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Brownian analogues of Burke’s theorem
Neil O’Connell* and Marc Yor?
September 8, 2000; revised version (November, 2000).

Abstract

We discuss Brownian analogues of a celebrated theorem, due to Burke,
which states that the output of an M/M/1 queue is Poisson, and the relat-
ed notion of quasireversibility. A direct analogue of Burke’s theorem for the
Brownian queue was stated and proved by Harrison and Williams (1985). We
present several different proofs of this and related results. We also present an
analogous result for geometric functionals of Brownian motion. By consid-
ering series of queues in tandem, these theorems can be applied to a certain
class of directed percolation and directed polymer models. It was recently
discovered that there is a connection between this directed percolation model
and the GUE random matrix ensemble. We extend and give a direct proof of
this connection in the two dimensional case. In all of the above, reversibility
plays a key role.

1 Introduction and summary

Burke’s theorem states that the output of an M/M/1 queue (that is, a single-server
first-come-first-served queue with Poisson arrivals and exponential holding times) is
Poisson. This fact was anticipated but not proved by O’Brien [30] and Morse [25].
Burke [6] also proved that the output up to a given instant is independent of the
number of customers in the queue at that instant. This property is also called
quasi-reversibility. Discussions on Burke’s theorem and related material can be
found in the books of Asmussen [2], Bremaud [5] and Kelly [22].

In this paper we discuss Brownian analogues of Burke’s theorem and the related
notion of quasi-reversibility. The first can be obtained by taking a ‘heavy-traffic’
limit of M/M/1 queues, taking care to keep a distinction between the arrivals
and service processes. Heavy-traffic queueing models are well-understood (see, for
example, [19] or [29, 38| for recent surveys) and in fact this variant of Burke’s
theorem was presented in [20] in an attempt to understand quasi-reversibility in
the heavy-traffic context. The resulting queueing system is characterised as follows.
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Let B and C be two independent standard Brownian motions indexed by the entire
real line, and write

By = By — By, Clopy = Cy —C.

Fix m > 0 and, for t € R, set

q(t) = 7;2@{8(5’” + Clspy —m(t —s)} (1)
and
d(t) = By + q(0) — q(t). (2)

The Brownian motions B; and mt—C'; can be thought of, respectively, as the arrivals
and service processes, g as the queue-length process and d as the output, or departure,
process. We shall refer to this as the Brownian queue. The analogue of Burke’s
theorem in this context is that d is a standard Brownian motion and, moreover, the
values of d up to a given instant ¢ are independent of ¢(¢). This result was presented
n [20]. As was observed there, it is closely related to Pitman’s representation of
the 3-dimensional Bessel process and William’s path decomposition of Brownian
motion, as extended in [33] to the case of non-zero drift.

Pitman’s representation theorem states that if B is a Brownian motion, and M; =
SUPgcs<¢ Bs, then 2M — B is a 3-dimensional Bessel process. Matsumoto and
Yor [26, 27] have recently obtained a version of Pitman’s representation theorem
for geometric Brownian motions, and a variety of related results, which essentially
rely upon the observation that, if one replaces ‘sup’ by ‘logf exp’ in the statement
of Pitman’s theorem, the result holds true with the 3-dimensional Bessel process
replaced by another Markov process. This can be thought of as a generalisation
because Pitman’s theorem can be recovered by rescaling and applying Laplace’s
method. It turns out that, if one replaces ‘sup’ by ‘log [ exp’ in the definition (4) of
the Brownian queue, the conclusion remains valid: d is a standard Brownian mo-
tion, and {d(s),s < t} is independent of ¢(¢). This follows from results presented
in [27]. We refer to this as the generalised Brownian queue.

By considering a sequence of n Brownian queues in tandem, we are lead to a
variational formula which relates the ‘total occupancy’ of the system to the process

L= s {BY w0 Y 3)

0<s1 <o <51 <t

where BM, B®) . is a sequence of independent standard Brownian motions. Re-
lated formulas have appeared before in [28, 36, 15]. The processes L, were intro-
duced in [16], in a similar context. We describe how this variational formula can be
used, following a program introduced by Seppéldinen [35] (see [31] for a survey), to
show that, L,(1)/y/n — 2 almost surely, as n — oo. We remark that this limiting
result can also be deduced from the recent observation, independently made by



Baryshnikov [4] and Gravner, Tracy and Widom [17], that L, (1) has the same law
as the largest eigenvalue of a random GUE (Wigner) matrix of order n.

Similarly we can consider a sequence of generalised Brownian queues in tandem.
This leads to a variety of large deviations results which can be interpreted in terms
of a certain random polymer in a random medium. For example, we can compute
the free energy density
£(8) = lim —log Z,(8).
n—oo N,

where

Z,(B) = / dsy...ds,_1exp {B(B(%’)Sl) NI B((Zz_l,n))} :
0<s1 < <sp—1<n

In Section 6 we make some remarks concerning the identity in law between L, (1)
and the largest eigenvalue of a random GUE (Wigner) matrix of order n. We show
how, combined with a recent observation of Johansson [21], this yields a certain
asymptotic relationship between the Laguerre and Wigner ensembles. We also give
a direct proof of the identity in the case n = 2, and show that in fact there is a
process-version which is closely related to Pitman’s representation theorem.

In Section 7, we present a general result which states that the measure-preserving
property of a certain path-transformation is equivalent to the reversibility of an-
other; this demonstrates the key role played by reversibility.

In Section 8 we present some multidimensional extensions.

2 Burke’s theorem and the Brownian queue

In this section we recall a special case of the quasi-reversibility result for Brownian
queueing models which was presented in [20).

Let A and S be independent Poisson processes on the real line with respective
intensities 0 < A < p. Then the process @, defined by
Q(t) = sup {A(s,t] - S(s, 1]},
—0o<s<t

is a stationary (and reversible) birth and death process. Here, A(s, t] is the Poisson
measure induced by A of the half-open interval (s,¢]. This is the classical M/M/1
queue: A is the arrivals process, S is the service process and @ is the queue-length
process. The departure process D is defined by

D(s,t] = A(s, t] + Q(s) — Q(t).

The M/M/1 queue has the following remarkable property, which follows from the
fact that the process @) is reversible (see, for example, [22]). This observation is
originally due to Burke [6].



Theorem 1 (1) D is a Poisson process with intensity .

(2) {D(s,t], s <t} is independent of {Q(s), s > t}.

Letting A and p tend to infinity in the right way, we obtain the following analogue
of Theorem 1 for Brownian motions. Let B and C' be two independent standard
Brownian motions indexed by the entire real line, and write

By = By — Bs, Csp)=Cy —Cs.

Fix m > 0 and, for ¢t > 0, set

q(t) = 7osoli€<t{B(s,t) + C(s,t) - m(t - S)} (4)
and
d(t) = B, +q(0) — q(t). (5)

We shall refer to this system as the Brownian queue. Note that this is a standard
‘heavy traffic’ queueing model (see, for example, [19, 20]). The following is a special
case of a result presented in [20].

Theorem 2 (1) d is a standard Brownian motion.

(2) {d(s), s <t} is independent of {q(s), s > t}.

Theorem 2 can be obtained from Theorem 1 by weak convergence arguments: if
p— oo and (p — A)/\/it — m, then (a sufficiently refined version of) Donsker’s
theorem yields the result. In [20] a more general result is proved (in a ‘multiclass’
context) using time-reversal arguments, but they also give a proof which demon-
strates the connection with Pitman’s representation theorem and Williams’ path
decomposition of Brownian motion. We present a variant of that proof here for
completeness.

We remark that, in the Brownian storage model discussed in [29], the storage process
is defined by (4) but the output process is defined by

d(t) = B+ Cy + q(0) — q(2). (6)
Unlike d, the process d is not a Brownian motion; its law is characterised in [29].

Let B be a standard Brownian motion with drift 4 > 0, indexed by the entire
real line. For £ > 0, set

po= sup {BW —BMY} (7)
—oo0<s<t
and
B = B +2(p, — po). (8)

The following result was presented in [20]. For completeness, we include a proof.
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Theorem 3 (1) The process BW s standard Brownian motion with drift .

(2) {EE“), s <t} is independent of {ps, s > t}.

Proof. (1) If we set X" = sup,_o B and M = sup,_,., B®, then

B§u) _ Q(Mt(u) . X(u))+ . B,E“)

)

and X is exponentially distributed with mean 1 /2p. An extension of Pitman’s
representation [32] for the three-dimensional Bessel process, obtained in [33], states
that the process 2M®™ — B is autonomously Markov; the law of this process
is denoted by BES?(0, 11) (see, for example, [33]). Now recall the following path
decomposition of Brownian motion with positive drift about its infimum, which
extends Williams’ path decomposition of Brownian motion. This is also presented
in [33]. Let B"" be a standard Brownian motion with negative drift —u, R a
BES?(0, 1) and Z an exponential random variable with mean 1/2;, all independent
of each other. Set
r=inf{t>0: B"" =27}

Then the process Y defined by

v B t<r
""\R, . -7 t>r1

is standard Brownian motion with drift 4. Combining these two facts, we see that
BW is standard Brownian motion with drift p, as required.

(2) follows from the formula

pr = sup(B{") — BW). 9)
s>t
To see that this formula is valid, write

sup(B,g“) — Bg“)) = 25’,5”) — B,E“) — inf(2SW — BW),

s>t s>t §
where S*) = Sup, <, B and observe that

inf(25% — BW) = g

s>t 5

This latter identity is at the heart of Pitman’s representation theorem, although
it is usually stated with S replaced by M (the maximum over a finite time-
interval). O

Proof of Theorem 2. Define two independent Brownian motions
_B-C B+C
=% 7

B(l) 5(2) —



Now we can write

1 1 v
A(t) = =" + (=67 + 2wt = 25 - X)),

V2 V2

where v = m/v/2,

and
XW = sup (=8P 4vs).

—00<s<0

Set fyf/) = —Bt@) + vt. We also have,

Now, by Theorem 3,

(1) The process defined, for ¢ > 0, by
o =2(S{” = XW)+ — 4"

is a Brownian motion with drift v, and

(2) {as, s <t} isindependent of {ps, s > t}.

Since B and S are independent, Theorem 2 follows. O
Note that if we define
e(t) = Gy +q(0) — ¢(t)

then
1 1

A =-75""+ 7

and we immediately obtain the following extension of Theorem 2.

BV + —= {87 + 2wt — 2(5” — X))ty

Theorem 4 (1) d and e are independent standard Brownian motions.

(2) {(d(s),e(s)) s <t} is independent of q(t).

In §4 we will relate the results of this section to a Brownian directed percolation
problem, by considering a series of Brownian queues in tandem.



3 The generalised Brownian queue

In this section we will define a generalised Brownian queue, with the ‘sup’ in (4)
replaced by ‘log [ exp’, and show that the corresponding analogues of Theorems
2, 3 and 4 hold; in fact, they follow directly from results presented in [27]. We
remark that Theorems 2, 3 and 4 can be recovered from the results of this section
by rescaling and applying Laplace’s method.

These results will be applied in §5 to compute the free energy density (logarithm
of the partition function) of a certain directed polymer in a random medium and
other large deviations results which can be related to the Brownian percolation
model of §4.

As before, let B and C' be standard Brownian motions indexed by the entire real
line. Set

r(t) = log / dsexp{ By + Cropy — mlt — 5)}, (10)
F(#) = Bi+1(0) — r(2) (1)

and
g(t) = Cy+1(0) — r(t). (12)

We shall refer to this system as the generalised Brownian queue.

Theorem 5 (1) f and g are independent standard Brownian motions.

(2) {(f(s),9(s)) s <t} is independent of {r(s), s > t}.

To prove this, we will first write down an analogue of Theorem 3. Let B® be a
standard Brownian motion with drift g > 0, indexed by the entire real line. For
t >0, set

t
a, = log / ds exp{2(B{" — B{")}, (13)
and
A1) _ ) _

Theorem 6 (1) The process B®) is a standard Brownian motion with drift .

(2) {BE“), s <t} is independent of {as, s> t}.
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Proof. (1) follows from [27, Theorem 2.1]. (2) follows from the formula
o =log [ exp(2(BY ~ BY)}. (15)
s>t

This formula is implicit in [27], but since it is not stated explicitly there we present
a proof here for completeness. Set

A= / exp(2B™)ds.
s<t
From the definition of B(”),

/ ds exp{2(B{") — BW)} = exp(—2B") A? / A% exp(2B1V)ds,
s>t

s>t
and (15) follows by noting that
dAT' = —A7%exp(2BW)ds,

and hence
/ A7%exp(2BWM)ds = A7
s>t
O

The proof of Theorem 6 (2) given in [27] uses the method of enlargement; in Sec-
tion 7 we will give an alternative proof using reversibility arguments.

Proof of Theorem 5. Define two independent Brownian motions

B(I)ZB_O, 3(2):B+O,
V2 V2
and proceed by applying Theorem 6 as in the proofs of Theorems 2 and 4. O

We conclude this section with some remarks on the process «, which is in fact the
logarithm of a particular ‘generalised Ornstein-Uhlenbeck process’, as discussed
in [7].

Theorem 7 The process « defined by (13) is a stationary, reversible Markov pro-
cess. The Markov semigroup associated with exp(«) has infinitesimal generator

2

d d
202 —— + (1 + 22(1 — 1)) —.
7 (L 20(1 = ) =

The stationary distribution of « (that is, the law of «g) is the law of —log Zs,,
where Z, is gamma-distributed with parameter 2.



Proof. The process exp(a) is stationary by construction, since B* has stationary
increments. The Markov property is argued in [7] (this presents no difficulty and
holds for any Lévy process in lieu of B®). The reversibility of exp(a) is proved
in [12], where the invariant distribution is given explicitly (see the remark below).
Alternatively, note that it follows from Theorem 6(1) and the symmetry inherent
in the formula (15). The fact that ap has the same law as —log Z,, is Dufresne’s
identity (see, for example, [7, 13, 26, 39]). 4

Remark. We note that the proof of reversibility given in [12] shows that the semi-
group in Theorem 7 is symmetric with respect to

Yu(dz) = e %y,

for every pu € R; v, is a bounded measure for ;> 0, and unbounded for p < 0.

4 Brownian queues in tandem and directed per-
colation

We now turn to a related directed percolation problem. To begin with, we construct

a ‘tandem of Brownian queues’. Let B, B", B ... be a sequence of independent
standard Brownian motions, each indexed by the entire real line. Set
¢ (t) = sup<t{B(s,t) + B((sl,)t) —m(t —s)}, (16)
—oo<s<
di(s,t) = By +q1(s) — i (1), (17)
and for each k = 2,3,... set
a(t) = sup_{da(s,1)+ B, —ml(t - s)}, (18)
—oo<s<t
dk(S,t) = dkfl(S, t) + Qk(S) — qk(t) (19)
It follows from Theorem 2 that ¢;(0), ¢2(0), ... is a sequence of i.i.d. random vari-

ables. The distribution of ¢;(0) is exponential with mean 1/m. Moreover, by
construction, we have

E 41(0) = sup{B(_,0) — mt + Ly,(t)}, (20)
k=1 t>0
where
L,(t) = BY .+ B™ 21
n( ) sup (—t,—5n_1) + + (—s1,0) [ ( )

0<s1 < <51 <t



The variational formula (20) is obtained by iterating the recursions (18) and (19).?

It is easy to see, by Kingman’s subadditive ergodic theorem, that the limit

l(x) = lim L,(zn)/n
n—oo
exists almost surely for each x > 0. We will now show how (20) can be used to
identify the function [. See [31] for a survey on the application of this technique in
the context of discrete queueing systems; the main idea originates in [35].

First note that, by Brownian scaling, [(z) is proportional to y/z. To identify the
constant of proportionality, we normalise the variational formula (20) and let n —
oo to obtain (modulo technicalities):

1/m = sup{—mz + [(z)}. (22)
>0
The formula (22) is valid for any m > 0, and is essentially a Legendre transfor-
m. Since [ is concave, it can be inverted, and we obtain [(z) = 2y/z. We will
not prove this here because it actually follows from a recent observation, due to
Baryshnikov [4] and Gravner, Tracy and Widom [17], namely that the random
variable

M, = sup {B(O,sl) 4ot B(sn,l,l)} : (23)

0<s1< <51 <1

has the same law as the largest eigenvalue of an n-dimensional GUE random matrix.
Therefore, in particular,

lim M,/v/n =2, (24)
n—0o00

almost surely. Now, by Brownian scaling, this is equivalent to the statement that
[(x) = 2y/x. A proof of this which uses the variational formula and also yields sharp
uniform concentration will be presented in [18]. We shall return to this random
matrix connection in Section 6.

5 Generalised Brownian queues in tandem and
directed polymers

In this section we construct a tandem of generalised Brownian queues and apply
Theorem 5 to obtain large deviations results related to the directed percolation

SHistorical note. Discrete versions of this formula have appeared before in [36] and [15]; see
also [3], where a similar formula is used to prove ergodic properties of infinitely many queues in
tandem. The connection between queues in tandem and directed percolation was first reported
in [28]. The random processes L,, were introduced in [16], in a similar context.
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problem of the previous section. These results can be interpreted in terms of the
partition function associated with a certain directed polymer in a random medium.

Let B,BM, B® ... be a sequence of independent standard Brownian motions,
each indexed by the entire real line. Set

¢
ri(t) = log/ ds exp{ B, + B((;,)t) —m(t —s)},

o0

fl(S,t) = B(s,t) + 7"1(8) — Tl(t),
and for each k = 2,3,... set

¢
re(t) = log/ dsexp{ fe_1(s,t) + B((i)t) —m(t —s)},

o0

fe(s,t) = fr1(s,t) + qu(s) — qi(t).

It follows from Theorem 5 that r(0),72(0),... is a sequence of i.i.d. random
variables. Moreover, r1(0) has the same law as —log Z,,, where Z,, is gamma-
distributed with parameter m. By construction, we have

0

Zrk(()) = log [/ du exp(B(uyo) + mu)
k=1

—o0

X / d81 C. dsn—l exp {B((llb)ﬁ) + .+ B((?),l 0)}:| (25)
u<s1<<85p-1<0 ’ n—1,

This is the log [ exp analogue of the variational formula (20). Applying the strong
law of large numbers, we obtain the following result.

Theorem 8 We have:

n—oo N, (uvsl)

L n
lim — lOg/ dUd81 R d5n71 exp {mu + B(l) 4ot B((s) 1 0)} — —\Il(m)
u<s;<--<8p-1<0 n—1,

almost surely, where
V(m) = Elog Z,, =I'"(m)/T'(m)

s the digamma function.

We defer the proof. Theorem 8 can be interpreted as follows. Let 7, 7,... be the
points of a unit-rate Poisson process on Ry, and let B denote the o-field generated
by the Brownian motions B, B® ... Set
_ p® . (n)
E, = B(o,n) +---+B

(Tn—l :Tn) )

By Brownian scaling, Theorem 8 is equivalent to:

11



Theorem 9

lim %log Elexp(0E,)|B] = —2log — U(1/6%) =: A(0), (27)

n—00

almost surely.

We remark that A is finite and differentiable everywhere with A(0) = A’(0) = 0.
This is a quenched large deviation principle, associated with the conditional law of
large numbers: given B, E,/n — 0 almost surely. For example, Theorem 9 implies
that, for any x > 0,

1
lim —log P(FE, > zn|B) = —A*(z),

n—oo N

almost surely, where

A*(z) = sup[zf — A(0)].

0cR
Proof of Theorem 9 (and hence Theorem 8). By (25),

lim — log Elexp(0(E, + By,)|B, B = A(9). (28)
almost surely. We shall use some tools from large deviation theory—see, for exam-
ple, [9]. Since A is finite and differentiable everywhere, and satisfies the steepness
condition, we see that, conditional on B and B, the sequence (E,, + B, )/n almost
surely satisfies the large deviation principle in R, with good convex rate func-
tion A*. It therefore suffices to show that, conditional on B and B, the sequences
(E, + B;,)/n and E, /n are almost surely exponentially equivalent; that is,

1
lim sup —log P(B,,) > én|B) = —o0,
n

n—o0

almost surely, for any 6 > 0. This would imply that the sequence E,/n almost
surely satisfies the same large deviation principle and the result will follow from
Varadhan’s lemma. Fix a € (1/2,1) and set M = sup,., B;/(1+1*). Then M < o0
almost surely and

1 1
limsup — log P(B,,) > én|B) < limsup — log P(7% > énM~" — 1| M) (29)
n—oo N n—soo N
= —00, (30)
almost surely, as required. O
The corresponding ‘annealed’ (unconditional) large deviation principle is easy to

compute: for —v/2 < 6 < v/2,

1
lim — log E exp(0E,) = log E exp (6?7 /2) = —log(1 — 6%/2). (31)

n—oo 1,

12



As there are two sources of randomness, there is another quenched large deviation
principle which is obtained by conditioning on the o-field 7 = o(7, 79, ...); in this
case the rate function is quadratic:

lim %log Elexp(6E,)[T] = 67/2. (32)

n— 00

Omitting technical details, we will now show how this relates to a model of a
directed polymer in a random medium, and to the directed percolation problem of
the previous section. For x < 0, the limit

.1 n
v(z) = lim — log/ dsi ...ds,_1exp {B((L)I,SI) 4t B((sz_l,(])}
<51 < <8§n—1<0

n—oo N

exists almost surely, by Kingman’s subadditive ergodic theorem. It is easy to check
that + is a concave function. By Laplace’s method (this would require justification),

~¥(m) = suplma +5(x)] = (<7 (m).

Thus, by inversion, v = —(—W¥)*.
For g > 0, set

Zn(ﬁ) = / dSl Ce dsn—l exp {B(B((i)n s1) +-+ B((L:Lz_l 0))} .
—n<s1< <85y —1<0 ’ ’

This can be thought of as a partition function, associated with a directed polymer
in a random medium. Using the Brownian scaling property, we can compute the
associated free energy density:

£(8) = lim log Z,(5) (3)
= (=) — 2log 8 (34)
— —(—)*(=p%) — 2log 5. (35)

This is a continuous version of the classical two-dimensional directed polymer,
where it is not known how to compute the free energy density (see, for exam-

ple, [10]).

Comparing this with (24), by Laplace’s method, we expect
lim f(53)/6 =2,
B—o0
and this is indeed the case. Note that this provides an alternative strategy for

computing the limiting constant in (24).
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6 Some remarks on the random matrix connec-
tion

Let {s(i,7), (i,7) € Z*?} be a collection of i.i.d. exponential random variables with
mean one, and set

Dim,n) = max 3 s(i))
petlim.n) (i.j)€

where II(m, n) is the set of non-decreasing connected paths

(1,1) = (i1, 51) < (i2,72) <+ < (bmgns Jman) = (M, 1).

This random variable appears in certain growth models and also has an interpreta-
tion in terms of -/M/1 queues in tandem. It was observed by Johansson [21] that
D(m,n) has the same law as the largest eigenvalue p(m,n) of the random matrix
AA*, where A is a m x n matrix with i.i.d. standard complex normal entries. This
random matrix ensemble is known as the Laguerre, or Wishart, ensemble. Now,
by Donsker’s theorem, [D(m,n) — m|/\/m converges in law, as m — oo, to the
random variable M, defined by (23). Combining these facts with the observation
of Baryshnikov [4] and Gravner, Tracy and Widom [17] that M, has the same law
as the largest eigenvalue w(n) of an n-dimensional GUE random matrix, we see
that the sequence [p(m,n) — m]/y/m converges in law, as m — 00, to w(n). This
complements recent work of Johnstone [23].

We now give a direct proof of the fact that M, has the same law as w(n), in the case
n = 2. This turns out to be closely related to Pitman’s representation theorem,
and in fact there is a process version. Let BM") and B® be independent standard
Brownian motions, and set

My(t) = sup [B{) + B ], (36)
0<s<t ’
. 1

No(t) = jnf (B + B, ]| (37)

Let X;; and X, be independent standard Brownian motions, let v/2X, be a
standard complex Brownian motion?, independent of X;; and Xy, and set Xy =
X7,. For each t > 0, denote the eigenvalues of the 2 x 2 matrix X (¢) by A (t) >
Aa(t). Finally, let B be a real-valued Brownian motion and R an independent
3-dimensional Bessel process.

Theorem 10 The processes (Ms, No) and (A1, \2) have the same law, identical to
that of (B + R, B — R)/V/2.

4That is, the real and imaginary parts of v/2X1, are independent standard real-valued Brow-
nian motions.
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Proof. Set SV = (BM — B®)/\/2 and f® = (BM 4+ B®)/\/2. These are
independent Brownian motions. Now observe that

V2My(t) = 2 sup BV — g 4 g

0<s<t

and
V2No(t) = =2 sup B + 81 + B2,

0<s<t

so, by Pitman’s theorem, v/2(Ms, N) has the same law as (B + R, B — R).

On the other hand, the eigenvalues of X are given by

X+ X X — Xoo )’
VN = 11\"/"§ 22j:\/< 11\/§ 22> + 2| X2

and the result follows from the independence of X;; — X9 and X;; + Xo9, and
the definition of a 3-dimensional Bessel process (as the norm of a 3-dimensional
Brownian motion). O

We remark that McKean [24] has discussed the law of the eigenvalues of a 2-
dimensional Gaussian Orthogonal matrix:

(s "),

where Bi1, Byy and Bjy are independent standard Brownian motions. In this case,
the eigenvalues are given by

B, + B By — By \ 2
\/§>\ — 11\/5 22j:\/< 11\/5 22) —|—B%2 (38)

= B+ RV, (39)

where 3 is a standard Brownian motion and R® is a two-dimensional Bessel pro-
cess, independent of 3. This leads us to recall the following representation of R?),
presented in [8], namely that for each ¢ > 0,

swp_[BY + B

O<r<s<t

has the same law as R?). (Note that we do not have identity in law as processes,

since the process
(sup | B,| — |Bi) + L,
s<t
which is distributed as
sup [BY + B((Z)t)],

0<r<s<t
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is obviously transient, whereas R®) is recurrent.)

We remark that in [24] it is shown that the joint distribution of the eigenvalues
in the Gaussian Orthogonal case cannot be reduced by time and scale change to
2-dimensional Brownian motion. In the Gaussian Unitary case, which is the case
we have discussed here, there is the same impossibility.

7 The role of reversibility

Let (X, t € R) be a real-valued stochastic process with Xy = 0 almost surely, and
assume that the integral

t
&:/ ds exp 2(X, — X)) (40)

exists and is finite almost surely for each ¢ € R. Define a new process (X;, t € R)
by R
X; = X; +log(A;/Ao).

Theorem 11 The process A is stationary and reversible if, and only if, X has
stationary and reversible increments and X has the same law as X .

Proof. This theorem is an immediate consequence of the following elementary
lemma.

Lemma 12 For each t € R, almost surely,

m:/(mmm&—&y (41)
t
and
AO t ds
exp(2X,) = 1 exp (/0 A_s> : (42)

Recall that the formula (41) was presented in Section 3 in the case where X is
Brownian motion; the proof given there applies for general X. The formula (42)
can be obtained by elementary calculus. If X has stationary and reversible incre-
ments and X has the same law as X, then A is stationary by construction and by
the formula (41) it is reversible. We now prove the converse. Suppose that A is
stationary and reversible. Then, by (42), X has stationary reversible increments.
Now by (41),

t
A, :/ dsexp2(X_; — X ),

—00
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and hence, by (42),

The fact that X has the same law as X now follows from the fact that A is reversible
and X has reversible increments. |

Theorem 11 can be applied to give an alternative proof of Theorem 6, and hence
Theorem 3. If X is a standard Brownian motion with positive drift, then X has
the same law as X: this was proved in [27] using the method of enlargement. By
Theorem 7, we see that it follows from (and is in fact equivalent to) the reversibility
of A, which can be proved directly as in [12].

Note that, in the proof of Theorem 11, we use the fact that X can be recovered
from A via the formula (42). If, for example, log [ exp is replaced by sup, this is no
longer the case and the statement of the theorem is false in general. The problem
is that the analogue of the formula (42) does not necessarily yield a unique solution
to (42). However, all we actually need is that the law of X is uniquely determined
by the law of A, which is often the case. (This is certainly the case if X is Brownian
motion.) Similar remarks apply if A is defined by

t
A, = / dns exp 2(X, — X)) (43)

—00

where 7 is a random process; in the case where n and X are independent Lévy
processes, A is a generalised Ornstein-Uhlenbeck process as discussed in [7]. In this
case, the analogue of (41) holds, that is,

A~

A, :/ dns epr(Xt—Xs),
t

but given A, the equation (43) does not necessarily have a unique solution.

8 Multidimensional extensions

Theorem 6 has the following multi-dimensional extension (see, for example, [27]).

Theorem 13 Let m € R, m # 0, b > 0. Let B be a standard Brownian motion
in R, indezed by the entire real line, and set A, = ffoo dsexp[(m, Bs) + bs]. Then
the following identity in law holds:

A aw
{Bt—Z%log <A—;> tZO} (o {Bt—Q%bt, tZO}. (44)

17



The corresponding multi-dimensional analogue of Theorem 3 can be deduced from
this by Brownian scaling and Laplace’s method.

Acknowledgements. Thanks to Ben Hambly for helpful discussions, and to James
Martin and Frank Kelly for drawing our attention to the preprints [4, 20].
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