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We show that quantum operations on multi-particle systems have a non-local content; this
mirrors the non-local content of quantum states. We introduce a general framework for discussing
the non-local content of quantum operations, and give a number of examples. Quantitative relations
between quantum actions and the entanglement and classical communication resources needed to
implement these actions are also described. We also show how entanglement can catalyse classical
communication from a quantum action.

I. INTRODUCTION

In the past, most of the research on quantum non-

locality has been devoted to the issue of non-locality of

quantum states. However we feel that an equally impor-

tant issue is that of non-locality of quantum evolutions.

That is, in parallel with the understanding of non-locality

of quantum kinematics one should also develop an under-

standing of the non-locality of quantum dynamics.

Let us start with a simple example. Consider two

qubits situated far from each other, one held by Alice

and the other one by Bob. Suppose they would like to

implement a two qubit quantum evolution described by

the unitary operator U . (We wish to be able to apply U

on any initial state of the two qubits). With exception

of the case when U is a product of two local unitary op-

erators, U = U
A

 U

B
, no other quantum evolution can

be accomplished by local means only. Thus almost all

quantum evolutions are non-local. The main question we

address in this paper is how to describe, qualitatively and

quantitatively, the non-locality of quantum evolutions.

In order to be able to describe the amount of non-

locality contained by the unitary operator U we suggest

the following approach. We consider that Alice and Bob,

in addition of being able to perform any local operations,

they also have additional resources, namely they share

entangled states, and they are able to communicate clas-

sically. The question then reduces to �nding out how

much of these resources is needed to implement U .

The above framework has also been put-forward by

Che
es, Gilson and Barnett [1].

We emphasise that although we have largely discussed

the role of quantum entanglement above, the role of

the classical communication is equally important. Un-

derstanding the character of a quantum evolution re-

quires knowing both the amount of entanglement and

the amount of classical communication needed.

II. GENERAL SUFFICIENCY CONDITIONS

First of all, it is important to note that any unitary

evolution can be implemented given enough shared en-

tanglement and classical communication. Indeed, con-

sider the case of two qubits, one held by Alice and one by

Bob. Any unitary transformation U on these two qubits

can be accomplished by having Alice teleport her qubit

to Bob, Bob performing U locally and �nally Bob tele-

porting Alice's qubit back to Alice. The resources needed

for the two teleportation actions are: (1 e-bit plus two

classical bits transmitted from Alice to Bob for the Alice

to Bob teleportation) plus (1 e-bit plus two classical bits

transmitted from Bob to Alice for the Bob to Alice tele-

portation). It is obvious now that any unitary operation

involving any number of parties and any number of qubits

can be accomplished by a similar procedure (teleporting

all states to a single location, performing U locally and

teleporting back the qubits to their original locations).

The \double teleportation" procedure shown above is

suÆcient to implement any quantum evolution. The

question is however whether so much resources are actu-

ally needed. We will discuss a couple of speci�c example

below.

III. THE SWAP OPERATION ON TWO QUBITS

The SWAP operation de�ned by:

USWAPj i 
 j�i = j�i 
 j i (1)

is a particularly intriguing case, since although it takes

product states to product states, it is, as we now show,

the most non-local operation possible in the sense de-

scribed above. That is, we will prove that in order to

implement a SWAP on two qubits it is not only suÆcient

but also necessary to use 2 e-bits plus 2 bits of classical

communication from Alice to Bob plus 2 bits of classical

communication from Bob to Alice.
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Proof: To prove that the SWAP operation needs as

non-local resources 2 e-bits, we will show that if we have

an apparatus able to implement the SWAP operation we

can use it in order to create 2 e-bits. Thus, since entan-

glement cannot be created ex nihilo, the apparatus which

implements the SWAP must use 2 e-bits as an internal

non-local resource.

Let us show how to generate two singlets using the

SWAP operation. Firstly Alice and Bob prepare singlets

locally

"
A
"
a
+ #

A
#
a

and "
B
"
b
+ #

B
#
b
; (2)

Alice's spins are labelled A and a and Bob's B and b

(here and in what follows we will leave out normalisation

factors for states). Now perform the SWAP operation on

spins A and B:

("
A
"
a
+ #

A
#
a
) ("

B
"
b
+ #

B
#
b
) 7!

("
B
"
a
+ #

B
#
a
) ("

A
"
b
+ #

A
#
b
): (3)

This state contains two singlets held between Alice and

Bob.

To �nd the classical communication resources needed

to implement the SWAP operation we will adapt an ar-

gument �rst given in [2]. We show that if we have an ap-

paratus able to implement the SWAP operation we can

use it in order to communicate 2 bits from Alice to Bob

plus 2 bits from Bob to Alice. From this follows that it

must be the case that the SWAP apparatus uses 2 bits of

classical communication from Alice to Bob plus 2 bits of

classical communication from Bob to Alice as an internal

resource, otherwise Alice could receive information from

Bob transmitted faster than light.

For suppose that the SWAP operation requires less

than four bits of classical communication (two bits each

way). Alice and Bob can produce an instantaneous

SWAP operation which works correctly with probability

greater than one sixteenth in the following way. Alice and

Bob run the usual SWAP protocol, but instead of waiting

for classical communication from each other, they sim-

ply guess the bits that they would have received. Since

we have assumed that the SWAP operation requires less

than 4 bits, the probability that Alice and Bob guess cor-

rectly is greater than one sixteenth and hence the SWAP

operation also succeeds with probability greater than one

sixteenth.

Thus using the protocol described previously can now

use this imperfect, but instantaneous SWAP to commu-

nicate 4 bits instantaneously. The bits arrive correctly

when the SWAP is implemented correctly. Hence the

probability that 4 bits arrive correctly is larger than one

sixteenth; 4 bits communicated correctly with probability

greater than one sixteenth represents a non-zero amount

of information. Thus Alice and Bob have managed to

convey some information to each other instantaneously.

We conclude therefore that the SWAP operation cannot

be done with less that 4 bits of classical communication;

otherwise it allows communication faster than the speed

of light.

Earlier in this section we showed that the SWAP oper-

ation can be used to generate two singlets. We now show

that the SWAP operation can be also be used to per-

form four bits of classical communication (two bits each

way): the main idea is that of \super-dense coding" [3].

Suppose that initially Alice and Bob share two singlets:

"
A
"
B
+ #

A
#
B

and "
a
"
b
+ #

a
#
b
: (4)

Now Alice chooses one of four local unitary operations 1

(identity), �
x
, �

y
, �

z
and performs it on her spin A. This

causes the �rst singlet to be in one of the four Bell states.

Bob also, independently chooses one of these four locally

unitaries and performs it on his spin b, putting the second

singlet into one of the Bell states. Then the SWAP oper-

ation is performed on spins A and b. Now both Bob and

Alice have one of the Bell states locally; which one they

have depends on which operation the other performed.

By measurement, they can work out which of the four

unitaries the other performed. Thus the SWAP opera-

tion has enabled two bits of classical communication to

be performed each way.

IV. THE CNOT OPERATION ON TWO QUBITS

Another important quantum operation is CNOT, de-

�ned as

""7!"" (5)

"#7!"# (6)

#"7!## (7)

##7!#" : (8)

As we prove below, the necessary and suÆcient re-

sources for CNOT are 1 e-bit plus 1 bit of classical com-

munication from Alice to Bob plus 1 bit of classical com-

munication from Bob to Alice.

Proof: Constructing a CNOT We now show how

to construct the CNOT operation using one singlet and

two bits of classical communication. We then show how

to generate one singlet or perform two bits of classical

communication using the CNOT.

Firstly we will show how, using one singlet and one bit

of classical communication each way, we can perform a

CNOT on the state

(� "
A
+� #

A
) (
 "

B
+Æ #

B
) (9)
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i.e. transform it to

� "
A
(
 "

B
+Æ #

B
) + � #

A
(
 #

B
+Æ "

B
): (10)

Since the operation behaves linearly, the protocol per-

forms the CNOT on any input state (i.e. even if the

qubits are entangled with each other or with other sys-

tems).

Step 1 The �rst step is to append a singlet held be-

tween Alice and Bob to the state (9):

(� "
A
+� #

A
) ("

a
"
b
+ #

a
#
b
) (
 "

B
+Æ #

B
); (11)

then for Alice to measure the total spin of her spins A

and a.

If the total spin is one, then the state becomes

(� "
A
"
a
"
b
+� #

A
#
a
#
b
) (
 "

B
+Æ #

B
): (12)

Now Alice disentangles the singlet spin by performing

the following (local) operation:

"
A
"
a
7!"

A
"
a
; #

A
#
a
7!#

A
"
a
; (13)

and the state becomes

(� "
A
"
b
+� #

A
#
b
) (
 "

B
+Æ #

B
) "

a
: (14)

If the total spin had been zero, then rather than (12)

the state becomes

(� "
A
#
a
#
b
+� #

A
"
a
"
b
) (
 "

B
+Æ #

B
): (15)

In this case Alice can disentangle the a spin by

"
A
#
a
7!"

A
"
a
; #

A
"
a
7!#

A
"
a
; (16)

leading to

(� "
A
#
b
+� #

A
"
b
) (
 "

B
+Æ #

B
) "

a
: (17)

In order to get this state in the correct form, Bob needs

to invert his b spin. Thus Alice must communicate one

bit to Bob to tell him whether she found total spin one

or zero, and thus whether he needs to invert his spin or

not.

After these operations, the state is

(� "
A
"
b
+� #

A
#
b
) (
 "

B
+Æ #

B
) "

a
: (18)

Step 2 Now Bob performs a CNOT on the b and B

spins, thus the total state is

[� "
A
"
b
(
 "

B
+Æ #

B
) + � #

A
#
b
(
 #

B
+Æ "

B
)] "

a
: (19)

Step 3 Bob now measures �
x
on his part of the singlet

b. Either the state becomes

[� "
A
(
 "

B
+Æ #

B
) + � #

A
(
 #

B
+Æ "

B
)]


 "
a
("

b
+ #

b
); (20)

or

[� "
A
(
 "

B
+Æ #

B
)� � #

A
(
 #

B
+Æ "

B
)]


 "
a
("

b
� #

b
); (21)

In the former case (i.e. the x component of spin was

+) we have performed the protocol as desired. In the

latter, Alice needs to perform a �
z
rotation by �. Thus

Bob needs to communicate one bit to Alice to tell her

whether or not to perform the rotation.

We have thus shown how to perform a CNOT using

one singlet and one bit of classical communication each

way.

Creating entanglement by CNOT We show now

that a CNOT apparatus can be used to create 1 e-bit

between Alice and Bob; thus (since entanglement cannot

be increased by local operations) 1 e-bit is a necessary

resource for constructing a CNOT.

Creating 1 e-bit by a CNOT is straightforward:

("
A
+ #

A
) "

B
7!"

A
"
B
+ #

A
#
B
: (22)

Classical communication by CNOT

Suppose that Alice and Bob have an apparatus which

implements a CNOT and also share 1 e-bit. They can

use these resources to communicate at the same time 1

classical bit from Alice to Bob and 1 classical bit from

Bob to Alice. This proves (see preceding section) that

communicating 1 classical bit each way is a necessary

resource for constructing a CNOT.

Suppose the initial state is

"
a
"
b
+ #

a
#
b
: (23)

Alice can encode a \0" by not doing anything to the

state and a \1" by 
ipping her qubit. Bob can encode

a \0" by not doing anything to the state and a \1" by

changing the phase as follows: "!" and #! � #.

The four states corresponding to the di�erent bit com-

binations are thus

"
a
"
b
+ #

a
#
b

corresponds to 0
A
0
B
: (24)

#
a
"
b
+ "

a
#
b

corresponds to 1
A
0
B
: (25)

"
a
"
b
� #

a
#
b

corresponds to 0
A
1
B
: (26)

#
a
"
b
� "

a
#
b

corresponds to 1
A
1
B
: (27)

After encoding their bits, Alice and Bob apply the

CNOT operation. This results in the corresponding four

states

"
a
"
b
+ #

a
"
b
= ("

a
+ #

a
) "

b
corresponds to 0

A
0
B

(28)

#
a
#
b
+ "

a
#
b
= ("

a
+ #

a
) #

b
corresponds to 1

A
0
B

(29)
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"
a
"
b
� #

a
"
b
= ("

a
� #

a
) "

b
corresponds to 0

A
1
B

(30)

#
a
#
b
� "

a
#
b
= (#

a
� "

a
) #

b
corresponds to 1

A
1
B
: (31)

Bob can now �nd out Alice's bit by measuring his qubit

in the f"
b
, #

b
g basis while Alice can �nd out Bob's bit

by measuring her qubit in the f"
a
+ #

a
, "

a
� #

a
g basis.

V. THE DOUBLE CNOT OPERATION ON TWO

QUBITS

One might have thought that the SWAP operation was

the unique maximally non-local operation, at least in the

terms used in this paper. We here demonstrate that there

is another maximally non-local operator, which is the

\Double CNOT", or \DCNOT" gate, formed by acting a

CNOT from particle 1 onto particle 2, and then a second

CNOT from particle 2 onto particle 1. It is de�ned by

""7!"" (32)

"#7!## (33)

#"7!"# (34)

##7!#" : (35)

To show that DCNOT is maximally non-local, we shall

�rst demonstrate that it can be used to create 2 e-bits.

We shall then show that it can be used to communicate

2 bits of information from Alice to Bob, and simultane-

ously to send 2 bits from Bob to Alice. The argument

used for the SWAP operation then proves that to build a

DCNOT we need 2 e-bits plus 2 bits of classical commu-

nication from Alice to Bob plus 2 bits of classical com-

munication from Bob to Alice. Since any transformation

on two qubits can be performed using these resources via

teleportation, we will then have shown that the DCNOT

is maximally non-local, in terms of resources.

Creating 2 e-bits is easy. Alice and Bob prepare sin-

glets locally, and then perform the DCNOT on spins A

and B:

("
A
"
a
+ #

A
#
a
) ("

B
"
b
+ #

B
#
b
) 7!

"
A
"
a
"
B
"
b
+ #

A
"
a
#
B
#
b
+ "

A
#
a
#
B
"
b
+ #

A
#
a
"
B
#
b
: (36)

We now have a Schmidt decomposition of rank 4, ie.

a 2 party state which is locally equivalent to 2 e-bits be-

tween Alice and Bob.

Transmitting 2 bits of information in both directions

at the same time is a little more tricky. Alice and Bob

need to have 2 e-bits in addition to the DCNOT opera-

tion. They �rst transform their e-bits (locally) into the

state

"
A
"
a
"
B
"
b
+ #

A
"
a
"
B
#
b
+ #

A
#
a
#
B
"
b
+ "

A
#
a
#
B
#
b
: (37)

Alice now encodes 1 bit of information in the state by

either applying, or not applying �
z

 �

z
to her 2 spins.

She encodes a second bit of information by applying, or

not applying �
x
to her �rst spin, A. Bob similarly en-

codes two bits of information, using the transformation

�
z
on spin B to encode his �rst bit, and �

x

�

x
to encode

his second bit.

Having encoded the information, they make it locally

accessible by applying the DCNOT to spins A and B. It

is not obvious, but simple to check, that Alice and Bob

now each have one of the 4 Bell states locally, and that Al-

ice's particular state corresponds to Bob's encoded bits,

and vice-versa.

VI. MULTI-PARTITE OPERATIONS

In the previous sections we studied di�erent bi-partite

operations. What about multi-partite operations, such

as the To�oli or the Fredkin gates on three qubits? As

we showed in section II, they can all be implemented by

using the \double teleportation" method. On the other

hand, �nding the necessary resources is far more diÆ-

cult than in the bi-partite case; indeed it is not possible

at present. The reason is that there exist di�erent in-

equivalent types of multi-partite entanglement [4,5]. For

example, it is known that singlets and GHZ states are

inequivalent in the sense that they cannot be reversibly

transformed into each other, not even in the asymptotic

limit. Although GHZs (as all other entangled states) can

be built out of singlets, such a procedure is wasteful.

Hence, when investigating the minimal entanglement re-

sources needed to implement multi-partite quantum op-

erations, we have to use the di�erent inequivalent types

of entanglement. Unfortunately, at present multi-partite

entanglement is far from being fully understood.

VII. \CONSERVATION" RELATIONS

In studying the non-locality of quantum states a most

important issue is that of \manipulating" entanglement,

i.e. of transforming some states into others [6]. Similarly

we can ask: Given a unitary evolution, can we use it to

implement some other unitary evolution?

In particular, for pure quantum states we have conser-

vation relations [6,7]. For example, when Alice and Bob

share a large number n of pairs of particles, each pair in

the same state 	, they could use these pairs to generate

some other number, k, of pairs in some other state �. In

the limit of large n, this transformation can be performed
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reversibly, meaning that the total amount of non-locality

contained in the n copies of the state 	 is the same as the

total amount of non-locality contained in the k copies of

the state �. Is something similar taking place for unitary

transformations?

For unitary transformations we have not yet studied

the case of the asymptotic limit, i.e. performing the same

transformation U on many pairs of particles. However,

an interesting pattern emerges even at the level of a single

copy.

Consider �rst the case of SWAP. We know what the

minimal resources needed to implement a SWAP are.

But suppose now that we are given a device which im-

plements a SWAP. Could we could use it to get back the

original resources needed to create the SWAP?

The balance of resources needed to implement a SWAP

can be written as

2e-bits + 2bits
A!B

+ 2bits
B!A

=> SWAP: (38)

The question is whether

SWAP => 2e-bits + 2bits
A!B

+ 2bits
B!A

? (39)

Though we do not have yet a complete proof, it appears

that the answer to the above question is \No". That is,

combining entanglement and classical communication re-

sources to yield a SWAP is an irreversible process - we

cannot use the SWAP to get the resources back.

On the other hand, looking back to the proof of the

resources needed for SWAP, we see that we can write the

following tight \implications":

2e-bits + 2bits
A!B

+ 2bits
B!A

=> 1SWAP: (40)

2e-bits + 1SWAP => 2bits
A!B

+ 2bits
B!A

: (41)

1SWAP => 2e-bits: (42)

The �rst of these three implications is to be read as

\given 2e-bits and 2bits
A!B

and 2bits
A!B

we can pro-

duce the SWAP operation; also if we wish to produce

the SWAP operation with e-bits, and bits communicated

from Alice to Bob and vice-versa, we cannot do so with

fewer than 2e-bits and 2bits
A!B

and 2bits
A!B

."

The second and third implications have a slightly dif-

ferent meaning. For example we read the second implica-

tion as \given 1 SWAP and 2 e-bits, we can communicate

4 classical bits (two each way); also we cannot commu-

nicate more than 4 classical bits (two each way) ". On

the other hand, it does not mean that \1 SWAP and 2 e-

bits are necessary for communicating 4 classical bits (two

each way) " - for example we can implement this classical

communication with 2 SWAPs.

Exactly the same implications apply for the DCNOT.

2e-bits + 2bits
A!B

+ 2bits
B!A

=> 1DCNOT: (43)

2e-bits + 1DCNOT => 2bits
A!B

+ 2bits
B!A

: (44)

1DCNOT => 2e-bits: (45)

Furthermore, very similar implications can be written

for the CNOT:

1e-bit + 1bit
A!B

+ 1bit
B!A

=> 1CNOT: (46)

1e-bit + 1CNOT => 1bit
A!B

+ 1bit
B!A

: (47)

1CNOT => 1e-bit: (48)

In fact these implications are very similar to the im-

plications which describe teleportation and super-dense

coding which appear, together with many other similar

implications on Bennett's famous transparency presented

at almost all early quantum information conferences:

1e-bit + 2bits
A!B

=> 1qubit (49)

1e-bit + 1qubit => 2bits
A!B

(50)

1qubit => 1e-bit (51)

The above three implications (49,50,51) are generally

thought to describe relations between classical informa-

tion, quantum information and entanglement. However,

we would like to argue that their true meaning is may

be more closely related to dynamics, and that a more

illuminating form is probably

1e-bit + 2bits
A!B

=> 1teleportation
A!B

(52)

1e-bit + 1teleportation
A!B

=> 2bits
A!B

(53)

1teleportation
A!B

=> 1e-bit (54)

We conjecture that similar relations hold between any

quantum action and the resources needed to implement

it, that is

Entanglement+ ClassicalCommunication => Action

(55)

Entanglement+Action => ClassicalCommunication

(56)

Action => Entanglement (57)

It may be that these relations hold, in general, only

in the asymptotic limit of many copies of the quantum

action.
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VIII. DIFFERENT WAYS OF ACHIEVING THE

SAME TASK

It is interesting to note that although the transfor-

mation from resources to unitary actions is irreversible,

sometimes the same end product can be achieved in two

di�erent ways. For example, there are two alternative

ways to implement

2CNOTs => 1bit
A!B

+ 1bit
B!A

: (58)

The �rst way is to use one CNOT to transmit 1 classi-

cal bit from Alice to Bob and the other CNOT to trans-

mit 1 classical bit from Bob to Alice, i.e.

1CNOT => 1bit
A!B

(59)

and

1CNOT => 1bit
B!A

: (60)

Another possibility is to use �rst one CNOT to cre-

ate 1 e-bit (48) then the other CNOT plus the e-bit to

transmit the 2 classical bits (47), i.e.

2CNOTs => 1e-bit + 1CNOT => 1bit
A!B

+ 1bit
B!A

:

(61)

IX. CATALYSING CLASSICAL

COMMUNICATION

A very interesting phenomenon is that of \catalysing"

classical communication. This phenomenon is similar in

its spirit to that of \catalysing entanglement manipula-

tion" [8,4]. An example is the following.

On its own, the SWAP can only send one bit in each

direction at the same time, and cannot be used for Alice

to send 2 bits to Bob, even if Bob sends no information

whatsoever. That is,

1SWAP 6=> 2bits
A!B

: (62)

However, if Alice and Bob share 1 e-bit, Alice can send

2 bits to Bob without destroying the e-bit, i.e.

1SWAP+ 1e-bit => 2bits
A!B

+ 1e-bit: (63)

This may be done as follows. Initially Alice and Bob

share a non-local singlet; Bob also prepares a second sin-

glet locally. Alice encodes the two bits she wishes to send

to Bob by performing one of the four rotations 1, �
x
, �

y
,

�
z
on her half of the non-local singlet. By performing

the SWAP operation on Alice's particle from the non-

local singlet and one particle of the singlet that Bob has

prepared locally, Alice and Bob end up with a non-local

singlet held between them; also Bob can �nd out the two

bits by measurements on the local singlet he now holds.

Speci�cally, we begin with the state:

("
A
"
b1 + #

A
#
b1)("B"b2 + #

B
#
b2); (64)

where A is Alice's particle, and B, b1 and b2 are Bob's

particles. Alice performs one of the rotations 1, �
x
, �

y
,

�
z
on her particle. They then perform the SWAP on

particles A and B, and get (if Alice performed 1):

("
B
"
b1 + #

B
#
b1)("A"b2 + #

A
#
b2) (65)

If Alice performed one of the other rotations, Bob will

get one of the other Bell states in system (B, b1). Bob

now measures that system in the Bell basis to extract

the information, and Alice and Bob are left with a sin-

glet between systems A and b2.

In e�ect the SWAP acts as a double teleportation; one

from Alice to Bob and one from Bob to Alice. Teleport-

ing Alice's qubit, in conjunction with the e-bit, imple-

ments a transmission of two bits from Alice to Bob using

super-dense coding; it destroys the e-bit in the process.

Simultaneously, the Bob to Alice teleportation restores

the e-bit.

X. TRADING ONE TYPE OF ACTIONS FOR

ANOTHER

An interesting question is the following. There are

cases in which two di�erent actions require the same re-

sources. For example the resources needed for 1 SWAP

are the same as for 2 CNOTs, i.e., 2e-bits + 2bits
A!B

+

2bits
B!A

. Now, suppose we had already used the re-

sources to build 2 CNOTs, but we wanted to change our

mind and we wanted to do 1 SWAP instead. Due to

the irreversibility discussed above, we cannot simply get

back the original resources and use them to construct

the SWAP. Is it however possible to go directly from 2

CNOTs to 1 SWAP, without going back to the original

resources? As far as we are aware, the answer is \No".

It turns out however that if we have many CNOTs it

is nevertheless useful to build a SWAP from CNOTs di-

rectly rather than going back to the original resources.

Indeed, to obtain the entanglement and classical com-

munication resources needed for 1 SWAP, i.e. 2e-bits +

2bits
A!B

+ 2bits
B!A

we need 4 CNOTs. However, it

is well-known that one can construct 1 SWAP directly

from 3 CNOTs. Indeed, we don't even need 3 CNOTs,

but can realize a SWAP by

2CNOTs + 1bit
A!B

+ 1bit
B!A

=> 1SWAP (66)

which uses less non-local resources than 3 CNOTs. To

see this, it suÆces to note that

1CNOT+ 1bit
A!B

=> 1teleportation
A!B

(67)
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and similarly

1CNOT+ 1bit
B!A

=> 1teleportation
B!A

(68)

To implement (67) Alice starts with her qubit in the

state 	 = � " +� # which has to be teleported and

Bob with his qubit in the state ". After CNOT the state

becomes:

	 "= (� " +� #) "7! � "" +� ## (69)

Alice then measures her qubit in the j+ >= 1p
2
(" + #)

and j� >= 1p
2
(" � #) basis and communicates the re-

sult to Bob. If (+) then Bob's qubit is already in the

required state 	 = � " +� #; if (�) then Bob's qubit is

in the state 	0 = � " �� # and Bob can obtain 	 by

changing the relative phase between " and # by �.

Note added. While completing this work we became

aware of closely related work by J. Eisert, K. Jacobs,

P. Papadopoulos and M. Plenio [9].
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