

(2�ix)k
 ! �k�1

(k � 1)!
: (64)

Our plan is to modify the integrand in the de�nition of fR2(x), getting rid

of the factor e2i(u1+u2)J(u), expand the integral in inverse powers of x and

apply the correspondence rule (64) to recover (10).

First of all, as one can verify by direct substitution of the series for

M(u1; u2),�
@

@�1

+
@

@�2

��
xM

��1

x
;
�2

x

��
=

1X
r;s=0

ir+s
�
r + s

r

�
(�1=x)

r(�2=x)
s

r!s!

= 2ei(�1+�2)=xJ0

�
2
p
�1�2

x

�
; (65)

and

@

@x

�
xM

��1

x
;
�2

x

��
=

1X
r;s=1

2ir+s+1 (r + s� 1)!(�1=x)
r(�2=x)

s

r!s!(r � 1)!(s� 1)!

= �2i
p
�1�2

x
J1

�
2
p
�1�2

x

�
ei(�1+�2)=x: (66)

Applying (66),

@2

@x2
e��xM(

�
1

x
;
�
2

x
)

= e��xM
�
�4�2�1�2

x2
J2
1e

2� � 2�i

x3

�
2J0e

��1�2 + iJ1e
�
p
�1�2(�1 + �2)

��
;

(67)

where � = i(�1 + �2)=x and for simplicity we have omitted the argument

(�1=x; �2=x) of the functions M , J0 and J1.

Similarly, using (65), we have�
@

@�1

+
@

@�2

�2

e��xM(
�
1

x
;
�
2

x
)

= e��xM
�
4�2J2

0 e
2� � 2�i

�1�2x

�
2J0e

��1�2 + iJ1e
�
p
�1�2(�1 + �2)

��
: (68)
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Noticing the similarity between (67) and (68), we subtract the �rst from the

second, with the appropriate factors, to obtain

1

4�2

"
1

x2

�
@

@�1

+
@

@�2

�2

� 1

�1�2

@2

@x2

#
e��xM(

�
1

x
;
�
2

x
)

=
1

x2

�
J2
0 + J2

1

�
e2�e�xM ; (69)

where, as before, the argument (�1=x; �2=x) of M , J0 and J1 has been omit-

ted. The right hand side of (69) is exactly the integrand of (56) if we perform

the change of variables ui = �i=x and, therefore,

fR2(x) =

ZZ
1

0

d�1d�2

4�2

"
1

x2

�
@

@�1

+
@

@�2

�2

� 1

�1�2

@2

@x2

#
e��xM(

�
1

x
;
�
2

x
):

(70)

The �rst term in the integral can be evaluated as follows,ZZ
1

0

d�1d�2

4�2x2

�
@

@�1

+
@

@�2

�2

e��xM(
�
1

x
;
�
2

x
)

=

�
�
Z

1

0

d�2

4�x2
[�]

1

�1=0 �
Z

1

0

d�1

2�x2
[�]

1

�2=0

�
; (71)

where

� =

�
@

@�1

+
@

@�2

�
e��xM(

�
1

x
;
�
2

x
) = 2ei(�1+�2)=xJ0

�
2
p
�1�2

x

�
e��xM : (72)

Since

[�]
1

�1=0 = �2ei�2=xe���2 ; [�]
1

�2=0 = �2ei�1=xe���1 ; (73)

we obtainZZ
1

0

d�1d�2

4�2x2

�
@

@�1

+
@

@�2

�2

e��xM(
�
1

x
;
�
2

x
) =

1

2�x2
2

� � i=x: (74)

Now we can expand the result in inverse powers of x and apply the corre-

spondence rule (64). We obtain

1

�x

1

�x� i = �
1X
k=0

�
i

�x

�k+2

 ! 2

1X
k=0

(�2�)k+1

(k � 1)!
= 2

�
e�2� � 1

�
: (75)
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Next we need to expand the second part of the integrand in (70),

@2

@x2
e��xM =

@2

@x2
e��(�1+�2) exp

 
2�i

1X
r;s=0

(i�1)
r+1(i�2)

s+1(r + s)!

xr+s+1r!s!(r + 1)!(s+ 1)!

!

= e��(�1+�2)
@2

@x2

24 1X
j=0

(2�i)j

j!

 
1X

r;s=0

(i�1)
r+1(i�2)

s+1(r + s)!

xr+s+1r!s!(r + 1)!(s+ 1)!

!j
35 : (76)

Using the same notation as in (12), 
1X

r;s=0

(i�1)
r+1(i�2)

s+1(r + s)!

xr+s+1r!s!(r + 1)!(s+ 1)!

!j

=

 
1X

r;s=0

(i�1)
r+1(i�2)

s+1

xr+s+1
F1(r; s)

!j

=

1X
R;S=0

(i�1)
R+j(i�2)

S+j

xR+S+j
Fj(R; S); (77)

where, as before, Fj(R; S) is the jth convolution of F1(R; S) with itself. Thus

@2

@x2
e��xM(

�
1

x
;
�
2

x
) = e��(�1+�2)

1X
j=1

(2�i)j

j!

�
1X

R;S=0

(R + S + j � 1)!(i�1)
R+j(i�2)

S+j

(R + S + j + 1)!xR+S+j+2
Fj(R; S): (78)

Finally we integrate against d�1d�2=(4�
2�1�2) to arrive at

�
ZZ

1

0

d�1d�2

4�2�1�2

@2

@x2
e��xM(

�
1

x
;
�
2

x
)

= �
1X
j=1

(2�i)j

4�2j!

1X
R;S=0

(R + S + j + 1)!(R + j � 1)!(S + j � 1)!

(R + S + j � 1)!(�i�)R+S+2jxR+S+j+2
Fj(R; S)

 ! �

1X
j=1

(4�)j

j!

1X
R;S=0

(�2�)R+S(R + j � 1)!(S + j � 1)!

(R + S + j � 1)!
Fj(R; S): (79)
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This is exactly the same as the j sum in (10) with the exception of the extra

j = 1 term in the summation above. For j = 1 we have

4� 2
1X

R;S=0

(�2�)R+SR!S!
(R + S)!

Fj(R; S) =

1X
R;S=0

(�2�)R+S+2

(R + 1)!(S + 1)!

=

 
1X
R=0

(�2�)R+1

(R + 1)!

! 
1X
S=0

(�2�)S+1

(S + 1)!

!
= (1� e�2� )2

= 1� 2e�2� + e�4� ; (80)

which, together with the terms 1 and 2(e�2� � 1), gives the correct contribu-

tion e�4� .

6 Singularities of the form factor

One can also obtain some information about the singularities of K(�) by

Fourier transforming the integral representation (56). There is, however, a

subtle problem associated with this approach. The form factor is by de�ni-

tion an even function de�ned on the real line. What we want to get from

transforming (56) is an analytic function which coincides with the form factor

for real � > 0, so as to be able to study its complex singularities.

As we saw above,

fR2(x) =

Z Z
1

0

e��xM(u)+2i(u1+u2)J(u)du =

Z
1

0

(K(� 0)� 1)e�2�ix�
0

: (81)

Integrating (81) against e2�ix� on the real line we obtainZ
1

�1

fR2(x)e
2�ix�dx = K(�)� 1; � > 0: (82)

One can check that this leads to the correct power series expansion of the

form factor: give x a small negative imaginary part, x 7! x � i�, in fR2(x)

(this is consistent with (81)), substitute in the asymptotic expansion (56),

and integrate term-by-term.

We now use fR2(�x) = fR2(x) to writeZ
1

�1

e2�ix�fR2(x)dx =

Z
1

0

�
e2�ix�fR2(x) + e�2�ix�fR2(x)

�
dx: (83)
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The only factor fR2(x) which depends on x is e��xM(u) andZ
1

0

e2�ix�e��xM(u)dx =
1

�(M(u)� 2i�)
; (84)

thus we have for the form factor

K(�) = 1 +
1

�

Z Z
1

0

"
e2i(u1+u2)

M(u)� 2i�
+

e�2i(u1+u2)

M(u) + 2i�

#
J(u)du: (85)

The representation (85) presents us with a way to �nd the singularities of

K(�). These are given by the condition � =M(us)=(2i) and � =M(us)=(2i),

where the point us is such that

@M

@u1
(us) =

@M

@u2
(us) = 0: (86)

The derivative with respect to u2 is

@M

@u2
= 1� 2

Z
u1

0

h
ei(y+z)J1 (2

p
yz)
p
y=z � iei(y+z)J0 (2pyz)

i
dy; (87)

where z = y � u1 + u2 and we have assumed that u1 > u2 > 0. It is obvious

from the expansion (55), however, that the function M(u) is continuously

di�erentiable if u1u2 > 0 and hence that the expression (87) is valid for all

u1 > 0 and u2 > 0. The integral in (87) is not easy to analyse and to simplify

it we reduce our search to the line u2 = u1, where

@M

@u2
(u2 = u1) = 1� 2

Z
u1

0

e2iyJ1(2y)dy + 2i

Z
u1

0

e2iyJ0(2y)dy: (88)

Performing the second integration by parts,Z
u1

0

e2iyJ0(2y)dy =
e2iyJ0(2y)

2i

����u1
0

+
2

2i

Z
u1

0

e2iyJ1(2y)dy; (89)

we obtain, after simpli�cation,

@M

@u2
(u2 = u1) = e2iu1J0(2u1): (90)

Since @M

@u1
(u2 = u1) =

@M

@u2
(u2 = u1), we see that the zeros of the derivatives

of M(u) on the line u2 = u1 are given by the zeros of the Bessel function J0.
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The nearest zero is at us � 1:202. Thus one of the singularities ofK(�) lies at

�s =M(1:202; 1:202)=(2i) = 0:462�0:420i. We note that j�sj = 0:624, which

coincides with our previous numerical estimate of the radius of convergence

of the series expansion of K(�) in powers of � around � = 0. This strongly

suggests that this singularity is the closest to the origin. To this end, we can

prove the following.

Proposition 2. Among the singularities arising from stationary points of

M(u1; u2) along the line u2 = u1, the singularity at �s =M(1:202; 1:202)=(2i)

is the nearest to the origin.

Proof. To show that the statement is true we need to prove that the function

jM(u; u)j2 is a nowhere decreasing function of u. On the line u1 = u2 = u

we have

M(u; u) =

Z 2u

0

eiyJ0(y)dy = 2e2iuu (J0(2u)� iJ1(2u)) : (91)

Thus jM(x=2; x=2)j2 = x2 (J2
0 (x) + J2

1 (x)) and its derivative is, after simpli-

�cation, d

dx
jM(x=2; x=2)j2 = 2xJ2

0 (x) � 0.

It is straightforward to approximate the behaviour of K(�) near these

singularities. We expand

M(u) � M(us) +
1

2

@2M

@u21
(us)(u1 � u2)2 + 1

2

@2M

@u22
(us)(u2 � us)2

+
@2M

@u1@u2
(us)(u1 � us)(u2 � us)

= M(us) + �s
�
(u1 � us)2 + (u2 � us)2

�
: (92)

For the singularity associated with the �rst Bessel zero, �s � 0:385� 0:349i.

Then, when � is real,

K(�)� 1

��s

ZZ
1

0

J(u)e2i(u1+u2)du

(u1 � us)2 + (u2 � us)2 + (M(us)� 2i�)=�s
+ c.c. (93)

The main contribution to the integral around these singularities is

K(�) / �C ln

�
1� 2i�

M(us)

�
� C ln

 
1 +

2i�

M(us)

!
; (94)
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Figure 3: The coe�cients of the power series expansion of K(�) normalized

by �n (crosses), compared to (95). As expected, the agreement improves as

n increases.

where C = J(us)e
4ius=�s. Expanding (94) into a series around � = 0 we get

K(�) / 2<
 
C

1X
n=1

�n
ein�

n
�n

!
= 2A

1X
n=1

cos(�n+  )
�n

n
�n; (95)

where, for the singularity analysed above, A = jJ(us)e4ius=�sj � 0:519,

 = arg (J(us)e
4ius=�s) � �0:737, � = j2i=M(us)j � 1:602 and � =

arg (2i=M(us)) � 0:737. By Darboux's Principle, the coe�cients of the ex-

pansion (95) should comprise the leading contribution to large-order asymp-

totics of the exact coe�cients given by (10) and (11). To compare them

we plot the exact coe�cients nan=�
n against the approximate coe�cients

2A cos(�n+  ). The result is shown in Fig. 3.
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7 Small x limit of R2(x)

Returning to (49), one can check that the function 	, de�ned by (48), satis�es

the equation�
@2

2@u1@u2
+ i

�
@

@u1
� @

@u2

���
e2i(u1�u2)	2

�
= e2i(u1�u2)

�
@	

@z1

@	

@z2
� 	2

�
: (96)

Substituting it into (49) and integrating by parts we obtain

R2(x) = �1
4

Z
due��xQ

�
@2

2@u1@u2
+ i

�
@

@u1
� @

@u2

���
e2i(u1�u2)	2

�
=

Z
du

4
e2i(u1�u2)	2

�
i

�
@

@u1
� @

@u2

�
� @2

2@u1@u2

� �
e��xQ

�
: (97)

Now, using the identities

@Q

@u1
� @Q

@u2
= ei(u1�u2)	;

@2Q

2@u1@u2
= �iei(u1�u2)	; (98)

which one can derive using the series expansion of Q(u1; u2) = M(u1;�u2),
we write�

i

�
@

@u1
� @

@u2

�
� @2

2@u1@u2

� �
e��xQ

�
= e��xQ

�
�i�x

�
@Q

@u1
� @Q

@u2

�
+
�x

2

@2Q

@u1@u2
� (�x)2

2

@Q

@u1

@Q

@u2

�
= �e��xQ

�
3i�x

2
ei(u1�u2)	+

(�x)2

2

@Q

@u1

@Q

@u2

�
: (99)

Thus we obtain, �nally,

R2(x) = �
Z
du

8
e2i(u1�u2)��xQ	2

�
�2x2

@Q

@u1

@Q

@u2
+ 3i�x	ei(u1�u2)

�
: (100)

From (100) one can see that the two-point correlation function R2(x) is linear

in x for small x. The slope was computed in [15]:

R2(x) =
�
p
3

2
x+O(x2): (101)
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8 Discussion

The derivation presented above provides a proof that two-point spectral cor-

relations for certain �Seba billiards and quantum star graphs are the same,

in the appropriate limits. This initially surprising fact has its explanation in

the following observations. First, the dynamics in both systems is centered

around a single point scatterer; in star graphs it is the central vertex, and

in �Seba billiards the singularity. Furthermore, in between scatterings the

dynamics is integrable in both cases.

Second, applying the Mittag-Le�er theorem to the meromorphic function

tan z, we have that

tan z =

1X
n=�1

�
1

n� + �=2� z �
1

n� + �=2

�
: (102)

We can therefore rewrite (16) in a form similar to (1) when j n(x0)j2 =

constant. It thus becomes less surprising that the two point correlation

functions of the two systems are the same, because in the limit v ! 1 the

poles in (15) have properties similar to those of a Poisson sequence.

Third, from the mathematical point of view star graphs and �Seba billiards

are similar in that in both cases the scattering centre corresponds quantum

mechanically to a perturbation of rank one.

Finally, we remark that our results demonstrate that, at least as regards

the special case considered here, graphs are able to reproduce features of

other, experimentally realizable, quantum systems, and also that they pro-

vide further con�rmation that spectral statistics can be computed exactly

using the trace formula when the periodic orbit statistics are known [12].
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