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Abstract

We extend the semiclassical theory of scarring of quantum eigenfunctions  n(q)

by classical periodic orbits to include situations where these orbits undergo generic

bifurcations. It is shown that j n(q)j
2, averaged locally with respect to position q

and the energy spectrum fEng, has structure around bifurcating periodic orbits with
an amplitude and length-scale whose ~-dependence is determined by the bifurcation

in question. Speci�cally, the amplitude scales as ~
� and the length-scale as ~

!,

and values of the scar exponents, � and !, are computed for a variety of generic

bifurcations. In each case, the scars are semiclassically wider than those associated

with isolated and unstable periodic orbits; moreover, their amplitude is at least as

large, and in most cases larger. In this sense, bifurcations may be said to give rise to

superscars. The competition between the contributions from di�erent bifurcations

to determine the moments of the averaged eigenfunction amplitude is analysed. We

argue that there is a resulting universal ~-scaling in the semiclassical asymptotics of

these moments for irregular states in systems with a mixed phase-space dynamics.

Finally, a number of these predictions are illustrated by numerical computations for

a family of perturbed cat maps.

�Short title: Bifurcations and scarring
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1 Introduction

One of the main goals in quantum chaology has been to determine the link between

classical periodic orbits and quantum spectral �uctuations in the semiclassical limit. In

fully chaotic systems, where the periodic orbits are isolated and unstable, this connection

is embodied in Gutzwiller's trace formula (Gutzwiller 1971), and in integrable systems by

a corresponding expression involving the phase-space tori (Berry & Tabor 1976). These

formulae fail, by diverging, when periodic orbits bifurcate; that is, when combinations of

stable and unstable orbits collide and transmute, or annihilate, as a system parameter

varies � phenomena that characterize dynamics in the mixed regime. They must then

be replaced by transitional or uniform approximations which interpolate through the

bifurcation (Ozorio de Almeida & Hannay 1987; Tomsovic et al. 1995; Ullmo et al. 1996;

Sieber 1996; Schomerus & Sieber 1997; Schomerus 1998; Sieber & Schomerus 1998).

That individual orbit bifurcations can have an important, and sometimes dominant

in�uence on spectral statistics was pointed out by Berry et al. (1998), and demonstrated

for a particular example, the perturbed cat maps. More generally, Berry et al. (2000)

developed a semiclassical theory for the competition between the various generic bifur-

cations found in Hamiltonian systems to determine the moments of the quantum energy

level counting function. This suggests that these moments diverge in a universal way,

characterized by certain twinkling exponents, as ~! 0.

A second major goal of quantum chaology has been to understand the in�uence of

classical periodic orbits on quantum wavefunctions in the semiclassical limit. It was �rst

noticed by McDonald (McDonald 1983) that individual eigenfunctions can have enhanced

intensity along short periodic orbits in classically chaotic systems. This phenomenon was

later studied systematically by Heller (Heller 1984), who called such structures scars. He

developed a theory of scarring, based on wavepacket dynamics, which has subsequently

been extended to describe a variety of statistical properties of quantum chaotic eigenfunc-

tions (Kaplan 1999).

An alternative theory of scarring, based on an approach closely related to the trace

formula, was initiated by Bogomolny (Bogomolny 1988). In this, the semiclassical ap-

proximation to the energy-dependent Green function is used to show that for quantum

eigenfunctions  n(q) corresponding to energy levels En in a �xed energy range,


j n(q)j2

�
,

where h� � � i denotes an average over the states in question and locally over position q, has

complex-Gaussian fringes with, in two-degree-of-freedom systems, amplitude and length-

scale of the order of ~1=2 around unstable periodic orbits. A corresponding theory for

Wigner functions was developed by Berry (1989).

We emphasize two limitations of the theories mentioned above. First, they only de-

scribe scarring in eigenfunctions that have been averaged over an energy interval which,

semiclassically, contains a large number of states. Resummation techniques have been

applied to provide some information about individual eigenfunctions (Agam & Fishman

1994; Fishman et al. 1996), but a detailed understanding of the phenomenon in this

case remains to be developed. Second, they concentrate speci�cally on the in�uence of

periodic orbits which are isolated and unstable. (Semiclassical theories describing the
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connection between quantum wavefunctions and phase-space tori in classically integrable

systems have also been developed; see, for example, Berry 1983 for a detailed review.)

Our purpose here is to address the second of these limitations. Speci�cally, our aim

is to show how Bogomolny's theory can be extended to include the description of semi-

classical structures in quantum eigenfunctions associated with generic classical periodic

orbit bifurcations in systems with two degrees of freedom. We focus in particular on

the ~-dependence of the amplitude and length-scale of the fringes corresponding to those

identi�ed by Bogomolny. Our main result is that the amplitude is of the order of ~�,

and the length-scale is of the order of ~!, where � and ! are bifurcation-dependent scar

exponents whose values we calculate in a number of di�erent cases. Crucially, ! < 1=2

for all the bifurcations studied, and for most � < 1=2 as well. In this sense, bifurcations

may be said to give rise to superscars. In order to quantify this, we determine the way in

which bifurcating orbits contribute, via a competition, to the semiclassical asymptotics

of the moments of


j n(q)j2

�
, in the same way as was done for spectral �uctuations by

Berry et al. (2000). It is argued that this competition results in universal ~-scalings of the

moments for the irregular eigenfunctions of systems with mixed phase-space dynamics.

Finally, as an example, we apply some of the techniques developed to study the in�uence

of one particular bifurcation on the eigenfunctions of a family of quantum perturbed cat

maps.

2 Scar Formulae

Our aim in this section is to derive semiclassical scar formulae for bifurcating periodic

orbits which generalize those obtained in Bogomolny (1988) for unstable orbits far from

bifurcation.

We begin, following Bogomolny, with the energy-dependent Green function

G(q0;q;E) =
X
n

 �
n
(q0) n(q)

E � En

; (1)

where  n(q) is the eigenfunction of the quantum Hamiltonian corresponding to the energy

level En. The identity we seek to exploit follows from setting q0 = q:

X
n

j n(q)j2 �" (E � En) = � 1

�
ImG(q;q;E + i"): (2)

Here, �"(x) is a normalized, Lorentzian-smoothed �-function of width ". (It is straightfor-

ward to transform (2) to give di�erently smoothed �-functions, for example Gaussians.)

The left-hand side of (2) thus corresponds to a sum over eigenstates for which En lies

within a range of size of the order of " centred on E. Semiclassically, it is approximately

the average of j n(q)j2 with respect to these states multiplied by d(E), the mean level

density. For systems with two-degrees-of-freedom

d(E) � V (E)

(2�~)2
(3)
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as ~! 0, where

V (E) =

Z
�(E �H(p;q))d2qd2p (4)

and H(p;q) is the classical Hamiltonian.

The connection with classical mechanics is achieved using the semiclassical approxi-

mation to the Green function. For systems with two-degrees-of-freedom, this is

G(q0;q;E) � 1

i~
p
2�i~

X



q
jD
j exp

�
i

~
S
(q

0;q;E)� i�

2
�


�
; (5)

where the sum includes all classical trajectories from q to q0 at energy E, S
 is the action

along the trajectory labelled 
,

D
 = det

 
@
2
S


@q0@q

@
2
S


@q0@E

@
2
S


@E@q

@
2
S


@E2

!
; (6)

and � is the Maslov index (Gutzwiller 1990). When q0 = q, the sum in (5) is clearly over

closed orbits.

We note in passing that it follows from (2) that

X
n

�"(E � En) = � 1

�
Im

Z
G(q;q;E + i")d2q: (7)

Substituting in the closed orbit sum for G(q;q;E+i") and integrating term-by-term using

the method of stationary phase leaves contributions from the periodic orbits. Assuming

these are all isolated, as is the case for hyperbolic systems, the result is the trace formula

(Gutzwiller 1971)

X
n

�"(E � En) � d(E) +
1

�~

X
p

1X
r=1

Tpq��det (Mr
p
� I)

�� �
cos

�
rSp

~
� r�p

�

2

�
exp

�
�"rTp

~

�
; (8)

where p labels primitive periodic orbits with period Tp and monodromy matrixMp, and r

labels repetitions. As noted in the Introduction, this formula fails at bifurcations, where

det (Mr

p
� I) = 0. Assuming that the periodic orbits lie in families which form tori in

phase space gives the corresponding expression for integrable systems (Berry & Tabor

1976).

Bogomolny's scar formula follows not from integrating over all positions q, as in (7),

but from performing a local average of (2) with respect to q (we postpone specifying the

size of the averaging range until after the result has been stated), which we take to be

smooth (convolution with a normalized Gaussian, for example). On the left-hand side this
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gives, approximately, d(E)


j n(q)j2

�
, where h� � � i denotes a combination of the spectral

average described above and the local q-average. On the right-hand side, the q-average

selects from the closed orbits those that are close to periodic orbits (i.e. for which the

change in momentum after return is appropriately small). These can then be described

by linearizing about the periodic orbits. Essentially, this corresponds to expanding the

action up to terms which are quadratic in the distance from the periodic orbit. The result

is that

X
n



j n(q)j2

�
q
��(E � En) �

1

(2�~)2

(q;E)�

1

�~3=2
Im

1

i
p
2�i

X
p

1X
r=1

1

j _zj
q�

Mr
p
(z)
�
12

�

exp

"
i

~

 
rSp +

1

2

det
�
M

r

p
� I
�

�
Mr

p
(z)
�
12

y2 � r�p
�

2

!#
exp

�
�"rTp

~

�
; (9)

where z is a coordinate along a given periodic orbit and y is a coordinate transverse to

it,
�
M

r

p
(z)
�
ij
denotes the elements of the monodromy matrix (which are functions of z),

_z is the velocity along the periodic orbit, and


(q;E) =

Z
�(E �H(p;q))d2p: (10)

This in turn implies that



j n(q)j2

�
� 
(q;E)

V (E)
� 4�

p
~

V (E)
Im

1

i
p
2�i

X
p

1X
r=1

1

j _zj
q�

Mr
p
(z)
�
12

�

exp

"
i

~

 
rSp +

1

2

det
�
M

r

p
� I
�

�
Mr

p
(z)
�
12

y2 � r�p
�

2

!#
exp

�
�"rTp

~

�
: (11)

Equation (11) is Bogomolny's scar formula. In classically ergodic systems, the �rst

term represents the quantum-ergodic limit of the eigenfunction probability density (Shnirelman

1974, Colin de Verdière 1985, Zelditch 1987). The second describes complex Gaussian

fringes (the y-dependent part), with length-scale and amplitude both of the order of ~1=2,

associated with each periodic orbit. This structure will be resolved if the local q-average

is over regions whose dimensions are small compared to the length-scale of the fringes;

that is, over regions whose dimensions scale as ~�, where � > 1=2. In order for the near-to-

periodic-orbit approximation to be valid, we must also have � < 1; that is, the dimensions

of the averaging range must be large compared to a de Broglie wavelength.

The trace formula (8) can be recovered from (9) by integrating over z and y. The

z-integral gives the period in the amplitude of the periodic orbit contributions, and the

y-integral gives the determinant. Note that the power of ~ in the trace formula amplitude

is the amplitude exponent in (9), �3=2 (which in turn is equal to the amplitude exponent

in (11) minus two � the exponent in d), plus the length-scale exponent of the fringes, 1=2.
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The approximations (9) and (11) break down in two ways. First, at self-focal points

along an orbit
�
M

r

p

�
z)]12 = 0 and the amplitude diverges. This can be remedied straight-

forwardly using Maslov's method, and we will not concern ourselves further with it here.

Second, when an orbit bifurcates det (Mr

p
� I) = 0, and so the formulae become y-

independent. Essentially, this means that the fringes are in�nitely wide (it is this in�nity

which, upon integration with respect to y, transfers itself to the amplitude in the trace

formula). Our purpose in this paper is to show how to correct (9) and (11) in this case.

It might be thought that the scar formulae for bifurcating orbits could be obtained eas-

ily by expanding the action in (5) to higher order than quadratic. For some of the simpler

bifurcations (e.g. the codimension-one bifurcations of orbits with r = 1 and r = 2) this is

correct (see the example in Section 4). However, for more complicated bifurcations it is

incorrect, because for these the linearized map Mr

p
is equal to the identity, which cannot

be generated by the action S(q0;q;E). Thus it is di�cult to build into the semiclassical

expression for the qq0-representation of the Green function a well-behaved description

of the nonlinear dynamics which the linearized map approximates. The solution to this

problem, originally proposed in Ozorio de Almeida & Hannay (1987), is to transform the

Green function to a mixed position-momentum representation, and this is the approach

we now take.

The Ozorio de Almeida-Hannaymethod involves, �rst, Fourier transformingG(q0;q;E)

with respect to q0. This gives the Green function in the q p0-representation, ~G(p0;q;E)

(p0 is the momentum conjugate to q0). The semiclassical approximation to ~G takes the

same form as (5), except that S(q0;q;E) is replaced by the q p
0-generating function

~S(p0;q;E). G(q0;q;E) may then be rewritten, semiclassically, as the Fourier transform

of this expression with respect to p0. (For an alternative approach leading to the same

�nal answer, see Sieber 1996). The result, for the semiclassical contribution to G(q;q;E)

from closed orbits in the neighbourhood of a bifurcating periodic orbit, takes the following

form.

Consider the case of a codimension-K bifurcation of a periodic orbit with repetition

number r. As before, let z be a coordinate along the orbit at bifurcation, let y be

a coordinate transverse to it, and let py be the momentum conjugate to y, so that y

and py are local surface of section coordinates. Let �r;K(y; py;x) be the normal form

which corresponds to the local (reduced) generating function in the neighbourhood of

the bifurcation (Arnold 1978; Ozorio de Almeida 1988), where x = (x1; x2; � � � ; xK) are
parameters controlling the unfolding of the bifurcation. Then, up to irrelevant factors,

the contribution to G(q;q;E) is

Gr;K(y;x) =
1

~2

Z
exp

�
i

~
�r;K(y; py;x)

�
dpy (12)

(as already stated, we are here interested in determining the ~-dependence of the ampli-

tude and length-scale of the associated fringes, and so have neglected terms in (12), such

as an ~-independent factor in the integrand, which do not in�uence these).

Before proceeding further, we make three remarks about (12). First, the power of ~

outside the exponential arises from adding 1=2, which comes from the Fourier transform,

to the exponent in (5), 3=2. Second, the representation used in Berry et al. (2000) for
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the �uctuating part of the spectral counting function may be derived from (12) by taking

the trace of Gr;K, which involves integrating the right-hand side of (12) with respect to y

(the z-integral is trivial, as before), and then integrating with respect to E resulting in

a further multiplication by ~. Likewise, the formulae of Ozorio de Almeida and Hannay

(1987) correspond to taking the trace of Gr;K, keeping the terms we have neglected. Third,

the ~-dependence of the fringes in Bogomolny's scar formula for unstable periodic orbits

far from bifurcation can be recovered using the appropriate normal form:

�r;0 = p2
y
+ y2; (13)

which corresponds to a particular, ~-independent choice of units for py and y. Evaluating

the integral then gives

Gr;0(q) /
1

~3=2
exp

�
i
y2

~

�
; (14)

as in (9).

Equation (12) is the starting point for the analysis of bifurcating orbits. Our strategy

is essentially the same as that used in Berry et al. (2000) to study the related �uctuations

in the spectral counting function (see also Berry 2000 for a review of applications to other

areas in wave physics): �rst, rescale y and py to remove the 1=~ factor from the dominant

term (germ) of �r;K in the exponent, and then apply a compensating rescaling of the

parameters x1; x2; � � � ; xK to remove the ~-dependence from the other terms which do not

vanish as ~! 0. This will lead to

Gr;K(y;x; ~) =
1

~2��r;K
Gr;K

� y

~!r;K
;
n xn

~�n;r;K

o
; 1
�
: (15)

The exponent � describes the semiclassical amplitude of the fringes in


j n(q)j2

�
as-

sociated with the bifurcation, and the exponent ! describes the ~-dependence of their

length-scale, or width. We call these the scar exponents. Note that the corresponding

amplitude exponent in
P

n



j n(q)j2

�
q
�"(E�En) is 2��. The exponents � describe the

range of in�uence of the bifurcation in the di�erent unfolding directions xn. Their sum


r;K =

KX
n=1

�n;r;K (16)

describes the ~-scaling of the K-dimensional x-space hypervolume a�ected by the bifur-

cation.

We now calculate these exponents in a variety of examples. Consider �rst the r = 1

bifurcations which correspond to cuspoid (i.e. corank 1) catastrophes. For these, the

normal forms are (Berry et al. 2000)

�1;K(y; py;x) = p2
y
+ yK+2 +

KX
n=1

xny
n: (17)

7



Substituting this into (12) and evaluating the integral then gives

G1;K(y;x) /
1

~3=2
exp

"
i

~

 
yK+2 +

KX
n=1

xny
n

!#
(18)

Making the rescalings ~y = y=~1=(K+2), ~xn = xn=~
1�n=(K+2) removes the ~-dependence of

the exponent, and so for the cuspoids we have

�1;K =
1

2
; !1;K =

1

K + 2
; �n;1;K = 1� n

K + 1
(19)

and


1;K =
K(K + 3)

2(K + 2)
: (20)

Analogous expressions can be written down for the r = 1 bifurcations corresponding to

the more complicated case of catastrophes of corank 2 (see, for example, Berry 2000) in

the same way.

When r > 1, the generic bifurcations withK = 1 have been classi�ed by Meyer (Meyer

1970, 1986; Arnold 1978; Ozorio de Almeida 1988), and those with K = 2 by Schomerus

(1998). The relevant parts of the corresponding normal forms, taken from Berry (2000)

(to which readers are referred for further details), are summarized in Table 1 (in the

expressions given, we are retaining only those terms which a�ect the exponents we seek

to calculate).

r �r;2

2 p2
y
+ y6 + x1y

2 + x2y
4

3 (p2
y
+ y2)2 + x1(p

2
y
+ y2) + x2Re [(py + iy)3]

4 p2
y
y2 + x1(p

2
y
+ y2) + x2(p

2
y
� y2)2

5 Re [(py + iy)5] + x1(p
2
y
+ y2) + x2(p

2
y
+ y2)2

� 6 (p2
y
+ y2)3 + x1(p

2
y
+ y2) + x2(p

2
y
+ y2)2

Table 1: The relevant parts of the normal forms for K = 2 bifurcations of period-r orbits

(taken from Berry 2000). The corresponding expressions for K = 1 bifurcations, �r;1,

follow from settling x2 = 1.

The corresponding scar exponents, and the hypervolume exponents 
 are given in

Table 2 (K = 1) and Table 3 (K = 2).

Finally, we consider bifurcations of orbits for which r � 2K + 2. In this case, the

relevant terms in the normal forms are (Berry et al. 2000)

�r;K(y; py;x) = IK+1 +

KX
n=1

xnI
n +O(IK+2); (21)
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r �r;1 !r;1 
r;1
2 1=2 1=4 1=2

3 1=3 1=3 1=3

� 4 1=4 1=4 1=2

Table 2: Scar exponents for generic, codimension-1 bifurcations.

r �r;2 !r;2 
r;2
2 1=2 1=6 1

3 1=4 1=4 3=4

4 1=4 1=4 1=2

5 1=5 1=5 4=5

� 6 1=6 1=6 1

Table 3: Scar exponents for generic, codimension-2 bifurcations.

where

I = y2 + p2
y
: (22)

Expressing � in terms of y and py, we �nd

�r;K = !r;K =
1

2(K + 1)
(23)

and


r;K =
K

2
(24)

(c.f. the r � 4 exponents in Table 2, and the r � 6 exponents in Table 3).

The main point we wish to draw attention to is that, in all the cases listed above,

! < 1=2 and � � 1=2, and that in most cases � < 1=2. Recall that ! = � = 1=2 for

periodic orbits far from bifurcation. In this sense, bifurcations may be said to give rise to

superscars; that is, to scars that are semiclassically wider, and often greater in amplitude

than those associated with non-bifurcating orbits. We shall demonstrate this with an

explicit example in Section 4.

The width exponent ! determines the scale for the q-average in


j n(q)j2

�
which

allows the fringe structure to be resolved. Speci�cally, if the dimensions of the averaging

range scale semiclassically as ~�, the fringe structure will be resolved if � > !, but not

if � < !. Recall that for the approximation to hold in which the main contribution to

the average comes from closed orbits in the neighbourood of periodic orbits, we must also

have � < 1; that is, the average must extend over many de Broglie wavelengths.

We also note that the scar exponents satisfy

� = 1� �� !; (25)
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where � is the amplitude exponent of the �uctuations in the spectral counting function

associated with the bifurcation in question (Berry et al. 2000). This follows from a

comparison of (12) with the corresponding expression for the counting function, which, as

already noted, corresponds to integrating (12) with respect to y and multiplying by ~. It

generalizes the connection discussed above between the power of ~ in the trace formula for

d(E) and the amplitude and width exponents of Bogomolny's fringes for non-bifurcating

orbits.

3 Moment asymptotics

One way to quantify scarring e�ects is in terms of the moments of the wavefunctions.

Consider the case when all periodic orbits are isolated and unstable. We de�ne

C2m(~) =
1

�q

Z �D
j n(q0)j2

E
� 
(q0;E)

V (E)

�2m

d2q0 (26)

where the q0-integral is over an ~-independent volume �q. Note that these are the mo-

ments not of the amplitude of the wavefunction itself, but of the amplitude averaged

with respect to position (over a region which shrinks as ~ ! 0, but which contains an

increasing number of de Broglie wavelengths) and energy (semiclassically many levels).

Assuming that the wavefunctions are quantum ergodic on the scale of the local q-

average implies that C2m(~)! 0 as ~! 0 when m > 0. It follows from the fact that the

fringes in (11) have scar exponents � = ! = 1=2 that their individual contributions to the

moments scale as ~m+1=2 in this limit. The corresponding contribution from a bifurcating

orbit is of the order of ~2m�+!, and so is semiclassically larger. For the bifurcations of

periodic orbits with r = 1 corresponding to the cuspoid catastrophes we have that

~�m;1;K = 2m�1;K + !1;K = m+
1

K + 2
: (27)

The values of these exponents for the generic bifurcations with K = 1 and K = 2 when

r > 1 are given in Table 4 and Table 5, for m � 3.

r ~�1;r;1 �1;r;1 ~�2;r;1 �2;r;1 ~�3;r;1 �3;r;1
2 5=4 7=4 9=4 11=4 13=4 15=4

3 1 4=3 5=3 6=3 7=3 8=3

� 4 3=4 5=4 5=4 7=4 7=4 9=4

Table 4: Values of ~�m;r;1 = 2m�r;1 + !r;1 and �m;r;1 = 2m�r;1 + !r;1 + 
r;1 for the

codimension-1 scar exponents listed in Table 2.

The moments de�ned by (26) are implicitly functions of the system parameters x.

Averaging them with respect to x produces an opportunity for a competition between

the various generic bifurcations. The contribution of each bifurcation must be weighted

10



r ~�1;r;2 �1;r;2 ~�2;r;2 �2;r;2 ~�3;r;2 �3;r;2
2 7=6 13=6 13=6 19=6 19=6 25=6

3 3=4 3=2 5=4 2 7=4 5=2

4 3=4 5=4 5=4 7=4 7=4 9=4

5 3=5 7=5 1 9=5 7=5 11=5

� 6 1=2 3=2 5=6 11=6 7=6 13=6

Table 5: Values of ~�m;r;2 = 2m�r;2 + !r;2 and �m;r;2 = 2m�r;2 + !r;2 + 
r;2 for the

codimension-2 scar exponents listed in Table 3.

by the associated hypervolume in x-space, and so scales as ~2m�+!+
 , provided that the

x-average of the 2mth power of the ~-independent term in (15) exists (see Berry 1977 for

a discussion of this subtle point). For the r = 1 bifurcations corresponding to the cuspoid

catastrophes,

�
m;1;K = 2m�1;K + !1;K + 
1;K = m+

K + 1

2
: (28)

When r > 1, the values of these exponents for the generic bifurcations with K = 1 and

K = 2 are also listed in Table 4 and Table 5. The bifurcation that wins the competition,

and hence which determines the rate at which the x-averaged moments tend to zero in

the semiclassical limit, is the one for which 2m� + ! + 
 is minimized; that is,

1

~�m
hC2m(~)ix = o(~�) (29)

for any � < 0, with

�m = min(2m� + ! + 
) (30)

where hC2m(~)ix denotes the x-averaged moments and the minimum is with respect to

the generic bifurcations. This, of course, assumes that the minimum exists. We now argue

that it does.

Our reasoning is based directly on that of Berry et al. (2000), where the analogous

problem of the moments of �uctuations in the level counting function was considered.

First, we note that if the competition is restricted to bifurcations with r � 2K + 2, then

min(2m�+ ! + 
) = minK

�
2m + 1

2(K + 1)
+
K

2

�
; (31)

which exists for any m and can be calculated straightforwardly. Second, it was shown by

Berry at al. that each bifurcation with r � 2K + 2 has a counterpart with r < 2K + 2

with the property that the counterpart has a normal form with the same germ, and so the

same � and ! exponents, but a larger 
 exponent. Hence (31) represents the minimum

with respect to all of the generic bifurcations and so

�m = minK

�
2m + 1

2(K + 1)
+
K

2

�
: (32)
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For example, �1 = 5=4 (coming from K = 1), �2 = 7=4 (also coming from K = 1), and

�3 = 13=6 (K = 2). In general �m �
p
2m + 1� 1=2.

It is natural to compare �m to the corresponding exponent for Gaussian random

functions, which are often taken as models of quantum chaotic wavefunctions. In that

case, the moments (26) are semiclassically of the order of ~m. This follows from the

results of Section IIIB of Eckhardt et al. 1995, if the operator considered there is the

characteristic function of the region over which the local q-average in (26) extends. The

same rate of vanishing also holds for the eigenvectors of random hermitian matrices (see

Section IIIA of Eckhardt et al.). (Readers are referred to Bäcker et al. 1998 for a detailed

review of the rate of quantum ergodicity, and its characterization by moments analogous

to those de�ned by (26)). Crucially, we note that �m � m for m > 1, and so then, if

the background to the scars due to individual periodic orbits is modelled by a Gaussian

random function, bifurcations dominate the semiclassical asymptotics. The contributions

from individual non-bifurcating orbits are always subdominant.

To summarize, the exponents �m, which are analogous to the twinkling exponents of

Berry et al (2000), determine the asymptotic scaling of the parameter-averaged moments

C2m in the limit as ~ ! 0 when m > 1. Note that they are universal, that is, system

independent. Note also that they are determined solely by generic bifurcation processes.

As pointed out in the Introduction, these processes are characteristic of mixed phases-

space dynamics, and so one might expect the exponents (32) to describe the semiclassical

deviations of the irregular (in the sense of Percival 1973) eigenfunctions in mixed systems

from their ergodic limit. (They do not describe the regular eigenfunctions, for which the

corresponding moments have a di�erent origin, and can be calculated using the results of

Berry et al. 1983.)

4 Perturbed cat maps

We now illustrate some of the general ideas described in the previous sections by focusing

on a particular example: a family of perturbed cat maps.

The maps we consider are of the form�
qn+1
pn+1

�
=

�
2 1

3 2

��
qn
pn

�
+

�

2�
cos(2�qn)

�
1

2

�
mod 1; (33)

where q and p are coordinates on the unit two-torus, and are taken to be a position and its

conjugate momentum. These maps are Anosov systems for � � �max = (
p
3 � 1)=

p
5 �

0:33; that is, for � in this range they are completely hyperbolic and their orbits are

conjugate to those of the map with � = 0 (i.e. there are no bifurcations). Outside this

range, bifurcations occur, stable islands are created, and the dynamics becomes mixed

(see, for example, Berry et al. 1998, where these systems were used to demonstrate the

in�uence of periodic orbit bifurcations on long-range spectral statistics).

The quantization of maps like (33) was developed by Hannay & Berry (1980), when

� = 0, and Basílio de Matos & Ozorio de Almeida (1995) for non-zero �. The quantum

kinematics associated with a phase space that has the topology of a two-torus restricts
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Planck's constant to taking inverse integer values. The integer in question, N , is the di-

mension of the Hilbert space of admissible wavefunctions. With doubly periodic boundary

conditions (see, for example, Keating et al. 1999), these wavefunctions in their position

representation have support at points q = Q=N , where Q takes integer values between

1 and N . They may thus be represented by N -vectors with complex components. The

quantum dynamics is then generated by an N �N unitary matrix U whose action on the

wavefunctions reduces to (33) in the classical limit; for example

UQ1;Q2
=

1p
iN

exp

�
2�i

N
(Q2

1 �Q1Q2 +Q2
2) +

iN

2�
� sin(2�Q1=N)

�
: (34)

This matrix plays the role of the Green function of the time-dependent Shrödinger equa-

tion for �ows.

Denoting the eigenvalues ofU by ei�n , and the corresponding eigenfunctions by 	n(Q),

we have that X
n

j	n(Q)j2 �"(� � �n) = 1 + Re

1X
k=1

Uk

Q;Q
exp (�i�k � "k) (35)

where

�"(x) =
1� e�" cos x

1 + e�2" � 2e�" cos x
(36)

is a periodized, Lorentzian-smoothed �-function of width " (Keating 1991). Equation (35)

is the analogue for quantum maps of (2). The left-hand side corresponds, approximately,

to N times the local n-average (over a range of size of the order of ") of j	n(Q)j2, and so,

dividing both sides by N and averaging smoothly with respect to Q (for example, taking

the convolution with a normalized Gaussian) over a range large compared to a de Broglie

wavelength (�Q = 1) but small compared to N ,



j	n(Q)j2

�
� 1

N
+

1

N
Re

1X
k=1



Uk

Q;Q

�
Q
exp (�i�k � "k): (37)

Here h: : : i denotes a combination of the n-average and the Q-average h: : : i
Q
.

In our computations we took " large enough so that the dominant contributions to

(35) and (37) come from the k = 1 terms in the sums on the right, and so, for example,

we may substitute (34) directly into (37). In the semiclassical limit, as N ! 1, the

Q-average selects regions close to stationary points of the phase of (34), which we denote

by Q=N = qf . These stationary points coincide with the positions of the �xed points of

the classical map (33); that is, qf satis�es

qf =
1

2

�
j � �

2�
cos(2�qf)

�
(38)

for integers j such that 0 � qf < 1 (see, for example, Boasman & Keating 1995). Ex-

panding the phase of (34) around qf gives, up to cubic terms,

UQ;Q �
1p
iN

exp

�
2�iSf + �iN(2� � sin(2�qf))y

2 � 2�2iN

3
� cos(2�qf )y

3

�
; (39)
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where

y =
Q

N
� qf (40)

and 2�Sf denotes the phase evaluated at qf .

Provided that 2� � sin(2�qf ) 6= 0, this approximation is dominated by the quadratic

term in the exponent when y is small. It thus describes complex-Gaussian fringes around

the classical �xed points with a length-scale (in terms of y) of the order of N�1=2. These

are the analogues of Bogomolny's fringes. They will be resolved if the local Q-average is

over a range that is small compared to N1=2 (but which still grows as N !1).

For the example being considered here, when � < �� � 5:94338 the two values of j

in (38), j = 0 and j = 1, each give rise to a single unstable �xed point for which the

condition 2 � � sin(2�qf) 6= 0 is satis�ed. In Figure 1, we plot the left hand side of (35)

when � = 3, with " = 2:2 and for N = 1597. The structure around the �xed points

is clearly visible, and is most easily seen by applying the local Q-average (in this case,

making a convolution with a normalized Gaussian of width 0:02).

It is at bifurcations that 2�� sin(2�qf) = 0. Then the quadratic term in (39) vanishes,

and the fringe structure comes instead from the cubic term. It thus has a y-length-scale

of the order of N�1=3. The amplitude is the same as in the case of isolated �xed points

(N�1=2 in the contribution to hj	n(Q)j2i). In the language of Section 2, this corresponds

to a codimension-one bifurcation of a periodic orbit with r = 1 (a tangent bifurcation).

In our example, the �rst bifurcation occurs when � = ��. At this parameter value,

two new degenerate solutions of (38) appear, for both j = 0 and j = 1, corresponding to

the birth of a pair of �xed points, one stable and the other unstable. In Figure 2 we plot

the left hand side of (35) with " = 2:2 and N = 1597, as above, but now with � = ��. It is

apparent that the scars around the two bifurcations, at positions q = 0:05 and q = 0:44,

are wider than those around the two non-bifurcating �xed points, at positions q = 0:69

and q = 0:81, and that they are also wider than those shown in Figure 1. In Figure 3 we

plot the left hand side of (35) close to the bifurcation point at q = 0:44, together with the

approximation (39), which clearly captures the details of the associated fringe structure.

It is straightforward now to deduce the semiclassical scaling with N of the moments

C2m(N) = N2m

NX
Q=1

�

j	n(Q)j2

�
� 1

N

�2m

: (41)

The arguments of Section 3 suggest that C2m is of the order of N�m+w, where w = 1=2

away from bifurcations and w = 2=3 at the bifurcation (w is one plus the width exponents

deduced from (39), because those were for y rather than Ny, as we need here). In Figure

4 we plot logC2 against logN when � = 3. The fact that the points lie on a straight line

con�rms that there is a power-law scaling; furthermore, the gradient is close to �1=2, as
expected. In Figure 5, we make the same plot for � = ��. In this case the gradient is close

to the expected value of �1=3 (a possible explanation for the deviation is that for the

range of values of N shown, the bifurcation exponent is contaminated by the contributions
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from the non-bifurcating periodic orbits). Finally, in Figure 6 we plot

g(m) = lim
N!1

logC2m(N)

logN
; (42)

calculated numerically from the gradients of best-�tting straight lines to plots like those

in Figures 4 and 5. For both � = 3 and � = �� the results are in accord with the scaling

law suggested above.

We emphasize that these numerical computations illustrate the in�uence of one in-

dividual bifurcation only. They do not test the competition which would result from

averaging over a parameter range that contains many di�erent generic bifurcations, and

which the analysis of Section 3 suggests has a universal outcome for the moment expo-

nents.

5 Acknowledgements

It is a pleasure to acknowledge stimulating discussions with Arnd Bäcker, John Hannay

and Jens Marklof, and comments on the manuscript by Sir Michael Berry. SDP wishes

to thank BRIMS for �nancial support, and BRIMS and the School of Mathematics at the

University of Bristol for hospitality during the period when this work was carried out.

References

Agam, O. & Fishman, S. 1994 Semiclassical criterion for scars in wave-functions of chaotic

systems. Phys. Rev. Lett 73, 806-809.

Basílio de Matos, M. & Ozorio de Almeida, A.M. 1995 Quantization of Anosov maps.

Ann. Phys. 237, 46-65.

Arnold, V.I. 1978 Mathematical Methods in Classical Mechanics. Springer.

Bäcker, A., Schubert, R. & Stifter, P. 1998 Rate of quantum ergocity in Euclidean billiards.

Phys. Rev. E 57, 5425-5447.

Berry, M.V. 1977 Focusing and twinkling: critical exponents from catastrophes in non-

Gaussian random short waves. J. Phys. A 10, 2061-2081.

Berry, M.V. 1983 Semiclassical mechanics of regular and irregular motion. In Les Houches

Lecture Series (ed. G. Iooss, R.H.G. Helleman & R. Stora), vol. 36, pp. 171-271 Amster-

dam: North Holland.

Berry, M.V. 1989, Quantum scars of classical closed orbits in phase space. Proc. R. Soc.

Lond. A 243, 219-231.

15



Berry, M.V. 2000 Spectral twinkling. New Directions in Quantum Chaos. Proceedings of

the International School of Physics �Enrico Femi�, 45-63. Italian Physical Society.

Berry, M.V., Hannay, J.H. & Ozorio de Almeida, A.M. 1983 Intensity moments of semi-

classical wavefunctions. Physica D 8, 229-242.

Berry, M.V, Keating, J.P & Prado, S.D. 1988 Orbit bifurcations and spectral statistics.

J. Phys. A 31, L245-254.

Berry, M.V., Keating, J.P. & Schomerus, H. 2000 Universal twinkling exponents for spec-

tral �uctuations associated with mixed chaology. Proc. R. Soc. Lond. A 456, 1659-1668.

Berry, M.V. & Tabor, M. 1976 Closed orbits and the regular bound spectrum. Proc. R.

Soc. Lond. A 349, 101-123.

Boasman, P.A. & Keating, J.P. 1995 Semiclassical asymptotics of perturbed cat maps.

Proc. R. Soc. Lond. A 449, 629-653.

Bogomolny, E.B. 1988 Smoothed wavefunctions of chaotic quantum systems. Physica D

31, 169-189.

Colin de Verdière, Y. 1985 Ergodicité et fonctions propres du laplacien. Commun. Math.

Phys. 102, 497-502.

Eckhardt, B., Fishman, S., Keating, J.P., Agam, O., Main, J., & Müller, K. 1995 Approach

to ergodicity in quantum wave functions. Phys. Rev. E 52, 5893-5903.

Fishman, S., Georgeot, B. & Prange, R. E. 1996 Fredholm method for scars. J. Phys. A

29, 919-937.

Gutzwiller, M.C. 1971 Periodic orbits and classical quantization conditions. J. Math.

Phys. 12, 343-358.

Gutzwiller, M.C. 1990 Chaos in Classical and Quantum Mechanics (New York: Springer).

Hannay, J.H. & Berry, M.V. 1980 Quantization of linear maps on the torus � Fresnel

di�raction by a periodic grating. Physica D 1, 267-290.

Heller, E.J. 1984 Bound state eigenfunctions of classically chaotic Hamiltonian systems -

scars of periodic orbits. Phys. Rev. Lett. 53, 1515-1518.

Kaplan, L. 1999 Scars in quantum chaotic wavefunctions. Nonlinearity 12, R1-R40.

16



Keating, J.P. 1991 The cat maps: quantum mechanics and classical motion. Nonlinearity

4, 309-341.

Keating, J.P., Mezzadri, F. & Robbins, J.M. 1999 Quantum boundary conditions for torus

maps. Nonlinearity 12, 579-591.

McDonald, S.W. 1983 Lawrence Berkeley Laboratory Report LBL - 14837.

Meyer, K.R. 1970 Generic bifurcations of periodic points. Trans. Am. Math. Soc. 149,

95-107.

Meyer, K.R. 1986 Bibliographic notes on generic bifurcations in Hamiltonian Systems.

Contemp. Math. 56, 373-381.

Ozorio de Almeida, A.M. 1988 Hamiltonian Systems: Chaos and Quantization.Cambridge

University Press.

Ozorio de Almeida, A.M. & Hannay, J.H. 1987 Resonant periodic orbits and the semi-

classical energy spectrum. J. Phys A 20, 5873-5883.

Percival, I.C. 1973 Regular and irregular spectra. J. Phys. B 6, L229-L232.

Schomerus, H. 1998 Periodic orbits near bifurcations of codimension two: Classical me-

chanics, semiclassics and Stokes transitions. J. Phys. A 31, 4167-4196.

Schomerus, H. & Sieber, M. 1997 Bifurcations of periodic orbits and uniform approxima-

tions. J. Phys. A 30, 4537-4562.

Shnirelman, A.I. 1974 Ergodic properties of eigenfunctions (in Russian). Usp. Math. Nauk

29, 181-182.

Sieber, M. 1996 Uniform approximation for bifurcations of periodic orbits with high rep-

etition numbers. J. Phys. A 29, 4715-4732.

Sieber, M. & Schomerus, H. 1998 Uniform approximations for period-quadrupling bifur-

cations. J. Phys. A 31, 165-183.

Tomsovic, S., Grinberg, M. & Ullmo, D. 1995 Semiclassical trace formulas of near-

integrable systems: Resonances. Phys. Rev. Lett. 75, 4346-4349.

Ullmo, D., Grinberg, M. & Tomsovic, S. 1996 Near-integrable systems: Resonances and

semiclassical trace formulas. Phys. Rev. E 54, 136-152.

17



Zelditch, S. 1987 Uniform distribution of eigenfunctions on compact hyperbolic surfaces.

Duke Math. J. 55, 919-941.

18



FIGURES
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Figure 1:
P

n
j n(Q)j2 �" (� � �n)�1, with " = 2:2, � = 3 and N = 1597 (circles connected

by dotted lines). Also shown is a convolution of the data with a normalized Gaussian of

width 0.02 (bold line). The positions of the �xed points are q = 0:65 and q = 0:85.

19



0 0.2 0.4 0.6 0.8 1
Q/N

−0.0036

−0.0018

0

0.0018

0.0036
  

Figure 2:
P

n
j n(Q)j2 �" (� � �n) � 1, with " = 2:2, � = �� and N = 1597 (circles

connected by dotted lines). Also shown is a convolution of the data with a normalized

Gaussian of width 0.02 (bold line). There are unstable �xed points at q = 0:69 and

q = 0:81, and bifurcations at q = 0:05 and q = 0:44.
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Figure 3:
P

n
j n(Q)j2 �" (� � �n)� 1, with " = 2:2, � = �� and N = 1597, as in Figure 2,

in the neighbourhood of the bifurcation at q = 0:44 (circles connected by dotted lines).

Also shown is the local approximation obtained by substituting (39) into (35) (bold line).
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Figure 4: logC2, calculated using a local Q-average of size 0:02N
1=2, plotted against logN

when � = 3 (circles). Also shown is a best-�tting straight line, which has gradient -0.50.
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Figure 5: logC2, calculated using a local Q-average of size 0:02N
1=2, plotted against logN

when � = �� (circles). Also shown is a best-�tting straight line, which has gradient -0.29.

23



0 7 14 21
m

−21

−14

−7

0

g

Figure 6: g(m) plotted against m, for � = 3 (full circles), and � = �� (open circles). Also

shown are the best �tting straight lines: g = �0:96m + 0:57 and g = �1:01m + 0:72,

respectively.
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