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Abstract

The main aim of this paper is to present a simple probabilistic model for the early

stage of neuron growth: the speci�cation on an axon out of several initially similar

neurites. The model is a Markov process with competition between the growing neu-

rites, wherein longer objects have more chances to grow, and parameter � determines

the intensity of the competition. For � > 1 the model provides results which are qual-

itatively similar to the experimental ones, i.e. selection of one rapidly elongating axon

out of several neurites while other less successful neurites stop growing at some random

time. Rigorous mathematical proofs are given.

1 Introduction

There are many open questions concerning biophysical mechanisms of the establishment of

neuron polarity, which is a crucial early step in neuron development. In particular, it is not

known how the axon is �rst speci�ed from a number of similar neurites.

When neurites �rst form, they cannot be distinguished as either axons or dendrites

(Dotti and Banker, 1987; Dotti et al, 1988). The neurites exhibit periods of growth and
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retraction until one rapidly elongates to eventually become an axon. Until the length of a

successful neurite exceeds the length of others by 10� 15 �m (Goslin and Banker, 1989), it

is morphologically and molecularly the same as its other less successful counterparts.

In experiments with hippocampal neurons it was observed that transecting the neurites

(which are also called \minor processes") early in the development can cause an alteration of

polarity; a neurite that would have become a dendrite instead becomes an axon (Dotti and

Banker, 1987). It is impossible to predict with any certainty which neurite (out of several)

will become an axon unless it was originally longer than other neurites by more than a

threshold length (10�m) (Goslin and Banker, 1989). If the neurites were transected at the

same length, a competition (or dynamical equilibrium) between them was observed until one

neurite exceeded the others by a critical length and rapidly elongated to eventually become

an axon. Other neurites subsequently become dendrites.

Goslin and Banker (1989) hypothesised that speci�cation of axon depends on its length

relative to other minor processes. Recent experimental evidence shows that the axon spec-

i�cation can be directed by growth-promoting molecules which are applied locally (Esch et

al, 1999).

This experimental data suggests that there is a probabilistic aspect of the phenomenon

which involves interaction among the neurites wherein any of the neurites is capable of

becoming an axon while the others stop growing and eventually become dendrites.

The main aim of this paper is to present a simple probabilistic model for the early stage

of the neuron growth: the speci�cation of an axon out of several initially similar neurites.

In the next section we describe the model and then proceed with a probabilistic analysis of

it. Rigorous proofs are given in the last section, followed by the discussion of the model.

2 Probabilistic model

Consider k growing objects, neurites. Denote their length at time t by a1(t); a2(t):::; ak(t),

and their initial lengths at time t = 0 by as(0) > 0; 1 � s � k. Let us consider a discrete

model, where time takes integer values. Suppose also, that for each interval of time [t; t+1]

a unit of length, l, is added to one of the neurites, while others remain unchanged. Thus, at

time t + 1 there exist a neurite with number j, 1 � j � k such that

aj(t+ 1) = aj + l: (1)

For all other neurites, wherein s 6= j, as(t+1) = as(t). Clearly, the total length of all neurites

at time t is given by

L(t) =
kX

j=1

aj(t) = L(0) + l t; where L(0) =
kX

j=1

aj(0): (2)

Let us now de�ne the transitional probabilities. The probability that a neurite aj grows

at time t depends on the current length of this neurite and the lengths of all other neurites.
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It is clear from the experimental data (Goslin and Banker, 1989) that the longer the neurite,

the higher the probability it will grow the next moment of time. Suppose that the probability

that neurite j will grow at time t+ 1 is proportional to its length aj at time t to the power

�:

P [aj(t+ 1) = aj(t) + l] � a
�
j (t): (3)

This is a natural way to quantitate the experimentally observed advantage of being long.

Since at every moment of time t one neurite grows with probability 1, the sum of all proba-

bilities equals to one and we obtain the formula for the transitional probability

P [aj(t+ 1) = aj(t) + l] =
a
�
j (t)

kP
s=1

a�s (t)

; � > 0: (4)

Equations (1)-(4) describe a Markov process with competition between the growing neu-

rites. Longer objects have more chances to grow and parameter � determines the intensity

of the competition between them.

3 Analysis of the model

The above model turns out to have three di�erent regimes depending on parameter �: the

critical regime � = 1, the regime of ballistic growth � > 1 and the subcritical regime � < 1.

In this section we present results with explanation for all three cases. Rigorous proofs which

are based on Rubin's representations (Davis, 1990) are given in the next section. Without

loss of generality, we set l = 1.

3.1 Critical regime: � = 1

In this case, each neurite grows linearly with time so that

as(t)

t
! s; t!1: (5)

Here the growth speeds s are random variables whose distribution depends on the initial

lengths of the neurites as(0), 1 � s � k. It follows from (5) that there exists one neurite

which is longer than the others for su�ciently large times. Namely, it is a neurite which

corresponds to a largest value of s. However, the advantage of being long is not strong

enough to stop other neurites from growing. Thus, the case � = 1 does not adequately

describe the phenomenon of the axon speci�cation. All neurites continue to grow contrary

to the experimental �ndings, where only one neurite signi�cantly elongates. Fig. 1 shows a

representative example of the growth of several initially similar neurites. As is seen, all �ve

neurites grow linearly in time although with di�erent speeds s.

The case � = 1 corresponds to the Polya urn scheme. In its classical formulation this

scheme is described as follows. There is a certain number of black and white balls in an urn.
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Figure 1: A representative example of the simulation of the growth model (1)�(4) for � = 1.

Lengths, as(t), of �ve neurites are given as functions of time, t. Initially all neurites have

the same length: as(0) = 1; 1 � s � 5, l = 1

At each moment of time an observer randomly picks one ball from the urn and then puts it

back together with an additional ball of the same colour. This model has an exact solution

(Feller, Vol.I, 1966). The numbers of white and black balls grow linearly with time and the

ratio between them tends to a �nite limit as t!1.

3.2 Regime of ballistic growth: � > 1

The cases � > 1 and � < 1 correspond to a generalised Polya scheme. In the case � > 1,

after a random moment of time only one neurite will grow. More precisely, with probability

1 there exists a number s, 1 � s � k and random time T � such that

as(t + 1) = as(t) + 1; for all t > T
�
; (6)

while for all j 6= s

aj(t+ 1) = aj(t); for all t > T
�
: (7)

In terms of the biological model this means that with probability 1 competition leads to

selection of just one neurite, which rapidly elongates and eventually forms an axon. If all

neurites initially have the same lengths as appears to be the case in some of the experiments

(Goslin and Banker, 1989), the neurite s that wins the competition to become an axon is

selected randomly with a uniform probability distribution. In other words, if Ps denotes the

probability that the axon is formed from the neurite s, then Ps = 1=k. In general, Ps has a
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Figure 2: A representative example of the simulation of the growth model (1)�(4) for � = 2.

Lengths of �ve neurites are given as functions of time, t. All �ve neurites are initially the

same length: as(0) = 1; 1 � s � 5, l = 1

probability distribution that depends on the original lengths of the minor processes, as(0),

1 � s � k. Obviously, the longer is the neurite the more chances it has to win the race and

to become an axon.

Clearly, this model gives results qualitatively similar to the experimental ones. Fig. 2

shows a representative graph for the case � = 2 for a neuron with �ve minor processes of

initially the same length. In this case only one neurite takes over and rapidly grows while

other four stop growing.

3.3 Subcritical regime: � < 1

In the subcritical regime all neurites have the lengths of the same order. More precisely, the

ratios of lengths for any two neurites tend to 1 as t tends to in�nity:

as1(t)

as2(t)
! 1 as t!1; 1 � s1; s2 � k: (8)

It follows from (8) that

as(t) =
t

k
+ âs(t); (9)
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where âs = o(t) are uctuations of the lengths. Asymptotic behaviour of âs depends on �.

If 1=2 < � < 1 then there exist nonzero random constants cs, 1 � s � k, such that

âs(t)

t�
! cs as t!1; 1 � s � k: (10)

Although uctuations âs are much smaller then as(t), still there exists a neurite which is

longer than all others for all large enough t. As in the critical case, it is a neurite which

corresponds to the largest value of cs.

In the second subcase, 0 < � � 1=2, no neurite grows faster than any of the other

neurites. In other words, for any neurite there exists a sequence tn ! 1 such that this

neurite is the longest at time tn. Fluctuations âs(t) from eqn. (9) are of the order
p
t if

0 < � < 1=2 and of the order
p
t log t if � = 1=2. However, if we normalise âs(t) by dividing

on
p
t or

p
t log t respectively, the normalised uctuations have no limit as t!1, but only

a limiting probability distribution. More precisely, if 0 < � < 1=2 then

Dist(
âs(t)p

t
)! N(0; �2

�); as t!1; (11)

where

�
2
� =

(k � 1)

k1+2�(1� 2�)

and N(0; �2) is a Gaussian distribution with mean value zero, and variance �2. If � = 1=2

then

Dist(
âs(t)p
t log t

)! N(0; ��2) as t!1; (12)

where ��2 = (k � 1)=k2.

4 Precise statements and proofs

Let us give give rigorous proofs for the assertions made in the previous section. We consider

3 cases corresponding to critical, ballistic and subcritical regimes.

I. The results for the case � = 1 are classical (see Feller, Vol.I,II, 1966). We present

them here only for completeness of exposition. Consider random variables

�s(t) =
as(t)

L(t)
; 1 � s � k; where L(t) =

kX
j=1

aj(t) = L(0) + t: (13)

Proposition 1. 1. There exist random constants 0 < �̂s < 1; 1 � s � k, such that with

probability 1

lim
t!1

�s(t) = �̂s: (14)
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2. For every 1 � s � k random variable �̂s has a probability distribution with a density

�a(s);b(s)(�̂s) :

�a(s);b(s)(�̂s) =
�(a(s) + b(s))

�(a(s))�(b(s))
�̂
a(s)�1
s (1� �̂s)

b(s)�1
; (15)

where � is the gamma function, a(s) = as(0); b(s) = L(0)� as(0).

Proof. It is easy to see that for each s random process �s(t) is a martingale. Indeed, a

conditional expectation of �s(t) is given by

E(�s(t + 1) j �s(t)) =
(as(t) + 1)

(L(t) + 1)

as(t)

L(t)
+

as(t)

(L(t) + 1)

(L(t)� as(t))

L(t)
=

as(t)

L(t)
= �s(t) (16)

Since 0 � �s(t) � 1 it follows from the martingale convergence theorem (Feller, Vol.II,

1966) that with probability 1 there exists a limit

lim
t!1

�s(t) = �̂s; (17)

which proves the �rst part of Proposition 1. To prove the second part, consider the proba-

bility distribution for as(t). It can be shown (see Feller, Vol.I, 1966) that

P (as(t) = a) = C
a�a(s)
t

[a(s)(a(s) + 1):::(a� 1)][b(s)(b(s) + 1):::(b(s) + a(s) + t� a� 1)]

(a(s) + b(s))(a(s) + b(s) + 1):::(a(s) + b(s) + t� 1)

=
t!

(a� a(s))!(t� a + a(s))!

(a� 1)!

(a(s)� 1)!

(t� a+ a(s) + b(s)� 1)!

(b(s)� 1)!

(a(s) + b(s)� 1)!

(a(s) + b(s) + t� 1)!

Take as = �t. Then, asymptotically as t!1,

P (as(t) = �t) �
1

t

(a(s) + b(s)� 1)!

(a(s)� 1)!(b(s)� 1)!
�
a(s)�1(1� �)b(s)�1; (18)

where � stands for asymptotic equivalence. Namely, G(t) � H(t) if G(t)=H(t)! 1 as t!
1. It immediately follows from (18) that �̂s = lim

t!1
as(t)

L(t)
has a density given by �a(s);b(s)(�̂s).

2

II. Consider now the case of ballistic growth, � > 1. Analysis of the growth for this case

is based on remarkable representation found by (Davis, 1990).

Consider the following random process. Let

f�(s)i g; 1 � s � k; i � 1 (19)

be independent random variables with exponential distribution with exponent �i = i
�, i.e.

P (�
(s)
i > x) = �i

Z 1
x

e
��iydy; x � 0: (20)

De�ne the following sums

�i
(s) =

iX
j=as(0)

�
(s)
j ; i � as(0) (21)
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which form a positive monotone increasing sequence for each given s. Consider now all

f�(s)
i ; i � as(0); 1 � s � kg together in increasing order; denote random elements in the

resulting sequence by A1; A2; :::; An; :::. We can now describe the growth process correspond-

ing to the sequence fAig. If A1 belongs to f�
(s1)
i g then on the �rst step we add one unit of

length to the s1-th neurite. If A2 belongs to the f�
(s2)
i g then on the second step we add one

unit of length to the s2-th neurite and so on.

Theorem [Rubin]. The growth process corresponding to the sequence fAig is equivalent
to our original growth model, i.e. the probability distributions of the two processes are the

same.

Although, the second construction of the growth process looks more arti�cial and less

transparent than the original one, it is much easier to analyse it mathematically. This

simplicity is due to the independence of random variables �
(s)
j .

Proposition 2. Let � > 1. Then, there exists a random time T � such that for all t > T
�

only one neurite grows.

Proof. The proof is an easy consequence from Rubin's Theorem. Consider �(s)
1 =P1

j=a0(s)
�
(s)
j . It easily follows from the classical Kolmogorov's "three series theorem" (Feller,

1966, Vol.II) that the series above is convergent with probability 1. Moreover, �(s)
1 has an

absolutely continuous distribution with characteristic function

�(�) = Ee
i��

(s)
1 = [

1Y
j=a0(s)

(1� i
�

j�
)]�1: (22)

Let �(s0)
1 = min1�s�k �

(s)
1 . It follows that �(s)

1 > �(s0)
1 , for all s 6= s0. Then, there exists I

such that �
(s)
i > �(s0)

1 for all s 6= s0 and i > I. It follows from the Rubin's construction

that for all s 6= s0 and all t, as(t) � as(0) + I. Hence, there exists time T � after which only

neurite s0 will grow. 2

III. Suppose now 0 < � < 1. Let âs(t) = as(t)� t=k be the uctuations of the lengthes

de�ned in (9).

Proposition 3. 1. If 1=2 < � < 1, then there exist nonzero random constants cs such

that with probability 1
âs(t)

t�
! cs as t!1; 1 � s � k: (23)

2. If 0 < � < 1=2, then for all 1 � s � k the probability distribution of
âs(t)p

t
converges

weakly to a Gaussian distribution N(0; �2
�), where

�
2
� =

(k � 1)

k1+2�(1� 2�)
:

3. If � = 1
2
then for all 1 � s � k the probability distribution of

âs(t)p
t log t

converges weakly

to a Gaussian distribution N(0; ��2), where ��2 = k�1
k2

.
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Proof. The proof is again based on Rubin's construction. De�ne independent random

variables with zero mean value by �
(s)
j = �

(s)
j � < �

(s)
j >= �

(s)
j � 1=j�. We can write �

(s)
i in

the following form:

�
(s)
i = Ai + �

(s)
i ; (24)

where

Ai =
iX

j=1

1

j�
�
(s)
i =

iX
j=1

�
(s)
j �

a0(s)�1X
j=1

�
(s)
j : (25)

Consider arbitrary 1 � s1; s2 � k. It follows from Rubin's construction that if
P(s2)

as2 (t)
�P(s1)

as1 (t)
, then X(s2)

as2 (t)
�
X(s1)

as1 (t)
�
X(s2)

as2 (t)+1
: (26)

Since
P(s)

i diverges as i ! 1, for all 1 � s � k, as(t) ! 1 as t ! 1. Hence, using

inequalities (26), we obtain

j
X(s1)

as1 (t)
�
X(s2)

as2 (t)
j ! 0 as t!1: (27)

We next study asymptotic behaviour of �
(s)
i . In the case 1=2 < � < 1 the series �

(s)
i is

convergent, i.e. �
(s)
i ! �

(s)
1 as i ! 1 for all 1 � s � k. Here again we have used Kol-

mogorov's three series theorem. Notice that �(s)1 has an absolutely continuous distribution.

In the case 0 < � � 1=2 the series for �
(s)
i is divergent. It is easy to check that one can apply

Lindeberg's Central Limit Theorem (see Feller, II). Since

Var(�
(s)
i ) �

iX
j=1

1

j2�
� V�(i) =

(
1

1�2� i
(1�2�)

; 0 < � � 1
2
,

log i ; � = 1
2
.

(28)

we have

Dist

0
@ �

(s)
iq
V�(i)

1
A! N(0; 1) (29)

Notice that

Ai =
iX

j=1

1

j�
�

1

1� �
i
1��

: (30)

It follows from equation (31) together with equations (26-29) that

jas1(t)� as2(t)j = o(min(as1(t); as2(t))) (31)

Hence, as(t) = t=k + âs(t), where âs(t) = o(t).

We are ready now to study asymptotic behaviour of uctuations âs(t). Without loss of

generality assume that as1(t) < as2(t). Then,

Xas2 (t)

j=as1 (t)+1

1

j�
= �

(s1)

as1 (t)
� �

(s2)

as2 (t)
+ o(1): (32)
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Hence,
1

1� �
(a1��s2

(t)� a
1��
s1

(t)) = �
(s1)

as1 (t)
� �

(s2)

as2 (t)
+ o(1); (33)

which implies

1

1� �
(a1��s2

(t)� a
1��
s1

(t)) =
1

1� �
a
1��
s1

(t)

0
@
 
1 +

as2(t)� as1(t)

as1(t)

!1��

� 1

1
A =

1

1� �
a
1��
s1

(t)(1� �)
as2(t)� as1(t)

as1(t)
(1 + o(1)) =

as2(t)� as1(t)

a�s1(t)
(1 + o(1)) =

�
(s1)

as1 (t)
� �

(s1)

as2 (t)
+ o(1):

Since as(t) � t=k for all s, it follows that

âs2(t)� âs1(t) = as2(t)� as1(t) =

�
t

k

�� �
�
(s1)

as1 (t)
� �

(s2)

as2 (t)
+ o(1)

�
(1 + o(1)) : (34)

In the case 1=2 < � < 1,

�
(s)

as(t)
= �

(s)
1 + o(1) as t!1

Using equation (34) we have

âs2(t)� âs1(t) =

�
t

k

��

(�(s1)1 � �
(s2)
1 )(1 + o(1)): (35)

Since
Pk

s=1 âs(t) = L(0) equation (35) easily implies

âs(t) =

�
t

k

��

(B � �
(s)
1 )(1 + o(1)); (36)

where

B =
1

k

kX
s=1

�
(s)
1 :

Notice that in (35), (36) we have used the following fact: with probability 1, �(s1)1 6= �
(s2)
1 ,

s1 6= s2, and �
(s)
1 6= B, 1 � s � k. The �rst statement of Proposition 3 immediately follows

from (36).

In the case 0 < � � 1=2 we have to strengthen estimates (31) and (34). Denote

�
(s)(t) = �

(s)

[ t
k
]
; B(t) =

1

k

kX
s=1

�
(s)(t):

It is easy to show that for any � > 0 there exists I(�) such that for all i > I(�)

j�(s)i j � V

1
2
� (i)i

�
; j�(s)i j �

1

i���
(37)
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Using (24)-(26) one immediately obtains from (37) that there exists T (�) such that for all

t > T (�)

jâs1(t)� âs2(t)j � t
1
2
+2�

: (38)

Since
Pk

s=1 âs(t) = L(0), equation (38) implies that

jâs(t)j � t
1
2
+2�

; j�(s)as(t)
� �

(s)(t)j �
1

t�
t
1
4
+2�

; 1 � s � k; (39)

for t large enough. Notice that �s(t) are of the order of V
1
2
� (t), where

V

1
2
� (t) =

(
1p

1�2� t
1=2��

; 0 < � <
1
2
,

p
log t; � = 1

2
.

(40)

It follows easily from equations (28, 29) that there exist �(t)! 0 as t!1 such that with

probability greater than 1� �(t):

min
1�s;s1;s2�k

(j�(s)(t)j; j�(s1)(t)� �
(s2)(t)j; j�(s)(t)� B(t)j) �

V

1
2
� (t)

loglogt
(41)

and

max
1�s;s1;s2�k

(j�(s)(t)j; j�(s1)(t)� �
(s2)(t)j; j�(s)(t)� B(t)j) � V

1
2
� (t)loglogt: (42)

If equations (37)-(42) hold and as1(t) < as2(t) then

as2 (t)X
i=as1 (t)+1

1

j�
= �

(s1)(t)� �
(s2)(t) + O(t

1
4
+2���): (43)

Hence,
1

1� �
(a1��s2

(t)� a
1��
s1

(t)) = �
(s1)(t)� �

(s2)(t) + O(t
1
4
+2���) =

(�(s1)(t)� �
(s2)(t))

0
@1 + O

0
@t 14+2���loglog t

V

1
2
� (t)

1
A
1
A :

Since
1

1� �
(a1��s2

(t)� a
1��
s1

(t)) =
as2(t)� as1(t)

t
k

�

0
@1 + O

0
@t 12+2�

t

1
A
1
A ; (44)

we have

âs2(t)� âs1(t) = as2(t)� as1(t) =�
t

k

�� �
�
(s1)(t)� �

(s2)(t)
�0@1 + O

0
@t 12+2�

t

1
A+O

0
@t 14+2���log logt

V

1
2
� (t)

1
A
1
A =

�
t

k

��

(�(s1)(t)� �
(s2)(t))(1 + o(t3��

1
4 )):
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Taking � < 1=12 we obtain

âs2(t)� âs1(t) =

�
t

k

��

(�(s1)(t)� �
(s2)(t))(1 + o(t��)) (45)

for some � > 0. Using (41), (42) and
Pk

s=1 âs(t) = L(0), we obtain from (45):

âs(t) =

�
t

k

��

(B(t)� �
(s)(t))(1 + o(t��=2)); 1 � s � k: (46)

Notice that (46) holds with probability greater than (1 � �(t)) for all t large enough.

Dividing on
p
t for 0 < � < 1=2 and on

p
tlogt for � = 1=2 and using eqs. (28, 29)

and independence of �(s)(t) for di�erent s, we immediately obtain statements 2 and 3 of

Proposition 3. 2

In fact, limit theorem holds for a distribution of a whole vector (â1(t); â2(t); :::; âk(t)).

Denote

!
a (t) =

8<
:

1p
t
(â1(t); : : : ; âk(t)); 0 < � < 1=2,
1p
t log t

(â1(t); : : : ; âk(t)); � = 1=2 (47)

and

~�2
� =

(
1

(1�2�)k2+2� ; 0 < � < 1=2,
1
k3
; � = 1=2.

(48)

Then the following proposition easily follows from (46).

Proposition 4. Probability distribution of the vector
!
a (t) converges weakly as t!1

to the probability distribution of the vector
!
�= (�1; : : : ; �k), where �s =

P
i 6=s(�

(i)��(s)); 1 �
s � k; and �

(s), 1 � s � k, are independent N(0; ~�2
�) random variables.

5 Summary and Discussion

We present a phenomenological probabilistic model for neurite competition leading to the

speci�cation of an axon at the early stages of neuron development. The main aim of our

model is to show that quite dramatic e�ect of only one neurite elongation out of several

initially identical can be explained by a simple mechanism of stochastic preference.

The model captures the main features of the experiments: (1) for neurites of the same

length it is impossible to predict which will become an axon, (2) the probability that a

neurite becomes an axon depends on its relative length, and (3) longer neurites have more

chances to win. For � > 1 the behaviour of this model is qualitatively very similar to the

one observed experimentally (see Fig. 2) (Dotti and Banker, 1987; Goslin and Banker, 1989;

Esch et al, 1999). The model also demonstrates sharp transition in asymptotic behaviour

depending on parameter �. Indeed, in the case � � 1 there is no axon speci�cation and all

dendrites asymptotically have lengths of the same order.

We have chosen the discrete model purely for simplicity of presentation. In fact, the same

phenomena will be observed for a continuous time Markov process or for a model wherein the
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length increments are random. Once again, if stochastic preferences mechanism has enough

strength (� > 1), then only one neurite wins the race. A choice of the power-law dependence

of probability Pj on the length of the neurite (eqs. 3-4) is the simplest and quite natural

assumption based on the experimental fact that the length is crucial in the competition of

the neurites (Goslin and Banker, 1989).

A competition time T � which is de�ned as the time needed for an axon to exceed the

others by some threshold length depends on two factors: (1) the initial distribution of lengths,

and (2) the value of � (> 1). Here we take the length increment l as a unit of length. If there

is a neurite which is much longer than other four neurites, it has more chances to win. Thus,

for example if one neurite is 10% percent longer than the others, for � = 2 it wins with an

estimated probability 0:74, and it wins almost always (with an estimated probability 0:99) if

it is initially 20% longer than the others. The bigger the initial di�erence in the lengths, the

shorter is the competition time. Competition time dramatically decreases with increase of �,

which measures the advantage of being long. At present experimental data does not provide

reliable conditional probabilities for the process of axon speci�cation. In future, however,

probabilities calculated on a basis of extensive experimental studies might be used in order

to determine possible values of the power-law constant �.

The phenomenon of axon formation has been previously modelled by Samuels et al (1996).

Their deterministic model is based upon the assumption of the existence of a determinant

chemical whose concentration inside the neuron inuences the growth rate of the neurite.

Although this model predicts that it is the length that is more crucial than the initial

concentration of the yet unknown chemical, it fails to account for the main feature of the

experiment: the randomness of the choice for the axon. According to Samuels et al (1996)

model, even small di�erences in initial neurite lengths will almost invariably lead to the

longer neurite forming the axon. This contradicts with the experimental data according to

which only if a neurite is longer than the others by a threshold length will it become an axon.

Otherwise, according to the experimental data the longest neurite only has more chances of

becoming the axon, depending on its relative length. Our phenomenological probabilistic

model provides the \one-win" result on the probabilistic grounds.

The molecular mechanisms of the selective elongation are not yet well understood. As was

already mentioned above, recent experimental evidence shows that the axon speci�cation can

be directed by locally applied growth-promoting molecules (Esch al, 1999). It was then sug-

gested that the speci�cation process is probably signal-mediated, involving binding substrate

molecules to receptors on the neurite surfaces. Some important extracellular molecules that

regulate dendritic development have recently been identi�ed and their signalling pathways

have also been elucidated (Higgins et al, 1997).

According to a hypothesis by Esch et al (1999), the longer the neurite, the more receptors

are located on its surface, and the chance of extracellular molecules to bind to those receptors

is greater, causing the neurite to elongate even further. Let us elaborate on this hypothesis.

The extracellular growth-promoting molecules, S, bind to the cell surface receptors, R. The

surface density � of these receptors along the neurite length is assumed to be the same for all

competing neurites. Thus, the i-th neurite has Ri = �Li receptors on its surface. As axon
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speci�cation process is triggered by binding of a substrate S to receptor Ri, forming a complex

Ci, the chances of formation of such a complex depend on the number of available receptors

(and on the con�guration of the neurite). If just one receptor is needed for formation of a

complex, which increase chances for neurite to elongate, then

P [Li(t+4t) = Li(t) + l] � Ri � Li

This case corresponds to � = 1 of our model. As we have seen above, this leads to growth

of all neurites. It is plausible, however, to assume that n > 1 receptors are needed to form

a growth-promoting complex Ci:

nRi + S *) Ci

Then, P [Li(t + 1) = Li(t) + l] � R
n
i � L

n
i . This, obviously brings us to a model where

� = n > 1.

Esch et al, (1999) proposed several hypotheses of how the growth-promoting molecules

initiate a series of events leading to selective elongation. These include redistribution of

actin that may allow forward extension of the microtubule network within the growth cone

(Burden-Gulley and Lemmon, 1996), or a movement of organelles into the periphery of the

growth cone (Futerman and Banker, 1996), possibly associated with the insertion of new

plasma membrane either at speci�c growth sites (e.g. distal end only) or all along the axon

(Khanin et al, 1998). The initial stages of the axon speci�cation probably involve competition

for the growth bulk material.

Future mathematical models of the axon speci�cation should elaborate on the issues of

ligand-binding mediated events, competition for the growth material and the reduction in

the growth rate of neurites who failed to win the race to be an axon. These models should be

stochastic. It is quite obvious that purely deterministic models would always predict that the

longest axon will win, no matter how small the initial di�erences in length are. In addition,

to the random component of the ligand-receptor binding, other signal-mediated events (like

interaction between cell surface receptors and actin cytoskeleton, Davis and Bennet (1994))

might contribute to the probabilistic mechanism of the axon speci�cation. It is important

to study the relative importance of the various factors in this process.
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