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Abstract

We present a range of fluctuation and large deviations results for
the logarithm of the characteristic polynomial Z of a random N x

N unitary matrix, as N -+ 00. First we show that In Z/ J! In N,
evaluated at a finite set of distinct points, is asymptotically a collection
of iid complex normal random variables. This leads to a refinement
of a recent central limit theorem due to Keating and Snaith, and also
explains the covariance structure of the eigenvalue counting function.
We also obtain a central limit theorem for In Z in a Sobolev space
of generalised functions on the unit circle. In this limiting regime,
lower-order terms which reflect the global covariance structure are no
longer negligible and feature in the covariance structure of the limiting
Gaussian measure. Large deviations results for In Z/ A, evaluated at a
finite set of distinct points, can be obtained for v'lnN « A « InN.
For higher-order scalings we obtain large deviations results for In Z / A
evaluated at a single point. There is a phase transition at A = In N
(which only applies to negative deviations of the real part) reflecting
a switch from global to local conspiracy.
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1 Introduction and Summary

Let U be an N x N unitary matrix, chosen uniformly at random from the
unitary group U(N), and denote its eigenvalues by exp(i(h), ... ,exp(iON ).

In order to develop a heuristic understanding of the value distribution and
moments of the Riemann zeta function, Keating and Snaith [20] considered
the characteristic polynomial (normalised so that its log has zero mean)

N

Z(O) = det(I - Ue-ifJ ) = II (1 - ei(fJn-fJ)) .

n=l

(1.1)

This is believed to be a good statistical model for the zeta function at a
(large) height up the critical line where the mean density of the non-trivial
zeros is equal to N/21r. (For additional evidence of this, concerning other
statistics, see [8].)

Note that the law of Z(O) is independent of 0 E 1[' (the unit circle). In [20] it
is shown that In Z(O)/a is asymptotically a standard complex normal random
variable, where 2a2 = In N. Here, in order to make the imaginary part of
the logarithm well-defined, the branch is chosen so that

and

N

In Z(O) = LIn (1 - ei(fJn-fJ))

n=l

(1.2)

(1.3)

Compare the above central limit theorem with a central limit theorem, due
to Selberg, for the value distribution of the log of the Riemann zeta function
along the critical line. Selberg proved (see, for example, §2.11 of [23] or §4
of [21]) that, for rectangles B ~ C,

lim T1 {T<t<2T: In((~+it) EB}
T-+oo - - J~ IninT

(1.4)
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The mean density of the Riemann zeros at height T is (1/27r) In(T/ 27r), and
equating that with the mean density of eigenangles of an N x N unitary ma
trix (which is N /27r), we see that these central limit theorems are consistent.

In this paper we obtain more detailed fluctuation theorems for In Z, and a
range of large and moderate deviations results.

First we show that In Z /0", evaluated at a finite set of distinct points, is
asymptotically a collection of Li.d. complex normal random variables. This
leads to a refinement of the above central limit theorem, and also explains
the mysterious covariance structure which has been observed, by Costin and
Lebowitz [9] and Wieand [32, 33], in the eigenvalue counting function.

We also obtain a central limit theorem for In Z in a Sobolev space of gener
alised functions on the unit circle. In this limiting regime, lower-order terms
which reflect the global covariance structure are no longer negligable and
feature in the covariance structure of the limiting Gaussian measure. The
limiting process is not in L 2{'f). It is, however, when integrated, Holder
continuous with parameter 1 - 6, for any 6 > O.

Large deviations results for In Z / A, evaluated at a finite set of distinct points,
are obtained for Vln N « A « In N. For higher-order scalings we obtain
large deviations results for In Z / A evaluated at a single point. For the imag
inary part, all scalings up to A = N lead to quadratic rate functions. At
A = N, the speed is N 2

, and the rate function is a convex function for which
we give an explicit formula. For the real part, only scalings up to A = In N
lead to quadratic rate functions. At this critical scaling one observes a phase
transition, and beyond it deviations to the left and right occur at differ
ent speeds. For deviations to the left, the rate function becomes linear; for
deviations to the right, the rate function remains quadratic up to but not
including the scaling A = N. At the scaling A = N, deviations to the left
occur at speed N, while deviations to the right occur at speed N2, and the
rate function is again a convex function for which we give an explicit formula.
The phase transition reflects a switch from global to local conspiracy.

Related fluctuation theorems for random matrices can be found in [9, 12,
11, 19, 14, 26] and references therein. In particular, Diaconis and Evans [11]
give an alternative proof of Theorem 2.2 below. The large deviation results
at speed N 2 are partially consistent with (but do not follow from) a higher
level large deviation principle due to Hiai and Petz [16]. High-level large
deviations results and concentration inequalities for other ensembles can be
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found in [4, 5, 15].

Acknowledgements. We are grateful to Persi Diaconis and Steve Evans for
their suggestions and for making the preprint [11] available to us. Thanks
also to Harold Widom for helpful correspondence.

2 Fluctuation results

Our first main result is that the law of In Z(O) obtained by averaging over the
unitary group is asymptically the same as the value distribution of In Z(O)
obtained by averaging over 0 for a typical realisation of U:

Theorem 2.1 Set WN(O) = InZ(O)/a, and denote by m the uniform proba
bility measure on'][' (so that m(dO) = dO/2rr}. The sequence of laws mo WNI

converges weakly in probability to a standard complex normal variable.

This will follow from Theorem 2.2 below, so we defer the proof.

Theorem 2.1 hints at the possibility that the range in (1.4) can be significantly
reduced, even beyond the refinements already obtained by Ghosh [13] (see
also [21D.
The characteristic polynomial can also be used to explain the mysterious
'white noise' process which appears in recent work of Wieand [32, 33] on the
counting function (and less explicitly in earlier work of Costin and Lebowitz [9]).
A Gaussian process is defined to be a collection of real (complex) random
variables {X(a), a E I}, with the property that, for any al,'" ,am, the
joint distribution of X(aI), ... ,X(am ) is multivariate (complex) normal. For
-rr < s < t :::; rr, let CN(s, t) denote the number of eigenvalues of U that lie in
the interval (e iS.2..eit ). Wieand proves that the finite dimensional distributions
of the process CN defined by

C
- ( ) _ CN(s, t) - (t - s)N/2rr

N s,t - /fh:N
1 lInN
71" 2

(2.1)

converge to those of a Gaussian process C which can be realised in the
following way: let Y be a centered Gaussian process indexed by T with
covariance function lEY (s)Y(t) = n.{s=t} and set C(s, t) = Y(t) - Y(s). What
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is the origin of this process Y? The answer is as follows. First, it is not hard
to show that for each N,

(2.2)

where YN(O) = JmlnZ(O)ja. This follows from the identity

n(st)(O) = t - s + .!.Jmln(l- ei(O-t)) _ .!.Jmln(l- ei(O-s)), (2.3)
, 211" 11" 11"

where, as always, the principal branch of the logarithm is chosen as in (1.3).

Moreover:

Theorem 2.2 Set WN(O) = In Z(O)ja. If rI,'" ,rk E 'f are distinct, the
joint law of (WN(rt}, ... ,WN(rk)) converges to that ofk iid standard complex
normal random variables. In particular, the finite dimensional distributions
of YN converge to those of Y.

This suggests that the analagous extension of Selberg's theorem (1.4) might
hold for the zeta function.

Proof. Let f be a real-valued function in LI('f), and denote by Jk =
J

0
21r f(O)e-ikOm(dO) its Fourier coefficients. The Nth order Toeplitz deter

minant with symbol f is defined by

Heine's identity (see, for example, [27]) states that

N

DN[J] = lEII f(On)'
n=I

(2.4)

(2.5)

The following lemma is more general than we need here, but we record it for
later reference.

Lemma 2.3 For any d(N) » 1 as N ---+ 00, s, t E IRk with N sufficiently
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large such that Sj > -d(N) for all j, and rj distinct in 1',

Proof. This follows from Heine's identity and a result of Basor [3] on the
asymptotic behaviour of Toeplitz determinants with Fisher-Hartwig symbols.
The Fisher-Hartwig symbol we require has the form

k

f(()) = II(1 - ei (8-rj) t j +,8j (1 - ei (rj -8)tj -,8j. (2.6)
j=1

Taking aj = sj/2d and (3j = -itj /2d, we have, by Heine's identity,

Eexp (t sj!Reln Z(rj)/d + tpmln Z{rj)/d) = DN[J]· (2.7)

Note that the a/s are real and the (3/s purely imaginary. Basor [3] proves
that, as N -+ 00, for rj distinct,

k

DN(f] rv F(al, (31, rl,' .. , ak, (3k, rk) IIN°J-,8J, (2.8)
j=1

for aj > -1/2, where

( (3 ) - II ( i(rm -rn)) -(Om -,8m)(On +,8n)Fal,{31,rl, ... ,ak, k,rk - 1-e X

m:;i:n

k
X II G(l + aj + (3j)G(l + aj - (3j)

j=1 G(l + 2aj)
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where larg (1- ei(rm-rn ») I ::; 7r/2. By closer inspection of the proof [31] it
can be seen that (2.8) holds uniformly for lail < 1/2 - 8, and l,8il < "f, for
any fixed 8, "f > 0. This is worked out carefully in [32] in the case ai =°for
each j, and uniformity in a is discussed in [3]. The statement of the lemma
follows from noting that F(O, 0, TI,' .• ,0,0, Tk) = 1. 0

Setting d = a completes the proof of Theorem 2.2. 0

Proof of Theorem 2.1. Set XN ((}) = ryteln Z((})/a, YN ((}) = Jmln Z((})/a
and

(2.9)

By the central limit theorem derived in [20] (we note, in passsing, that this
also follows from Theorem 2.2),

We also have

By Cauchy-Schwartz, the integrand is bounded above by

sup Eexp (2sXN (0) + 2tYN (0)) ,
N?No

(2.12)

where No is chosen such that 2s > -a(No). Thus, by Theorem 2.2 and the
bounded convergence theorem,

(2.13)

and hence

for any f. > 0, by Chebyshev's inequality. Thus, for each s, t, the sequence
¢>N(S, t) converges in probability to e(s2+t

2
)/2. The result now follows from

the fact that moment generating functions are convergence-determining. 0
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We note that Szego's asymptotic formula for Toeplitz determinants does not
apply in the above context. Szeg6's theorem for real-valued functions states
that if

then

00

A(h) = L klhk l
2 < 00,

k=l

(2.15)

(2.16)

as N ~ 00. Combining this with Heine's identity, we see that if ho = 0
and A(h) < 00, then Tr h(U) is asymptotically normal with zero mean and
variance 2A(h). Now, we can write ~e In Z(O) = Tr h(U), where h(t) =
~eln(1 - ei(t-O»), but the Fourier coefficients hk are of order 11k in this case
and A(h) = +00.

We can, however, apply Szeg6's theorem to obtain a functional central limit
theorem for In Z. Actually, we will use the following fact, due to Diaconis
and Shashahani [12], which can be deduced from Szeg6's theorem.

Lemma 2.4 For each l, the collection of random variables

{fJ Tr Ui, j = 1, ... , l} (2.17)

converges in distribution to a collection of iid standard complex normal ran
dom variables.

(In fact, it is shown in [12] that there is exact agreement of moments up
to high order for each N. See also [18], where superexponential rates of
convergence are established.)

Denote by H8 the space of generalised real-valued functions f on '][' with
fo = 0 and

00 00

Ilfll~ = L Ik\2a\JkI2= 2L k2a \Jkl2< 00. (2.18)
k=-oo k=l

8



This is a Hilbert space with the inner product

00

< f,9 >a= L Ik\2aAgz·
k=-oo

(2.19)

It is also a closed subspace of the Sobolev space Ha, which is defined similarly
but without the restriction 10 = O. Sobolev spaces have the following useful
property: the unit ball in Ha is compact in H b, whenever a > b. It follows
that the unit ball in H8 is compact in Hg for a > b. We shall make use of this
fact later. Note that, when a = 0, < ',' >a is just the usual inner product
on £2(1'); in this case we will drop the subscript.

Fix a < 0, and define a Gaussian measure I-" on H8 x H8 as follows. First, let
Xl, X 2 , . .• be a sequence of iid standard complex normal random variables,
Xo = 0 and X- k = XZ, and define a random element G E H8 by

00

G(O) = L (Xk /2Vk)e ikO
.

k=-oo

(2.20)

(To see that GE H8, note that in fact EIIGII~ < 00.) Now define I-" to be the
law of (G, AG), where A is the Hilbert transform on H~I/2:

(2.21)

We will describe some properties of I-" later. First we will prove:

Theorem 2.5 The law of (9le In Z, Jm In Z) converges weakly to 1-".

Proof. First note that Jm In Z = A(9leln Z) and, for k =J 0,

(2.22)

Convergence on cylinder sets (in the fourier representation) therefore follows
from lemma 2.4.
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To prove tightness in H8 x H8 we will use the fact that the unit ball in Hg
is compact in H8 for a < b < 0, and the uniform bound

00 2

lEll9te In ZII~ = 2lEL k
2b I(~Z) k I

k=1

= ~ f k2b
-

2lEl Tr u-k
1
2

k=1

1 00

= 2" L k2b
-

2 min(k, N)
k=1

1 00
< _~ k2b- 1 .
-2L.J '

k=1

(2.23)

(2.24)

(2.25)

(2.26)

a similar bound holds for Jm In Z. Here we have used the fact that lEI Tr Uk 12 =
min(lkl, N) for k =I- 0 (see, for example, [24]). Thus,

sup lP (max{ll9te In Zllb, IIJm In ZlIb} > q) (2.27)
N

::; sup {lP (119teln Zllb > q) + lP (11Jm In Zllb > q)} (2.28)
N

::; sup {lEll9te In Zlli + lEllJm In Zlln /q2 (2.29)
N

-+ 0 (2.30)

as q -+ 00, so we are done. 0

We will now discuss some properties of the limiting measure J-L. Let (G, AG)
be a realisation of J-L. First note that G and AG have the same law. Recalling
the construction of G we note that for k > 0, the random variables IGk l2 are
independent and IGk l2 is exponentially distributed with mean 1/2k. It follows
that IIGlla < 00 if, and only if, a < O. In particular, G is almost surely not
in L2 (T).

Nevertheless, we can characterise the law of G by stating that, for 1 E H~I/2,

2 < I, G > /11/11-1/2

is a standard normal random variable. The covariance is given by

1
lE < I,G >< 9,G >= 2" < 1,9 >-1/2·

10
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We note that

< I,g >-1/2= -2 r In lei(J - eit/JI/(¢)g((}) m(d¢)m(d(}). (2.33)lT2
In the language of potential theory, if 1 is a charge distribution, then 11/11:1/2
is the logarithmic energy of f. The logarithmic energy functional also shows
up as a large deviation rate function for the sequence of eigenvalue distribu
tions: see §3.5 below.

We can also write down a stochastic integral representation for the process
G. If we set

S(¢) = JeP G((})d(},

then S has the same law as

S(¢) = 2~121r

b(¢ - (})dB((}),

where B is a standard Brownian motion and

b((}) = ~f k-3
/
2 cos(k(}).

y 81r k=l

To see this, compare covariances using the identity

~ 11ll.[O,t] - 2~112 = 4~2 f 1- ~~S(kt).
-1/2 k=l

Finally, we observe:

(2.34)

(2.35)

(2.36)

(2.37)

Lemma 2.6 Let 8 > O. The process S has a modification which is almost
surely Holder continuous with parameter 1 - 8.

Proof. This follows from Kolmogorov's criterion (see, for example, [25,
Theorem 2.1]) and the fact that

EI8(t) - 8(0)1' = ~ IlnIO"] - 2~[/' (2.38)

= _1~ 1 - cos(kt) (2.39)
41r2 L....J k3

k=l

"'oJ - _1_t2ln t (2.40)
81r2 '
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as t -7 0+. To see that this asymptotic formula is valid, one can use the
fact that the expression (2.39) is related to Claussen's integral (see, for ex
ample, [1, §27.8]). 0

3 Large deviations

In this section we present large and moderate deviations results for In Z(O).
We begin with a quick review of one-dimensional large deviation theory (see,
for example, [7, 10]).

We are concerned with the log-asymptotics of the probability distribution
of RN / A(N), where RN is some one-dimensional real random variable and
A(N) is a scaling that is much greater than the square root of the variance
of RN (so we are outside the regime of the central limit theorem).

Suppose that there exists a function B(N) (which tends to infinity as N -7

00), such that

(3.1)

exists as an extended real number, for each ,X (i.e. the pointwise limit exists
in the extended reals). The effective domain of A(·) is the set

'D={,x ElR:A('x) <oo}

and its interior is denoted by 'Do. The convex dual of A(·) is given by

A*(x) = sup{'xx - A('x)}.
AElR

Theorem 3.1 For a < b, if A(·) is differentiable in 'Do and if

(a, b) ~ {A'(,x) : ,X E'D°},

then

(3.2)

(3.3)

(3.4)

J~oo B(~) InlP {A~~) E (a, b)} = - X~?a~b) A*(x). (3.5)
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If (3.5) holds we say that R N / A(N) satisfies the large deviation principle
(LDP) with speed B(N) and rate function A*.

Some partial moderate deviations results can be obtained using Lemma 2.3;
however, for many of the results presented here we will need more detailed
information. In particular, we will make use of the following explicit formula
(see, for example, [6, 20]):

lEexp (s~e In Z(O) + tJm In Z(O))

G(1 + s/2 + it/2)G(1 + s/2 - it/2)G(1 + N)G(1 + N + s)
G(1 + N + s/2 + it/2)G(1 + N + s/2 - it/2)G(1 + s)

(3.6)

valid for ~e(s ± it) > -1, where GO is the Barnes' G-function, described
in appendix A. We will find the single moment generating functions useful,
which we record here as

MN(s) := lEexp(s~elnZ(O))

G2 (1 + ~ s) G(N + 1)G(N + 1+ s)

G(1 + S)G2 (N + 1 + ~s)

and

LN(t) := lEexp(itJmlnZ(O))

_ G (1 + ~t) G (1 - ~t) G2(N + 1)
- G (N + 1 + ~t) G (N + 1 - ~t) .

Theorem 3.2 For any A(N) ~ In N, and a < b < 0,

J~oo~ InlP {~e l:Z(O) E (a, b)} = b

Also, for any a < b < -1/2,

1· _1_lTlll{~elnz(0) (b)}=b 1/41m 1 N n Jr 1 N E a, +
N-too n n

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

Proof. IflimsuPN-toox/lnN < -1/2, then

p(x) rv eX exp (3('( -1) + 1~ In 2 - pn 7l") N 1
/
4

• (3.13)
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where p(x) is the probability density function of 9teln Z(O). This will be
proved in Theorem 3.9.

Therefore, for a < b < -1/2,

{
9te In Z(O) } l blnN

lP I N E (a, b) = p(x) dx
n alnN

1
rv InN exp (3('(-1) + 112ln2 - ~ln7r) N 1

/
4 (Nb

- N a
) (3.14)

and the result follows from taking logarithms of both sides. Similarly for
A(N) >>In N with a < b < O. 0

3.1 Large deviations at the scaling A = N

Since 9teln Z(O) :::; N In 2 and 13m In Z(O) I :::; N7r/2, the scaling A = N is
the maximal non-trivial scaling.

Theorem 3.3 The sequence 9telnZ(O)/N satisfies the LDP with speed N 2

and rate function given by the convex dual of

A(s) = {:1 + s)'ln(1 + s) - (1+ ~s)'ln (1 + ~s) - ~s'ln2s for s ~ 0

for s < 0

(3.15)

Proof. InEexp(sN9telnZ(O)) = InMN(Ns), the asymptotics of which are
given in appendix C, and so

A(s) = lim N
1

2 In NfN(Ns) (3.16)
N~oo

= HI + s) 2 In(l + s) - (1 + ~ s) 2 In (1 + ~s) - ~ S2 In 2s (3.17)

for s ~ 0, and A(s) = 00 for s < O.

If x > 0, then Theorem 3.1 implies that the rate function, I(x), is given by
the convex dual of A(s). If x < 0, then Theorem 3.2 implies that I(x) = O.
Thus for x E lR, I(x) is given by the convex dual of A(s), and this completes
the proof of Theorem 3.3. 0

One can also obtain an LDP for the imaginary part:
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Theorem 3.4 The sequence Jmln Z(O)/N satisfies the LDP with speed N 2

and rate function given by the convex dual of

A(t) = ~t2ln (1 + ;) - ~ In (1 + it2) + t arctan (~t) (3.18)

Proof. InJEexp(tNJmlnZ(O)) = InLN(-iNt), and the asymptotics (given
in appendix D) imply that

A(t) = lim N
1
2 In L N(-iNt) (3.19)

N-too

= ~t2In (1 + ~) - ~In (1 + ie) + tarctan at) (3.20)

Theorem 3.1 implies that J(y), the rate function, is given by the convex dual
of A(t), for all y E lR. 0

3.2 Moderate Deviations

At other scalings, one finds that the rate function is either quadratic or linear.

Theorem 3.5 For scalings VinN « A « N, the sequence 9telnZ(O)/A
satisfies the LDP with speed B = -A2/W_ 1(-A/N) and rate function given
by

x2 if vlnN« A« InN

r' x 2: -1/2
if A = InN

I(x) = -x -1/4 x < -1/2 (3.21)
x2 x2:0

if In N « A « N
0 x<O

Proof. For a given scaling sequence A(N) we wish to find B(N) such that

lim B1InMN(sB/A)
N-too

exists as a non-trivial pointwise limit.

15
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For X(N) » 1 as N ~ 00, we have for each s,

if Ns/X > -1

if Ns/X ~ -1
(3.23)

(3.24)

which follows from results summarized in appendix C.

Therefore a non-trivial limit of (3.22) occurs if B = N 2 Inx/x2 , where X =
N A/B, that is, if

A2

B = (A)'-W-1 - N

where W- 1 is the -I-branch of Lambert's W-function, described in ap
pendix B.

Note that the restriction X ~ 00 implies A « N.

If we set 6 = lim infN --+00 ft, then we have

A(s) = lim B
1

InMN(sB/A)
N--+oo

={tS2 fors>-6
00 for s < -6

(3.25)

(3.26)

If JlnN «A« InN then 6 = +00 and Theorem 3.1 implies that I(x) = x2

for all x E lR.

If A = InN, then 6 = 1/2, and Theorem 3.1 applies only for x> -1/2, where
we have I(x) = x 2 . However, since B rv In N at this scaling, Theorem 3.2
implies that, for x < -1/2, I(x) = Ixl- 1/4.

Finally, if InN « A « N, then 6 = 0, and I(x) = x 2 for x > 0 by
Theorem 3.1 and I(x) = a for x < a by Theorem 3.2 (since B » A for
A» InN).

This completes the proof of theorem 3.5 D.

Remark. For all Jln N « A « N it turns out that I(x) is the convex dual
of A(s).

Once again, a similar result is true for the imaginary part, but this time the
rate function is always quadratic.

16



Theorem 3.6 For seatings v'lnN « A « N, the sequence JmlnZ(O)IA
satisfies the LDP with speed B = - A2IW-1 ( - AIN) and rate function J (y) =
y2.

Proof. For a given scaling sequence A(N) we wish to find B(N) such that

lim B11nLN(-itBIA) (3.27)
N-.+oo

exists as a non-trivial pointwise limit. Applying results from appendix D we
have

(3.28)

(3.30)

for all t E lR.

So, as in the proof of Theorem 3.5, we need B to be as in (3.24) (which will
be valid for v'ln N « A « N), and the rate function will be given by the
convex dual of it2, i.e. J(y) = y2. 0

3.3 Large deviations of In Z(0) evaluated at distinct
points

Theorem 3.7 For v'lnN « A « InN, and for any rl,'" ,rk (distinct),
the sequence

(91eln Z(rdlA, Jmln Z(rdIA, ... ,91eln Z(rk)IA, Jmln Z(rk)1A) (3.29)

satisfies the LDP in (JR2)k with speed B = A2I In N and rate function

k

I(Xl' Yl··· ,Xk, Yk) = LX] + y;,
j=1

Proof. By Theorem 2.3,

InlEexp (tSj9\dnZ(rj)B/A + t;JrnlnZ(rj)B/A)

-(t(S] +t])/4) B2~~N (3.31)

17



so choosing the speed B = A2 / In N, the stated result follows from a multi
dimensional analogue of Theorem 3.1 (see, for example, [10]). 0

Remark. If B is given by (3.24), then for v'lnN « A « InN, B '" l~~'
So for A in this restricted range, this theorem generalizes Theorems 3.5 and
3.6.

From this we can deduce large deviations results for the counting function,
using the identity (2.2). For example:

Theorem 3.8 For Jln N « A « In N, and -7r < S < t ~ 7r, the sequence
(CN(s, t) - (t - s)N/27r)/A satisfies the LDP in lR with speed B = A2

/ In N
and rate function L(x) = x2/2.

3.4 Refined Large Deviations Estimates

By Fourier inversion, the probability density of 9le In Z(O) is given by

1 100

.p(x) = -2 e-zyx MN(iy) dy,
7r -00

where NIN(iy) = Eeiy!:Re1nZ(O) is given by (3.8).

(3.32)

(3.34)

Theorem 3.9 IflimsuPN~oox/lnN< -1/2, then

p(x) '" eX exp (3(' (-1) + 112 In 2 - ~ In 7r) N 1
/
4

. (3.33)

Proof. We evaluate

11 .- e-ZYX NIN(iy) dy,
27r c

where C is the rectangle with vertices - R, R, R + i + fi, - R + i + Ei, for
f a fixed real number subject to 0 < E < 1, and let R ~ 00. Note that the
contour encloses only the simple pole at y = i.

The asymptotics for G(x) show that the integral on the sides of the contour
vanish as M ~ 00, which means

p(x) = Re~ {2
1

e-iyx MN(iY)} + E,
y=z 7r

18
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where

(3.36)

It is not hard to show

and

(3.38)

(3.39)

Thus lEI « eXN 1
/
4 when

Thus the error term can be made subdominant if

. x 1
hmsup-- <--

N-too In N 2

by choosing

(3.40)

(3.41)

(3.42)o< f < min { -2 - 4li~:~p InxN ,I} ,

which completes the proof of the theorem. 0

Remark. For x < 0, it is possible to extend the above argument to include
all poles, by integrating over the rectangle with vertices - R, R, R + iR,
- R + iR, and letting R ~ 00 in order to show that

00

p(x) = L e(2n-l)x ~~ {e- SX MN(s - (2n - I))} .
n=l

19
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The problem with this evaluation of p(x) is that it is hard to evaluate the
residues of the non-simple poles in the sum.

Using Appendix C on the asymptotics of MN(t), the saddle point method
gives

e For Ixl « In N,

1 (_x2
)

p(x) f"V J7f(lnN+1+,) exp InN+1+,
(3.44)

(This result was first found in [20] for x = O(Jln N) - the central limit
theorem).

e For InN« x« N 1
/

3
, writing W for W- 1 (- :;;),

p(x) f"V _1_ exp (-x
2

+~ _ .2.ln(-W) - .LIn x + .LIn 2 + (1(_l))Vir -W 2W2 12 12 12 ."

(3.45)

The probability density of JmlnZ(O) is given by

(3.46)

which we note is an even function.

Applying the results from Appendix D to calculate LN(s), the saddle point
method gives

eForlxl« InN

1 (_x2
)

q(x) f"V J 71" (In N + 1 + ,) exp In N + 1 + ,
(3.47)

e For InN« Ixl «..;N, writing W for W- 1 (N~)'

q(x) f"V ~exp (=~ + ;2 -~ln(-W) - ~lnx+2(/(-1)) (3.48)
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3.5 Inside the circle

The sequence of spectral measures

(3.49)

satisfies the LDP in M 1(1') with speed N 2 and good convex rate function
given by the logarithmic energy functional

1
211" (211"

~(1I) = - 0 Jo In leis - eit lll(ds)lI(dt). (3.50)

For a proof of this fact, see [16].

In this context, Varadhan's lemma (see, for example, [10]) can be stated as
follows.

Theorem 3.10 For any continuous 4> : M 1(1') ---t lR satisfying the condi
tion

(3.51)

for some >. > 1, then

Now, we can write 9telnZ(O)/N = F(SN), where

1211"

F(lI):= 0 9teln (1 - ei8
) lI(dO);

(3.52)

(3.53)

however, F is not weakly continuous, and Varadhan's lemma does not apply.
Nevertheless, it is interesting to see if it gives the correct answer. That is,
does the asymptotic cumulant generating function of Theorem 3.3 satisfy

A(s) = sup {sF(lI) - ~(1I)}?
vEMl(T)

21
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If so, this variational formula would contain information about how large
deviations for 9teln Z (0) / N actually occur. A similar variational problem
can be written down for the imaginary part. Unfortunately, we are not able
to even formally verify this except in very restricted and degenerate cases.

Consider first, for E > 0, the continuous function

1
211"

Ff(v):= 0 9te In (1 - e-feilJ
) v(dO).

Then 9telnZf (O)/N = Ff(SN), where

N

Zf = II (1 - e-feilJn
) •

n=l

Applying Varadhan's lemma, we obtain

(3.55)

(3.56)

lim J.... ln EeNs9ttln Z.)
N-too N2

sup {sFf(v) - E(v)} .
IIE M 1(1l')

It is possible to solve this variational problem in the restricted range -e f -1 ~

s ~ ef
- 1, where we obtain:

(3.57)

Outside this range, it is much harder to solve.

Note that, letting E -+ 0, we formally obtain A(s) = 00 for -2 ~ s < 0,
which agrees (in this very restricted range) with the A(s) of Theorem 3.3.

Similarly, for

we get that for It I ~ ef
- e- f

,

lim J.... In EeNtJm In Z. = !.t2 In ( 1 )
N-too N2 4 1 - e-2f
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so letting € -t 0 all we could possibly obtain is A(O) = O.

In both cases, the problem (of extending sand t beyond the ranges given)
comes from finding the maximum over the set of all non-negative functions;
only within the ranges given does the infimiser lie away from the boundary
of this set.

Finally, we remark that

and

00 _ -lklE
~e In (1 _ e-Eei8n) = ~ e eik8n

k~oo 21kl '
ki=0

(3.60)

(3.61)

(3.63)

00 • -lklE
Jmln (1- e-Eei8n ) = L 'te

2k
eikOn ,

k=-oo
ki=0

so Szego's theorem implies that both ~e In ZE and Jm In ZE converges in distri
bution to normal random variables, with mean 0 and variance -~ In (1 - e-2E).

Note the lack of Jln N normalization, as required in the case € = O.

3.6 The phase transition

The phase transition of Theorem 3.5 can be understood in terms of how
deviations to the left for the real part actually occur, given that they do
occur: here we present some heuristic arguments.

For Jln N « A « In Nand B = A2
/ In N, we have (x > 0)

1
B In lP(~e In Z(O) < -xA) '" _x2

• (3.62)

on the other hand, if A » In N,

1
A In lP(!.Re In Z(O) < -xA) '" -x.

Fix € > 0 and consider the lower bound

1I'(!J'Idn Z(O) < -xA) 2: II' (In 11 - e'" I < -(x + e)A, ~ In 11 - e;'" I < eA) .

(3.64)
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Assuming the two events on the right hand side are approximately indepen
dent, and using the facts that (}1 is uniformly distributed on '][' and

II' (~In 11 - e'" I< fA) --+ 1,

this yields, for A » In N, the lower bound

(3.65)

liminf
A
1

lnlP(91elnZ(0) < -xA) 2:liminfAllnlP(lnll-ei811 < -(x+f)A)
N~oo N~oo

(3.66)

= -(x + f); (3.67)

since f is aribtrary, we obtain

liminf
A
1

InlP(91elnZ(O) < -xA) 2: -x.
N~oo

On the other hand, if Jln N « A « In N, the same estimate leads to

lim inf B
1

In lP(91e In Z(O) < -xA) 2: -00.
N~oo

(3.68)

(3.69)

The fact that this simple estimate gives the right answer when A » In N,
suggests that if the deviation

{91eln Z(O) < -xA} (3.70)

occurs, it occurs simply because there is an eigenvalue too close to 1 (the
other eigenvalues are 'free to follow their average behaviour'). This is what
we mean by a local conspiracy.

The fact that it leads to a gross underestimate when Jln N « A « In N,
suggests that in this case the deviation must involve the cooperation of many
eigenvalues. A similar estimate based on only a (fixed) finite number of
eigenvalues deviating from their mean behaviour leads to a similarly gross
underestimate. Clearly it is more efficient in this case for many eigenvalues
to arrange themselves and 'share the load', so to speak, than it is for one to
bear it alone.
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A Barnes' G-function

Barnes' G-function is defined [2] for all z by

00

G(z + 1) = (271"y/2 exp (-~ (z2 + ,,(Z2 + z)) II (1 + ~) n e-z+z2/2n (A.1)
n=l

where "( = 0.5772 ... is Euler's constant.

The G-function has the following properties [2, 29]:

Recurrence relation: G(z + 1) = r(z)G(z).

Complex conjugation: G*(z) = G(z*).

Asymptotic formula, valid for Izi -t 00 with Iarg(z)I < 71",

In G(z + 1) rv z2 GIn z - i) + ~ z In 271" - 112 In z + ('(-1) + 0 (~) (A.2)

Taylor expansion for Izl < 1,

00 n

InG(z + 1) = ~(ln271" -l)z - ~(1 + "()z2 + L)-lt-1((n -1)~ (A.3)
n

n=3

Special values: G(l) = 1 and G(1/2) = e3('(-1)/271"-1/42 1/24 .

G(z + 1) has zeros at z = -n of order n, where n = 1,2, ....

Logarithmic differentiation can be written in terms of the polygamma func
tions, w(n)(z),

(AA)

and

(A.5)

See, for example, [1] for properties of the gamma and polygamma functions.
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B Lambert's W-function

The Lambert W-function (sometimes called the Omega function) is defined
to be the solution of

W(x)eW(X) = x (B.1)

It has a branch point at x = 0, and is double real-valued for -e-1 < x < O.

The unique branch that is analytic at the origin is called the principal branch.
It is real in the domain -e-1 < x < 00, with a range -1 to 00. The second
real branch is referred to as the -1 branch, denoted W-1. It is real in the
domain -e-1 < x < 0, with a range -00 to -l.

The equation

lnx = vx/3

has solution

(
-W(-f3V ))

x = exp f3

There are various asymptotic expansions of the W function:

• As x --7 00,

lnlnx
W(x) f"V lnx -lnlnx + -1-

nx

• As x --7 0 on the principal branch,

• As x --7 0- on the -1 branch,

In lIn Ixll
W(x) f"V In lxi-In lIn Ixll + In Ixl
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C Asymptotics of In MN(X)

From the asymptotics for the G-function, (A.2), we have for x> -1

In MN(x) = 2ln G (1 + ~x) - In G (1 + x) - ~x2+ ~N 2In N

+ HN +x)2In(N +x) - (N + ~x)2In (N + ~x)

+ lIn (N + lx) - ..Lln(N + x) - ..LIn N + 0 (2-) (C.1)
6 2 12 12 N

where the error term is independent of x.

This may be simplified if we assume that x(N) is restricted to various regimes:

• If Ixl « 1 then

In MN(x) = ix2(ln N + 1 + ,) + 0 (x3
) + 0 (~ ) (C.2)

• If x = 0 (1) and x > -1 then

InlVIN(x) = ~x2lnN + 2lnG (1 + ~x) -lnG(l + x) + 0 (~) (C.3)

• If 1 « x « ifN then

In MN(x) = i x2 (In N - In x - In 2 + ~) + i In 2 - 112 In x + ('(-1)

+ 0 (~) + 0 (~) (CA)

• If x = AN with A = 0(1) and A> 0 then

In MN(x) = N 2 {~(1 + ,\)21n(1 + ,\) - (1 + ~,\)21n (1 + ~,\)

- i,\2In(2'\)} - 112 In N - l2 In A + ('(-1)

+ i In(2 + A) - 1~ In(l + A) + 0 (~) (C.5)
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D Asymptotics of InLN(ix)

We consider x E:R From the asymptotics for the G-function, (A.2), we have

In LN(ix) = In G (1 + ~ix) + In G (1 - ~ix) - ~x2+ N 2In N

- ~ (N + ~ix)21n (N + ~ix) - ~ (N - ~ix)21n (N - ~ix)

- lIn N + .1... In (N + lix) + .1... In (N - lix) + 0 (~) (D.1)
6 12 2 12 2 N

Constraining x(N) to lie in various regimes simplifies the above considerably:

• If Ixl « 1 then

In LN(ix) = ~x2(ln N + 1 + ,) + 0(x4
) + 0 (~ ) (D.2)

• If x = 0(1) then

In LN(ix) = In G (1 + ~ix) + InG (1 - ~ix) + ix21nN + 0 (~ ) (D.3)

• If 1 « Ixl « Vii then

InLN(ix) = ~X2 (InN -lnx + In2 +~) - i Inx + i In2 + 2('(-1)

+ 0 (~:) + 0 (:2) (DA)

• If x = )..N with)" = 0(1) then

In LN(ix) = N 2{k)..21n (1 + 4)"-2) - ~ In (1 + ~)..2) + ).. tan-1 ~)..}

- i InN + 112 In (1 + 4)..-2) + 2('(-1) + 0 (~) (D.5)

28



References

[1] M. Abramowitz and LA. Stegun, Handbook of Mathematical Functions
(Dover, 1965)

[2] KW. Barnes, "The Theory of the G-function", Quart. J. Pure Appl.
Math. 31 (1899) 264-314

[3] K Basor, "Asymptotic formulas for Toeplitz determinants", Trans. Amer.
Math. Soc. 239 (1978) 33-65

[4] G. Ben Arous and A. Guionnet, "Large deviations for Wigner's law and
Voiculescu's non-commutative entropy", Probab. Theor. Rel. Fields 108
(1997), no. 4, 517-542

[5] G. Ben Arous and O. Zeitouni, "Large deviations from the circular law",
ESAIM: Probability and Statistics 2 (1998) 123-134

[6] A. Bottcher and B. Silbermann, Introduction to Large Truncated Toeplitz
Matrices (Springer-Verlag, 1999)

[7] J. Bucklew, Large Deviation Techniques in Decision, Simulation, and
Estimation (Wiley Interscience, 1990)

[8] M. Coram and P. Diaconis. "New tests of the correspondence between
unitary eigenvalues and the zeros of Riemann's zeta function", preprint
(2000)

[9] O. Costin and J.L. Lebowitz, "Gaussian fluctuation in random matrices",
Phys. Rev. Lett. 75 (1995) 69-72

[10] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applica
tions, 2nd Ed. (Springer-Verlag, 1998)

[11] P. Diaconis and S.N. Evans, "Linear functionals of eigenvalues of random
matrices", preprint (2000)

[12] P. Diaconis and M. Shashahani, "On the eigenvalues of random matri
ces", J. Appl. Probab. 31A (1994) 49-62

[13] A. Ghosh, "On the Riemann zeta function - mean value theorems and
the distribution of IS(T) I", J. Number Theory 17 (1983) 93-102

29



[14] A. Guiounnet, "Fluctuations for strongly interacting random variables
and Wigner's law", preprint (1999)

[15] A. Guiounnet and O. Zeitouni, "Concentration of the spectral measure
for large matrices", preprint (2000)

[16] F. Hiai and D. Petz, "A large deviation theorem for the empirical eigen
value distribution of random unitary matrices", preprint (2000)

[17] T. Hida, Brownian Motion (Springer 1980)

[18] K. Johansson, "On random matrices from the classical compact groups",
Ann. Math. 145 (1997) 519-545

[19] K. Johansson, "On fluctuations of eigenvalues of random Hermitian ma
trices", Duke J. Math. 91 (1998) 151-204

[20] J.P. Keating and N.C. Snaith, "Random Matrix Theory and ((1/2+it)",
Commun. Math. Phys. (in the press) (1999)

[21] A. LaurinCikas, Limit Theorems for the Riemann Zeta Function (Kluwer
Academic Publishers, 1996)

[22] M.L. Mehta, Random Matrices (Academic Press, 1991)

[23] A.M. Odlyzko, "The 1020-th zero of the Riemann zeta function and 175
million of its neighbors", unpublished

[24] E. Rains, "High powers of random elements of compact Lie groups",
Prob. Th. ReI. Fields 107 (1997) 219-241

[25] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion,
(Springer-Verlag, 1990).

[26] A.B. Shoshnikov, "Gaussian fluctuation for the number of particles in
Airy, Bessel, Sine, and other determinantal random point fields", preprint
(1999)

[27] G. Szego, Orthogonal Polynomials (AMS Colloqium Publications XXII,
1939)

[28] E.C. Titchmarsh, The Theory of the Riemann Zeta-Function (Oxford
Science Publications, 1986)

30



[29] A. Voros, "Spectral functions, special functions and the Selberg zeta
function", Comm. Math. Phys. 110 (1987) 439-465

[30] H. Weyl, Classical Groups, (Princeton University Press, 1946)

[31] Harold Widom, private communication.

[32] K. Wieand, Eigenvalue Distributions of Random Matrices in the Permu
tation Group and Compact Lie Groups, PhD Thesis, (Harvard University,
1998)

[33] K. Wieand, "Eigenvalue distributions of random unitary matrices",
preprint (1999)

31


