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Abstract

In this short note we give an elementary information-theoretic proof
of the Hewitt-Savage zero-one law.
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We will use the notation of [2]. The following elementary inequality is at the
heart of this discussion.

Lemma 1 Let Xl, X 2 , ••• be a sequence of independent, discrete random
variables, and Z another discrete random variable on the same probability
space. Then

00

H(Z) ~ L I(Xi ; Z).
i=l

Proof·

n

= LI(Xi;ZIXi- I , ... ,Xd
i=l

n

= L H(Xi ) - H(XiIZ, Xi-I,' .. , Xd
i=l

n n

~ L H(Xi ) - H(XiIZ) = L I(Xi; Z).
i=l i=l

Now let n -+ 00. o

Now let YI , Y2 , ••• be a sequence of i.i.d. random variables taking values
in a finite set ~. The exchangeable a-field E is the set of events which are
invariant under finite permutations of the indices in the sequence Y.

1Postal address: BRIMS, HP Labs, Bristol BS34 8QZ, UK

1



Theorem 2 [Hewitt-Savage] If A E £, then P(A) E {O,1}.

Proof. Let A E e. By Lemma 1, for each k = 1,2, ... ,

00

H(1A) ~ L I(1 A;Yik+l' ... 'Y(i+l)k)'
i=O

(1)

Now A E £, so I(1 A;Yik+l,'" 'Y(i+l)k) does not depend on i. Since H(1 A)
must be finite, it follows that

for all i and k. In particular,

(2)

for all n. In other words, the event A is independent of a(Y1, • .• , Yn ), for all
n, and hence independent of a(Y1 , Y2 , ... ). But A E a(Y1 , Y2 , .•. ), so A is
independent of itself, and the result follows. 0

This approach can be easily extended to the case where L; is an arbitrary
measurable space equipped with a countably generated a-field. This is the
case if, for example, L; is a standard Borel space, or a Borel subset of a Polish
space, or simply JRd.

In the proof of Theorem 2 given in [1], the key observation (2) is deduced
from the Kolmogorov zero-one law, which states that the tail a-field

T = lim a(Yn , Yn+l,"')
n-too

is trivial.

Finally we remark that Lemma 1 can also be regarded as an information
theoretic formulation of the following interpretation of the law of averages [4]:

A quantity which depends, in a relatively uniform manner, on
many independent random variables, is essentially constant.

To see this, observe that, in the proof of Theorem 2 given above, it would
be possible to reach the same conclusion if I(1A; Yik+l' ... , Y(i+l)k) does not
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depend too much on i, in any sense which would force the sum in (1) to be
infinite unless all of the terms are identicallly zero.

In [4] there is a discussion on concentration inequalities as a natural formu
lation of the law of averages. See also [3] for a similar discussion on the
contraction principle of large deviation theory.
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