
 

Continued  Fractions and th e   
d -dim ensional Gauss Transform ation 
 
D.M. H ardcastle , K. Kh an in 
Basic R e s earch  Institute  in th e  M ath e m atical Scie n ce s 
H P Laboratorie s Bristol 
H PL-BRIMS-2000-15 
27th  June , 2000* 
 
E-m ail: D.M .H ardcastle @m a.h w .ac.uk  
             K .Kh anin@new ton.cam .ac.uk  
 
m ulti-
dim ens ional 
Gauss 
transform ation, 
natural 
e xtens ion, 
invariant 
m e asure  

 

 

In th is pape r w e  study a m ultidim ens ional continued  fraction  
algorith m  w h ich  is re lated  to th e  M odified  Jacobi-Pe rron  
algorith m  conside red by Podsypanin and Sch w e ige r. W e  
de m onstrate  th at th is algorith m  h as m any im portant 
prope rtie s w h ich  are  n atural ge n e ralisations of prope rtie s of 
on e -dim ens ional continued  fractions. For th is re ason, w e  call 
th e  transform ation associated  to th e  algorith m  th e  
d -d im ensional Gauss transform ation . W e  construct a coordinate  
syste m  for th e  n atural e xtens ion  w h ich  re ve als its sym m e trie s 
and allow s on e  to give  an  e xplicit form ula for th e  d en s ity of its 
invariant m e asure . W e  also discuss th e  e rgodic prope rtie s of 
th is invariant m e asure . 

 

1 De partm e nt of M ath e m atics, H e riot-W att Unive rsity, Edinburgh , EH 14 4AS, UK. 
∗ Inte rnal Accession Date  Only    Approved  for Exte rnal Publication  
  Copyrigh t H e w le tt-Pack ard Com pany 2000 



Continued fractions and the d-dimensional

Gauss transformation

D. M. Hardcastle
1
and K. Khanin

1�4

1 Department of Mathematics, Heriot-Watt University,

Edinburgh EH14 4AS, UK. E-mail: D.M.Hardcastle@ma.hw.ac.uk
2 Isaac Newton Institute for Mathematical Sciences,

20 Clarkson Road, Cambridge CB3 0EH, UK.

E-mail: K.Khanin@newton.cam.ac.uk
3 BRIMS, Hewlett-Packard Laboratories,

Stoke Gi�ord, Bristol BS12 6QZ, UK.
4 Landau Institute for Theoretical Physics,

Kosygina Str.,2, Moscow 117332, Russia.

Abstract

In this paper we study a multidimensional continued fraction algorithm which

is related to the Modi�ed Jacobi-Perron algorithm considered by Podsypanin and

Schweiger. We demonstrate that this algorithm has many important properties

which are natural generalisations of properties of one-dimensional continued frac-

tions. For this reason, we call the transformation associated to the algorithm the

d-dimensional Gauss transformation. We construct a coordinate system for the

natural extension which reveals its symmetries and allows one to give an explicit

formula for the density of its invariant measure. We also discuss the ergodic prop-

erties of this invariant measure.

1 Introduction

The theory of one-dimensional continued fractions has a rich and long history. They

originated in Euclid's algorithm and their theory was later developed by Gauss, Hurwitz,

Legendre, Lagrange and many others. One of the most important contributions made by

Gauss was the discovery of an explicit formula for the invariant measure of the transfor-

mation associated to one-dimensional continued fractions; this measure is now known as

the Gauss measure.

A generalisation of the one-dimensional continued fraction algorithm to two dimensions

was �rst considered by Jacobi in the 1830s. This work was published posthumously in 1868

[10]. Perron later performed a detailed study of Jacobi's algorithm in arbitrary dimension

[17]; for this reason, the algorithm is now known as the Jacobi-Perron algorithm (JPA).

In fact, the study of the JPA inspired Perron to develop his famous theory of positive

matrices. The JPA has been widely studied since then and in particular F. Schweiger

has considered its ergodic and metrical properties [21]. The ergodic properties of the
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Jacobi-Perron transformation and other similar maps have also been studied by Gordin

[5], Mayer [15], and Ito and Yuri [9].

Since the development of the JPA, many other multidimensional continued fraction

algorithms have been proposed, in particular we mention the algorithms of Poincar�e [19],

Brun [3] and Selmer [23].

Podsypanin introduced a two-dimensional algorithm which is closely related to the

algorithm of Brun [18]. Later, Schweiger considered a multidimensional modi�cation of

Podsypanin's algorithm called the Modi�ed Jacobi-Perron algorithm and gave an explicit

formula for its invariant density [22]. In this paper we study an algorithm which is

equivalent to the modi�ed JPA. We demonstrate that this algorithm has many properties

which are natural generalisations of properties of one-dimensional continued fractions. To

the best of our knowledge, it is the only algorithm which possesses these properties. We

�nd it natural to call it the d-dimensional Gauss algorithm, especially since the invariant

measure is a generalisation of the Gauss measure.

The structure of the paper is as follows. In Section 2 we give a geometrical description

of the one-dimensional continued fraction algorithm and briey discuss some of its most

important properties. In Section 3 we describe two di�erent geometrical schemes for

producing a sequence of vectors of rational numbers simultaneously approximating an

irrational vector. These two schemes are based on the concepts of time-ordering and

space-ordering. We briey describe the Jacobi-Perron algorithm, which is based on the

time-ordering concept, and two other algorithms which are related to the idea of space-

ordering. One of these algorithms leads to the d-dimensional Gauss transformation which

is the subject of the rest of the paper. Section 4 is concerned with �nding a good coordinate

system for the natural extension of the d-dimensional Gauss transformation. In Section

5, various important properties of the natural extension are proved. In particular, using

the symmetries of the natural extension, we �nd an explicit formula for the density of its

invariant measure.

Acknowledgements. The authors are grateful to the European Science Founda-

tion for the opportunity to participate in their PRODYN (Probabilistic methods in non-

hyperbolic dynamics) programme. The �rst author also wishes to thank the Engineering

and Physical Sciences Research Council of the U.K. for �nancial support.

2 One-dimensional continued fractions

In this section we discuss the approximation of irrationals by rationals in the classical

one-dimensional case.

The theory of one-dimensional continued fractions is one of the most beautiful exam-

ples of the applications of ergodic theory. We realise that the theory of continued fractions

is classical (see [12]) and that the reader is well aware of this theory. Nevertheless we wish

to spend some time on a formal introduction of the Gauss transformation and a discussion

of its ergodic properties and its connection with the theory of one-dimensional continued

fractions. This introduction will be useful in the next section where we will discuss multi-

dimensional generalisations of this theory. In this section we will also formulate the most

important properties of the one-dimensional case. We will see later that only one of the
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multidimensional generalisations inherits these nice properties.

We will start with a geometrical approach to the problem of �nding a sequence of

rational approximations to an irrational number ! 2 [0; 1]. This geometrical scheme

is based on the following picture. A point ! is approximated by a sequence of nested

intervals which contain !. These intervals are constructed inductively. Suppose that on

the nth step one has an interval �n which contains ! and which has rational end points
pn

qn
,
p
0

n

q0n
. The point !, like any point in the interval �n, can be written in the form

! = �0

�
pn

qn

�
� �1

�
p0
n

q0
n

�
(1)

for some �0 � �1 � 0. Here � denotes Farey addition, i.e.

�

�
p1

q1

�
� �

�
p2

q2

�
=
�p1 + �p2

�q1 + �q2
:

Note that we can regard (�0; �1) as an element of RP 1 since the representation (1) is

unique up to multiplication by a scalar factor. Also note that the order of the end points
pn

qn
;
p
0

n

q0
n

in (1) is governed by the relation �0 � �1, rather than by the natural order of the

end points on the real line. In the next step of the scheme, we produce an interval �n+1

which has end points pn

qn
and

mn+1

�
pn

qn

�
�

�
p0
n

q0
n

�
; where mn+1 2 N :

To consider how to choose the integer mn+1 we rewrite (1) as

! =

�
pn

qn

�
� !(n)

�
p0
n

q0
n

�
where !(n) =

�1

�0
.

Then

! =
1

!(n)

�
pn

qn

�
�

�
p0
n

q0
n

�
=

�
1

!(n)

��
pn

qn

�
�

�
p0
n

q0
n

�
�

�
1

!(n)

��
pn

qn

�
;

where [x] and fxg denote the integer and fractional parts of a real number x respectively.

We let mn+1 = [ 1

!(n)
],

pn+1

qn+1
= mn+1

�
pn

qn

�
�

�
p0
n

q0
n

�
=
mn+1pn + p0

n

mn+1qn + q0
n

and
p0
n+1

q0
n+1

=
pn

qn
:

Then �n+1, which is the closed interval with end points
pn+1

qn+1
and

p
0

n+1

q0
n+1

, contains ! and

! =

�
pn+1

qn+1

�
� !(n+1)

�
p0
n+1

q0
n+1

�
where !(n+1) =

�
1

!(n)

�
.

We see that our geometric scheme has led to the Gauss transformation T (!) = f 1
!
g. To

make this scheme work it is necessary to specify the interval �0. Take p0 = 0; q0 = 1; p00 =

1 and q00 = 0 so that

! =

�
p0

q0

�
� !(0)

�
p00
q00

�
where !(0) = !.

3



Hence �0 is associated with the semi-in�nite interval [0;1). Notice that !(n) = T n!(0)

gives the projective coordinate of the point ! inside the interval �n. If we chose mn+1

to be an integer greater than [ 1

!(n)
] then the interval �n+1 would not contain !. This

guarantees that the approximation given by continued fractions is the best possible. One

can show that for any rational p

q
2 Int(�n), q > maxfqn; q

0
n
g and in fact q � qn + q0

n
.

The rational approximations pn

qn
de�ned above are called the convergents of the irra-

tional number !. We now describe an easy way to calculate them.

The map T is expanding and has in�nitely many inverse branches. Each of these is

characterised by an integer m 2 N . For each m 2 N , let T�1
m

denote the branch of T�1

given by

T�1
m
(!) =

1

m + !
:

Notice that ! 2 T�1
m
[0; 1] if and only if [ 1

!
] = m. The trajectory of ! under T gives the

sequence of integers produced in the continued fraction expansion:

mn =

�
1

T n�1!

�
:

Take 0 = 0
1
as an approximation to !(n). One can easily show that

pn

qn
= T�1

m1
Æ � � � Æ T�1

mn
(0):

It is convenient to present this using matrix multiplication. Firstly, note thatepeq = T�1
mn

�
p

q

�
if and only if

� eqep
�
=

�
mn 1

1 0

��
q

p

�
.

Thus �
qn
pn

�
=

�
m1 1

1 0

��
m2 1

1 0

�
: : :

�
mn 1

1 0

��
1

0

�
:

For n 2 N, let

An =

�
mn 1

1 0

�
:

Then

qn = hA1 � � �Ane1; e1i = he1; An � � �A1e1i

and

pn = hA1 � � �Ane1; e2i = he1; An � � �A1e2i;

where fe1; e2g is the standard basis of R2 : e1 =

�
1

0

�
; e2 =

�
0

1

�
. Notice that�

q0
n

p0
n

�
=

�
qn�1
pn�1

�
= A1 � � �An�1e1 = A1 � � �Ane2:
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We next discuss the Gauss automorphism, which is the natural extension of the

Gauss transformation. Each irrational ! 2 [0; 1] has a unique symbolic representation

(m1; m2; : : : ), where mn = [ 1
Tn�1!

]. We write [m1; m2; : : : ] for the point ! corresponding

to (m1; m2; : : : ). The Gauss transformation T : [0; 1] ! [0; 1] is conjugate to the unit

shift U on the space of one-sided sequences in N :

U((m1; m2; : : : )) = (m2; m3; : : : ):

The Gauss measure

�(A) =
1

log 2

Z
A

1

1 + !
d!; (2)

which is the unique absolutely continuous T -invariant probability measure, is transformed

by this conjugacy to an invariant Gibbs measure � on the space NN of one-sided sequences

in N . The natural extension eT of T is metrically isomorphic to the unit shift eU on the

space NZ of two-sided sequences with an invariant measure e�. The measure e� is the unique
measure on NZ which is eU -invariant and whose projection onto NN coincides with �.

However, there is a better coordinate system for the natural extension eT of T . Given

a two-sided sequence (mn)n2Z we can produce (y; x) 2 [0; 1]2 by de�ning

y = [m0; m�1; : : : ]; x = [m1; m2; : : : ]:

In 1977 Nakada, Ito and Tanaka [16] observed that the shift eU : NZ! NZ is conjugate to

the map eT : [0; 1]2 ! [0; 1]2 given by

eT (y; x) = � 1

[ 1
x
] + y

;

�
1

x

��
and that eT has an invariant measure given by the density

1

log 2

1

(1 + xy)2
: (3)

Clearly, projection onto x produces the Gauss measure (2):Z 1

0

1

(1 + xy)2
dy =

1

1 + x
:

The transformation eT has the important property of reversibility. One can readily see

that

eT�1 = S eTS
where S is the involution S(y; x) = (x; y). Notice that S corresponds to the reversing

of the orientation of a two-sided sequence (mn)n2Z. We will see below that in the d-

dimensional case, both the d-dimensional Gauss transformation and its natural extension

have invariant measures which generalise the above formulae.

5



The y coordinate for eT was obtained through the continued fraction expansion written

in reverse order. These reverse order continued fractions appear quite naturally in the

theory of continued fractions. Consider the sequence �n =
qn�1

qn
, n � 1. It is easy to see

that

1

�n
=

qn

qn�1
= mn +

qn�2

qn�1
= mn + �n�1:

This means that

T (�n) = �n�1 and mn =

�
1

�n

�
: (4)

Iterating one has

�n =
qn�1

qn
= [mn; mn�1; : : : ; m1]: (5)

This formula expresses the ratio of the denominators in terms of the �rst n entries of the

continued fraction of ! written in reverse order. The numbers �n are important since the

quality of approximation can be expressed through them. Indeed

1

2qn+1
� j!qn � pnj �

1

qn+1

and

1

qn+1
=

n+1Y
i=1

�i:

We will see later that (4) and (5) can be generalised to higher dimensions. In some sense

they give a basic insight into what sort of coordinates one should use for the natural

extension.

We end this section with a simple result for one-dimensional continued fractions. We

will see later that this result has a multidimensional generalisation which is much less

trivial. Consider the �nite sequence m1; m2; : : : ; mn. When we read it in the forward

direction it corresponds to the matrix

Cn =

�
mn 1

1 0

��
mn�1 1

1 0

�
: : :

�
m1 1

1 0

�
:

In the opposite direction the fraction [mn; : : : ; m1] produces

eCn =

�
m1 1

1 0

�
: : :

�
mn�1 1

1 0

��
mn 1

1 0

�
:

Obviously, Ct

n
= eCn since the matrices An are symmetric. It follows from this trivial

observation that [m1; : : : ; mn] and [mn; : : : ; m1] have the same denominator. We will see

later that in the d-dimensional case the matrices Ct

n
and eCn coincide up to a change in

the order of the rows and columns.
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3 Multidimensional Jacobi-Perron type algorithms

In this section we describe a geometric approach to the construction of rational approxi-

mations to an irrational vector. This approach leads to many di�erent generalisations of

one-dimensional continued fractions. These algorithms can be called Jacobi-Perron type

algorithms, since the transformations which are used are similar to the Jacobi-Perron

transformation. We will see later that only one Jacobi-Perron type algorithm inherits the

nice properties which we discussed in Section 2. We will call the corresponding transfor-

mation the d-dimensional Gauss transformation.

Let ! = (!1; : : : ; !d) 2 [0; 1]d. A geometrical scheme for approximating ! is based on

a nested sequence of d-dimensional simplices, each of which contains !. Each simplex in

the sequence has vertices which are given by rational vectors of the form�
p1

q
; : : : ;

pd

q

�
:

Given a simplex in the sequence, one forms the next simplex by deleting one of the vertices

and replacing it by a Farey combination of the existing vertices. In this Farey combination,

each vertex has an integer coeÆcient. Moreover, the deleted vertex has coeÆcient 1.

Let �n denote the simplex which was obtained at the nth step. In order to de�ne an

algorithm for producing the next simplex �n+1, it is necessary to order the vertices of

�n. The vertices can be ordered in two di�erent ways. They can be put into time-order

or space-order.

We consider the time-ordering approach �rst. The d+ 1 vertices of �n are denoted

p
(0)
n

q
(0)
n

;
p
(1)
n

q
(1)
n

; : : : ;
p
(d)
n

q
(d)
n

where, for 0 � i � d, p
(i)
n 2 Z

d

+ and q
(i)
n 2 N . We order the vertices according to the

times of their appearance in the nested sequence of simplices. So p
(d)
n

q
(d)
n

is the vertex which

appeared at the nth step, p
(d�1)
n

q
(d�1)
n

is the vertex which appeared at the (n� 1)st step, and so

on down to p
(0)
n

q
(0)
n

. The Jacobi-Perron algorithm is based on the following procedure. One

deletes the oldest vertex p
(0)
n

q
(0)
n

and adds the vertex

p
(d)
n+1

q
(d)
n+1

=

�
p
(0)
n

q
(0)
n

�
�

dM
i=1

mi

�
p
(i)
n

q
(i)
n

�
where the mi are integers which will be speci�ed later. In the formula above, � stands

for Farey addition:

�

�
p

q

�
� �

�
p
0

q0

�
=
�p+ �p0

�q + �q0
:

Since ! 2 �n we can write

! = �d+1

�
p
(d)
n

q
(d)
n

�
� �d

�
p
(d�1)
n

q
(d�1)
n

�
� � � � � �1

�
p
(0)
n

q
(0)
n

�
7



where �d+1; �d; : : : ; �1 � 0. The representation of ! by (�d+1; �d; : : : ; �1) is unique up

to multiplication by a scalar, i.e. (�d+1; �d; : : : ; �1) 2 RP
d . It is convenient to take a

representative of (�d+1; �d; : : : ; �1) which has �rst coordinate 1. So

! =

�
p
(d)
n

q
(d)
n

�
� !

(n)

d

�
p
(d�1)
n

q
(d�1)
n

�
� � � � � !

(n)
1

�
p
(0)
n

q
(0)
n

�
where !

(n)
i

=
�i

�d+1
.

Then

! =

�
p
(d)
n

q
(d)
n

�
�

d�1M
i=0

!
(n)
i+1

�
p
(i)
n

q
(i)
n

�
=

1

!
(n)
1

�
p
(d)
n

q
(d)
n

�
�

d�1M
i=0

!
(n)

i+1

!
(n)
1

�
p
(i)
n

q
(i)
n

�
=

�
1

!
(n)
1

��
p
(d)
n

q
(d)
n

�
�

d�1M
i=1

�
!
(n)
i+1

!
(n)
1

��
p
(i)
n

q
(i)
n

�
�

�
p
(0)
n

q
(0)
n

�
�

�
1

!
(n)
1

��
p
(d)
n

q
(d)
n

�
�

d�1M
i=1

�
!
(n)
i+1

!
(n)
1

��
p
(i)
n

q
(i)
n

�
:

The �rst three terms de�ne the new vertex
p
(d)
n+1

q
(d)
n+1

, i.e.

p
(d)
n+1

q
(d)
n+1

=

�
1

!
(n)
1

��
p
(d)
n

q
(d)
n

�
�

d�1M
i=1

�
!
(n)

i+1

!
(n)
1

��
p
(i)
n

q
(i)
n

�
�

�
p
(0)
n

q
(0)
n

�
;

and

p
(i)
n+1

q
(i)
n+1

=
p
(i+1)
n

q
(i+1)
n

; 0 � i � d� 1:

We get

! =

�
p
(d)
n+1

q
(d)
n+1

�
�

d�1M
i=0

!
(n+1)
i+1

�
p
(i)
n+1

q
(i)
n+1

�
;

where

!
(n+1)
i

=

�
!
(n)
i+1

!
(n)
1

�
; 1 � i � d� 1, and !

(n+1)

d
=

�
1

!
(n)
1

�
.

Denote !(n+1) = (!
(n+1)
1 ; : : : ; !

(n+1)

d
). Then

!
(n+1) = JPd(!

(n)) =

��
!
(n)
2

!
(n)
1

�
; : : : ;

�
!
(n)

d

!
(n)
1

�
;

�
1

!
(n)
1

��
:
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Clearly, JPd is a map from Id into itself. This map is an exact endomorphism which has

a unique absolutely continuous invariant probability measure [21, 15, 9].

We now consider the space-ordering approach. We denote the d+1 vertices of the nth

step by

p(n; 0)

q(n; 0)
;
p(n; 1)

q(n; 1)
; : : : ;

p(n; d)

q(n; d)
;

where p(n; i) 2 Zd+ and q(n; i) 2 N for 0 � i � d. In this approach we order the vertices

according to their contribution to the expansion

! =

dM
i=0

�i

�
p(n; i)

q(n; i)

�
: (6)

More precisely, the ordering in (6) is such that

�0 � �1 � � � � � �d:

Again we will normalise the representation of ! so that

! =

�
p(n; 0)

q(n; 0)

�
�

dM
i=1

!
(n)
i

�
p(n; i)

q(n; i)

�
where !

(n)
i

=
�i

�0
.

Notice that 1 � !
(n)
1 � !

(n)
2 � � � � � !

(n)

d
� 0. In order to produce the next approximation

one must decide which vertex to delete. This vertex may be any one except the �rst. We

will consider two extreme cases. The �rst case is when we delete the vertex
p(n;d)

q(n;d)
and the

second case is when we delete
p(n;1)

q(n;1)
. In the �rst case we have

! =

�
p(n; 0)

q(n; 0)

�
�

dM
i=1

!
(n)
i

�
p(n; i)

q(n; i)

�
=

1

!
(n)

d

�
p(n; 0)

q(n; 0)

�
�

dM
i=1

!
(n)

i

!
(n)

d

�
p(n; i)

q(n; i)

�
=

�
1

!
(n)

d

��
p(n; 0)

q(n; 0)

�
�

�
p(n; d)

q(n; d)

�
�

d�1M
i=1

�
!
(n)
i

!
(n)

d

��
p(n; i)

q(n; i)

�
�

�
1

!
(n)

d

��
p(n; 0)

q(n; 0)

�
�

d�1M
i=1

�
!
(n)
i

!
(n)

d

��
p(n; i)

q(n; i)

�
:

We get the new vertex

p(n+ 1; 0)

q(n+ 1; 0)
=

�
1

!
(n)

d

��
p(n; 0)

q(n; 0)

�
�

�
p(n; d)

q(n; d)

�
�

d�1M
i=1

�
!
(n)
i

!
(n)

d

��
p(n; i)

q(n; i)

�
and the transformation

!
(n+1) = (!

(n+1)
1 ; : : : ; !

(n+1)

d
) = ord

��
1

!
(n)

d

�
;

�
!
(n)
1

!
(n)

d

�
; : : : ;

�
!
(n)

d�1

!
(n)

d

��
: (7)
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Here ord(�1; : : : ; �d) is an ordering of (�1; : : : ; �d). In other words ord(�1; : : : ; �d) =

(��(1); : : : ; ��(d)) where � is a permutation of f1; 2; : : : ; dg such that

��(1) � ��(2) � � � � � ��(d):

Obviously, the permutation � depends on (�1; : : : ; �d). The vertices of the simplex �n+1

have to be ordered according to the ordering in (7). Notice that (7) de�nes a transforma-

tion of the simplex

�d = f(!1; : : : ; !d) 2 [0; 1]d : !1 � !2 � � � � � !dg

into itself.

We now consider the second choice of the vertex which is to be deleted, namely
p(n;1)

q(n;1)
.

We have

! =

�
p(n; 0)

q(n; 0)

�
�

dM
i=1

!
(n)

i

�
p(n; i)

q(n; i)

�
=

1

!
(n)
1

�
p(n; 0)

q(n; 0)

�
�

dM
i=1

!
(n)

i

!
(n)
1

�
p(n; i)

q(n; i)

�
=

�
1

!
(n)
1

��
p(n; 0)

q(n; 0)

�
�

�
p(n; 1)

q(n; 1)

�
�

�
1

!
(n)
1

��
p(n; 0)

q(n; 0)

�
�

dM
i=2

!
(n)

i

!
(n)
1

�
p(n; i)

q(n; i)

�
:

The formula above gives a new vertex

p(n+ 1; 0)

q(n+ 1; 0)
=

�
1

!
(n)
1

��
p(n; 0)

q(n; 0)

�
�

�
p(n; 1)

q(n; 1)

�
and a transformation Td : �d ! �d such that Td(!

(n)) = !
(n+1). In coordinates Td is

given by

Td(!1; : : : ; !d) = ord

��
1

!1

�
;
!2

!1
; : : : ;

!d

!1

�
: (8)

The transformation Td is the main subject of the rest of this paper.

De�nition 1. The transformation Td : �d ! �d is called the d-dimensional Gauss

transformation.

Strictly speaking, for all geometric schemes one has to specify the initial simplex �0.

For both the space-ordering schemes above the initial simplex is given by

p(0; 0) = (0; : : : ; 0);

q(0; 0) = 1;

p(0; 1) = (1; 0; : : : ; 0);

q(0; 1) = 0;
...

p(0; d) = (0; : : : ; 0; 1);

q(0; d) = 0:

10



By interpreting 0
0
as 0 and 1

0
as in�nity, we can regard �0 as a semi-in�nite simplex which

coincides with the positive quadrant of Rd

f! = (!1; : : : ; !d) 2 R
d : !i � 0g:

In a well-de�ned number of steps one reaches a bounded simplex. This happens when all

the vertices with a 0 denominator are removed.

We now describe a straightforward algebraic method of calculating the vectors

p(n; 0)

q(n; 0)
; : : : ;

p(n; d)

q(n; d)

produced by the d-dimensional Gauss transformation Td. From now on we will write T

instead of Td.

De�ne m : �d ! N by m(!) = [ 1
!1
] where ! = (!1; : : : ; !d) 2 �d. The ordering in

(8) consists of placing f 1
!1
g in the correct position. Let j(!) denote this position, i.e.

j(!) = i where the ith coordinate of T (!) is f 1
!1
g. For each pair (m; j) 2 N�f1; 2; : : : ; dg

there is a corresponding branch of T�1. The branch of T�1 associated to (m; j), denoted

T�1
(m;j)

, is given by

T�1
(m;j)

(!1; : : : ; !d) =

�
1

m+ !j
;

!1

m + !j
; : : : ;

!j�1

m + !j
;
!j+1

m+ !j
; : : : ;

!d

m+ !j

�
:

For each pair (m; j) 2 N �f1; 2; : : : ; dg we de�ne a matrix eA(m;j) 2 GL(d+1;Z). The

�rst row of eA(m;j) has only two nonzero entries:

ea1;1 = m; ea1;j+1 = 1:

All other rows have only one nonzero entry, which is equal to 1. More precisely, eai;i�1 = 1

for i = 2; : : : ; j + 1 and eai;i = 1 for i = j + 2; : : : ; d+ 1. In short,

eA(m;j) =

0BBBBBBBBBBBBB@

m 0 : : : 0 1 0 : : : 0 0

1 0 : : : 0 0 0 : : : 0 0

0 1 : : : 0 0 0 : : : 0 0
...

...
. . .

...
...

...
...

...

0 0 : : : 1 0 0 : : : 0 0

0 0 : : : 0 0 1 : : : 0 0
...

...
...

...
...

. . .
...

...

0 0 : : : 0 0 0 : : : 1 0

0 0 : : : 0 0 0 : : : 0 1

1CCCCCCCCCCCCCA
: (9)

It is easy to check that

T�1
(m;j)

�
p1

q
; : : : ;

pd

q

�
=

�ep1eq ; : : : ; epdeq
�
if and only if

0BBB@
eqep1
...epd

1CCCA = eA(m;j)

0BBB@
q

p1
...

pd

1CCCA.
11



We also de�ne A(m;j) = eAt

(m;j). Notice that in the one-dimensional case Am = eAm sinceeAm is symmetric.

Let ! be the point of �d that we wish to approximate. We can produce the vectors

p(n; i)

q(n; i)
=

1

q(n; i)
(p1(n; i); : : : ; pd(n; i))

by the method described above. These vertices p(n; i)=q(n; i) form a matrix D(�n) 2

GL(d+ 1;Z), namely

D(�n) =

0BBB@
q(n; 0) p1(n; 0) : : : pd(n; 0)

q(n; 1) p1(n; 1) : : : pd(n; 1)
...

...
...

q(n; d) p1(n; d) : : : pd(n; d)

1CCCA :

Consider the trajectory of ! under T :

! = !
(0) T

7! !
(1) T

7! � � �
T

7! !
(n):

Associated to this trajectory is the sequence (m1; j1); : : : ; (mn; jn) where

mi = m(T i�1
!); ji = j(T i�1

!):

Let

eCn = (ec(n)
i;k
)1�i;k�d+1 = eA(m1 ;j1)

eA(m2;j2) � � �
eA(mn;jn)

and

Cn = (c
(n)

i;k
)1�i;k�d+1 = eCt

n
= A(mn;jn) � � �A(m2 ;j2)A(m1;j1):

It can be shown that Cn = D(�n) (see [6]). This obviously implies that

p(n; i)

q(n; i)
=

�
c
(n)

i+1;2

c
(n)

i+1;1

; : : : ;
c
(n)

i+1;d+1

c
(n)

i+1;1

�
; 0 � i � d:

Also, for the �rst vertex

p(n; 0)

q(n; 0)
= T�1

(m1;j1)
Æ T�1

(m2;j2)
Æ � � � Æ T�1

(mn;jn)

�
0

1
; : : : ;

0

1

�
:

Remark. In the case d = 1, the three geometric schemes considered above all lead

to the same transformation, namely the Gauss transformation. This is because, in the

one-dimensional case, the earlier vertex always gives a smaller contribution to the de-

composition (6). It seems to be natural to get rid of the vertex which gives the smallest

contribution to (6). However, the natural generalisation of the Gauss transformation

arises from a di�erent strategy: one has to delete the vertex which gives the second

largest contribution to the decomposition (6).
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4 The d-dimensional Gauss transformation and its

natural extension

It was shown by Schweiger [22] that the d-dimensional Gauss transformation T has an

ergodic invariant probability measure � given by

�(d!) =
1

K
�(!) d!;

�(!) =
X
�2Sd

1

1 + !�(1)

1

1 + !�(1) + !�(2)
: : :

1

1 + !�(1) + !�(2) + � � �+ !�(d)

where K =
R
�d �(!) d! and Sd is the group of permutations of f1; 2; : : : ; dg. It can

also be shown that, for almost all !, the approximations generated by the d-dimensional

Gauss transformation are exponentially convergent to ! in the weak or directional sense

(see [6]). This means that for �-almost every ! 2 �d the diameter of �n tends to 0

exponentially fast as n ! 1. Weak convergence implies that, after the removal of a

set of measure 0 from �d, the map � which associates to ! the sequence (mn; jn)n2N =

(m(T n�1
!); j(T n�1

!))n2N is a bijection. We will write [(m1; j1); (m2; j2); : : : ] for the vec-

tor ! corresponding to the sequence ((m1; j1); (m2; j2); : : : ). The invariant measure � is

projected by the transformation � onto a stationary measure � on the space of one-sided

sequences in N � f1; 2; : : : ; dg. Clearly, the dynamical system (�d; T; �) is metrically iso-

morphic to the unit shift on the space of one-sided sequences in N � f1; 2; : : : ; dg with

stationary measure �. There exists a unique stationary extension of � onto the space of

two-sided sequences. We denote this extension by e� as in the one-dimensional case. The

natural extension of (�d; T; �) is isomorphic to the unit shift on the space of two-sided

sequences with the invariant measure e�. However, our aim is to �nd a good coordinate

system for the natural extension. One can naively try to mimic the one-dimensional

strategy by de�ning

x = [(m1; j1); (m2; j2); : : : ]; y = [(m0; j0); (m�1; j�1); : : : ]:

It turns out that this is not a good way of proceeding. Before we give a formal de�nition

of the right coordinates we o�er the following motivation.

4.1 The backwards Gauss transformation

In the one-dimensional case we had the important property that the ratios of the denom-

inators are connected by the backward Gauss transformation with the same integer entry

m as for the forward Gauss transformation. More precisely,

T (!(n�1)) = !(n); T

�
qn�1

qn

�
=
qn�2

qn�1
and m(!(n�1)) = m

�
qn�1

qn

�
:

We will see below that a similar property holds in the d-dimensional case. The vectors

generated by the ratios of the denominators of the vertices are related by the d-dimensional

Gauss transformation. However, in the d-dimensional case there are two numbers related

13



to the Gauss transformation, namely m(!) and j(!). It turns out that while the parame-

ter m for the forward and backward transformation is the same, the parameter j changes.

This change of j leads to the appearance of additional discrete structure in the natural

extension.

Consider the simplex �n which is the nth approximation to !. Each vertex of �n is a

rational vector with a certain denominator. Thus there are d+1 denominators associated

to �n. We put these denominators into their chronological order q
(0)
n ; q

(1)
n ; : : : ; q

(d)
n where

q
(i)
n appeared more recently than q

(i+1)
n . It is easy to see that the denominator of a new

vertex is greater than or equal to all previous denominators. Hence

q(0)
n
� q(1)

n
� � � � � q(d)

n
:

It is natural to compare the sequence of denominators in chronological order with the

sequence in its space order. Recall that

! =

�
p(n; 0)

q(n; 0)

�
�

dM
i=1

!
(n)

i

�
p(n; i)

q(n; i)

�
:

It follows from the construction that q(n; 0) corresponds to the most recent vertex, i.e.

q(n; 0) = q(0)
n
:

However, q(n; 1); : : : ; q(n; d) appear in an arbitrary order. Let �n 2 Sd be the permutation

which reects this order, i.e.

q(n; i) = q(�n(i))
n

for 1 � i � d:

Denote

�
n
=

�
q
(1)
n

q
(0)
n

; : : : ;
q
(d)
n

q
(0)
n

�
2 �d:

Lemma 4.1. �
n�1 = T (�

n
), m(�

n
) = m(!(n�1)) = mn, j(�n

) = �n�1(1).

Proof. The space-ordering of the denominators of the vertices of �n�1 is connected to

their chronological order by the permutation �n�1. More precisely,

q(n� 1; i) = q
(�n�1(i))
n�1 for 1 � i � d:

Clearly,

q(0)
n

= q(n; 0) = mnq(n� 1; 0) + q(n� 1; 1) = mnq
(0)
n�1 + q

(�n�1(1))
n�1 ;

and

q(i)
n

=

(
q
(i�1)
n�1 if 1 � i � �n�1(1);

q
(i)
n�1 if i > �n�1(1):
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Note that �
q
(0)
n

q
(1)
n

�
=

�
mnq

(0)
n�1 + q

(�n�1(1))
n�1

q
(0)
n�1

�
=
q
(�n�1(1))
n�1

q
(0)
n�1

and �
q
(0)
n

q
(1)
n

�
=

�
mnq

(0)
n�1 + q

(�n�1(1))
n�1

q
(0)
n�1

�
= mn:

This implies that

T (�
n
) = T

�
q
(1)
n

q
(0)
n

; : : : ;
q
(d)
n

q
(0)
n

�
= ord

�
q
(�n�1(1))
n�1

q
(0)
n�1

;
q
(1)
n�1

q
(0)
n�1

; : : : ;
q
(�n�1(1)�1)
n�1

q
(0)
n�1

;
q
(�n�1(1)+1)
n�1

q
(0)
n�1

; : : : ;
q
(d)
n�1

q
(0)
n�1

�
= �

n�1;

and j(�
n
) = �n�1(1), m(�

n
) = mn.

Lemma 4.1 demonstrates that

�
n
;�

n�1;�n�2; : : :

is indeed a trajectory of the d-dimensional Gauss transformation T . However, j(�
n
) =

�n�1(1) and in general j(�
n
) 6= jn. This means that the inverse branches connecting �n�1

and �
n
, and !(n) and !(n�1) are di�erent. Instead of jn one has to use ln = �n�1(1). Then

�
n
= T�1

(mn;ln)
�
n�1 and !

(n�1) = T�1
(mn;jn)

!
(n):

Remark. Notice that the permutations �n are not de�ned for small n. This is because,

for suÆciently small n, several vertices of �n have the same denominator. However, there

exists a random variable n(!) such that, for n � n(!), the denominators are ordered and

�n is de�ned (see [6]).

4.2 Combinatorial properties and symmetry

In the previous section we introduced three variables: jn; ln 2 f1; 2; : : : ; dg and �n 2 Sd.

In this section we discuss the connections between them. We have already seen that

ln = �n�1(1).

For 1 � i � d, let �i = (�i(1); : : : ; �i(d)) denote the permutation (2; 3; : : : ; i; 1; i +

1; : : : ; d). Let Sd(1) = f� 2 Sd : �(1) = 1g. De�ne P : Sd ! Sd(1) by

(P�)(i) =

8><>:
1 if i = 1;

�(i) if i > 1 and �(i) > �(1);

�(i) + 1 if i > 1 and �(i) < �(1):

(10)
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It is easy to check that P can be represented as multiplication by the permutation ��(1),

namely

P� = ��(1) � �:

Here we adopt the convention that permutations are to be composed from right to left.

More precisely, if �̂ is a bijection from f1; 2 : : : ; dg to itself associated to the permutation

�, i.e. �̂ : i 7! �(i), then [�1 � �2 = �̂1 Æ �̂2 = �̂1(�̂2).

De�ne a permutation valued function

E(�; j) = (P�) � �j = ��(1) � � � �j:

Notice that multiplication by �j transforms P� in the following way: the entry 1 moves

from the �rst to the jth position.

Lemma 4.2. (i) �n = E(�n�1; jn), ln = �n�1(1).

(ii) Let �� = E(�; j). Then j is uniquely determined by ��, in fact

j = (��)�1(1):

(iii) Let �� = E(�; j) where j = (��)�1(1). Denote � = ��1, �� = (��)�1. Then � = E(�� ; l)

where l = �(1) = ��1(1).

(iv) For all �xed �� and l there exists a unique � such that �(1) = l and �� = E(�; j) where

j = (��)�1(1). Moreover,

� =
�
E
�
(��)

�1
; l
���1

:

Proof. (i) Notice that �n�1 and jn uniquely determine �n. It is easy to see that the

de�nition of the function E(�; j) exactly corresponds to the process of determining �n
from �n�1 and jn. The permutation P� corresponds to the order of the denominators

when the new denominator is added and the denominator q(n � 1; 1) is deleted. The

permutation (P�n�1) � �jn appears after the denominator q(n � 1; 0) is placed in the jth
n

position. Hence the �rst relation holds. The second relation is a trivial consequence of

Lemma 4.1.

(ii) Obviously ��(j) = 1. Hence j = (��)�1(1).

(iii) Note that

�� = ��(1) � � � �j and �� = (��)�1 = ��1
j
� ��1 � ��1

�(1)
:

Hence � = ��1 = �j � �� � ��(1). Since j = ��(1), it follows that � = E(�� ; l), where

l = �(1) = ��1(1).

(iv) The uniqueness of � follows from (iii). Indeed �� = E(�; j) implies that ��1 =

E
�
(��)

�1
; l
�
where l = �(1). Hence

� =
�
E
�
(��)�1; l

���1
: (11)

It is easy to check that � given by (11) satis�es �� = E(�; j), �(1) = l.
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Consider a two-sided sequence (mn; jn)n2Z. We will suppose that this sequence is

typical with respect to the invariant measure of the natural extension of T . In particular

this means that for any �nite sequence (m(1); j(1)); (m(2); j(2)); : : : ; (m(k); j(k)) there are

in�nitely many positive and negative integers n such that

(mn+s; jn+s) = (m(s); j(s)); s = 1; : : : ; k:

This property is a consequence of Birkho�'s Ergodic Theorem, since for any �nite sequence

(m(1); j(1)); (m(2); j(2)); : : : ; (m(k); j(k)),

e�(f(mn; jn)n2Z : (ms; js) = (m(s); j(s)); s = 1; : : : ; kg) > 0:

Denote a two-sided sequence (jn)n2Z by J and let E denote a two-sided sequence of

permutations (�n)n2Z.

De�nition 2. The sequence E is said to be compatible with J if, for any n 2 Z, �n =

E(�n�1; jn).

To establish the existence and uniqueness of a sequence E which is compatible with J

we will need the following Lemma:

Lemma 4.3. Suppose that n0 < n and the �nite sequence jn0+1; jn0+2; : : : ; jn�1; jn con-

tains at least d� 1 entries d. For an arbitrary permutation �n0 de�ne

�s = E(�s�1; js) for n0 + 1 � s � n: (12)

Then �n depends only on the sequence (js)n0+1�s�n and it does not depend on �n0.

Proof. The Lemma has a purely combinatorial nature. We shall consider (12) as the

iteration of a sequence of mappings E(�; js) acting on permutations with initial point �n0 .

Each entry of the permutation �s except the �rst one gets mapped into some entry of �s+1
which is either to the left of it or just above it (see Figure 1). E(�; js) also produces one

entry 1 in the js position of �s and terminates the �rst entry of �s�1.

The whole process of iteration produces itineraries which originate either at one of

the entries of the original permuation �n0 or at one of the new ones. Notice that the

itinerary of every newly produced element is independent of �n0 and depends only on

the future sequence of js's. Hence the resulting permutation �n is independent of the

original permutation �n0 if all the itineraries which start at the 0th level (i.e. the entries

of �n0) get terminated before n. Notice that if js = d then all existing itineraries move

one unit to the left, except the one which gets terminated. Thus after d� 1 iterations of

E(�; d), all the itineraries which start at the 0th level will reach their left most position

and will be terminated. Notice that because of monotonicity the last itinerary which will

be terminated is the one which starts in the right most element of �n0 .

Let D denote the set of two-sided sequences J = (jn)n2Z for which there are in�nitely

many positive and negative integers n such that jn = d.

Proposition 4.4. If J 2 D then there exists a unique sequence E = (�n)n2Z which is

compatible with J.
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�n0+6 1 4 3 2

"E(�;1) " " "

�n0+5 �4 3 2 1

"E(�;4) - - -

�n0+4 2 �4 3 1

"E(�;4) - - -

�n0+3 3 1 �4 2

"E(�;2) - " "

�n0+2 �4 2 �3 1

"E(�;4) - - -

�n0+1 �4 �3 1 �2

"E(�;3) - - "

�n0 �2 �4 �3 �1

Figure 1: The orbit of the permutation �n0 = (2; 4; 3; 1) under repeated applications of

E(�; js). Numbers with a bar over them denote elements of the itineraries of the elements

of �n0 .

Proof. Uniqueness follows immediately from the previous Lemma. To prove existence

we consider a sequence of one-sided sequences (�
(s)
�s; �

(s)
�s+1; : : : ) where �

(s)
�s is an arbitrary

permutation and �
(s)
n = E(�

(s)
n�1; jn), n > �s. It follows from the Lemma that for any

s 2 Z

�(s)
n
! �n as s!1,

which simply means that �
(s)
n = �n for s large enough. Obviously, E = (�n)n2Z is a sequence

which is compatible with J .

We can now give the de�nition of the compatibility of a sequence L = (ln)n2Z with J .

This de�niton follows from the relation ln = �n�1(1).

De�nition 3. A sequence L = (ln)n2Z is said to be compatible with J if there exists a

sequence E = (�n)n2Zwhich is compatible with J and for which ln = �n�1(1) for all n 2 Z.

Proposition 4.5. For an arbitrary sequence J 2 D the sequence L which is compatible

with J also belongs to D.

Proof. Consider the itinerary of the entry of �n0 which is equal to d (see Lemma 4.3). It

does not change its value, but can only change its position. It moves one unit to the left

every time we apply E(�; d). After at most d � 1 applications of E(�; d) the itinerary of

the entry d will reach the left-most position. Hence for any �nite sequence js; n0 � s � n,

which contains at least d � 1 entries d, there is at least one s for which �s(1) = d. This

implies that ls+1 = d.

Recall that the sequence L = (ln)n2Z labels a backward sequence of the d-dimensional

Gauss transformation. We can give the de�nition of the compatibility of a sequence of
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permutations T = (�n)n2Z with the sequence L, and hence with J . This de�nition is

analogous to De�nition 2.

De�nition 4. (i) The sequence T is compatible with L if, for any n 2 Z,

�n = E(�n+1; ln+1):

(ii) The sequence T is compatible with J if there exists a sequence L which is compatible

with J such that T is compatible with L.

If J 2 D then L 2 D and hence by Proposition 4.4 there exist unique E ; T which

are compatible with J . The compatibility of J , E , L and T is presented graphically in

Figure 2.

� � �
E(�;jn)
����!

�n
�

E(�;jn+1)
�����!

�n+1
�

E(�;jn+2)
�����! � � �

� � �
E(�;ln)
 ����

�n
�

E(�;ln+1)
 �����

�n+1
�

E(�;ln+2)
 ����� � � �

Figure 2: The compatibility of (E ; J) and (T ; L).

Theorem 1. Suppose J 2 D. Let T = (�n)n2Z and E = (�n)n2Z be compatible with J.

Then, for any n 2 Z, �n = ��1
n
.

Proof. The sequence T is uniquely de�ned by the condition of compatibility and thus it

is enough to check that the sequence (��1
n
)n2Z is indeed compatible with L. Since

��1
n+1 = (E(�n; jn+1))

�1 = (��n(1) � �n � �jn+1)
�1 = ��1

jn+1
� ��1

n
� ��1

�n(1)

we have

��1
n

= �jn+1 � �
�1
n+1 � ��n(1):

Notice that jn+1 = ��1
n+1(1) and ln+1 = �n(1). Thus

��1
n

= �
�
�1
n+1(1)

� ��1
n+1 � �ln+1 = E(��1

n+1; ln+1):

Consider a representation of the group Sd by permutation matrices. Namely, for any

� 2 Sd consider a d-dimensional permutation matrix V (�) which has 1 in the positions

(�(1); 1); (�(2); 2); : : : ; (�(d); d) and 0's elsewhere. Let Q(�) be the (d + 1)-dimensional

matrix �
1 0

0 V (�)

�
:
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Notice that Q(�) gives a (d+1)-dimensional representation of the group Sd, i.e. Q(� � ��) =

Q(�)Q(��) and Q(��1) = (Q(�))�1. Since the matrices Q(�) are orthogonal, we also have

Qt(�) = (Q(�))�1 = Q(��1). If �(1) = 1 then V (�) is of the form�
1 0

0 W (�)

�
whereW (�) is a (d�1)-dimensional permutation matrix which has entries 1 in the positions

(�(i + 1) � 1; i), 1 � i � d � 1. Again we have W (� � ��) = W (�)W (��) and (W (�))�1 =

W (��1) =W t(�) assuming that �(1) = ��(1) = 1.

Recall the de�nition of the matrix eA(m;j) (see equation (9) in Section 3), and that

A(m;j) = eAt

(m;j).

Proposition 4.6. (i) For arbitrary m and �

eA(m;�(1))Q(�) =

0@ m 1 0

1 0 0

0 0 W (P�)

1A (13)

where P� = ��(1) � �.

(ii) For arbitrary � and j,

P� = (P ��)�1 (14)

where �� = (��)�1 and �� = E(�; j).

(iii) For arbitrary m, j and �

A(m;j) = Q�1(��) eA(m;l)Q(�) (15)

where �� = E(�; j) and l = �(1).

Proof. (i) Clearly the �rst column of eA(m;�(1))Q(�) coincides with the �rst column ofeA(m;�(1)). For 2 � i � d+ 1, the ith column of eA(m;�(1))Q(�) is equal to the (�(i� 1) + 1)th

column of eA(m;�(1)). This immediately implies that (13) is correct for the second column.

Also, if i > 2 then the ith column has only one non-zero entry, which is the entry 1 in the

row (�(i�1)+2) if �(i�1) < �(1) or in the row (�(i�1)+1) if �(i�1) > �(1). Using (10)

we �nd that the entry 1 is located in the ((P�)(i� 1)+ 1)th row. Now consider the minor

corresponding to the last d�1 rows and columns of eA(m;�(1))Q(�). Take k = i�2 and con-

sider the kth column. The entry 1 is located in the ((P�)(k+1)+1�2) = ((P�)(k+1)�1)th

row. This implies (13).

(ii) Using j = (��)�1(1) we get

(P ��)�1 = (��� (1) � �� )
�1 = (��)�1 � ��1

��(1)
= �� � ��1

��(1)

= E(�; j) � ��1
�� (1)

= ��(1) � � � �j � �
�1
��(1)

= ��(1) � � � �j � �
�1
(��)�1(1)

= ��(1) � � = P�:
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(iii) It is enough to show that Q(��)A(m;j) = eA(m;l)Q(�). Using (13) we get

eA(m;l)Q(�) = eA(m;�(1))Q(�) =

0@ m 1 0

1 0 0

0 0 W (P�)

1A :

We also have

Q(��)A(m;j) =
� eA(m;j)Q

t (��)
�
t

=
� eA(m;j)Q

�
(��)

�1
��t

=
� eA(m;(��)�1(1))Q

�
(��)

�1
��t

=

0@ m 1 0

1 0 0

0 0 W
�
P
�
(��)

�1
��
1At

=

0@ m 1 0

1 0 0

0 0 W t
�
P
�
(��)

�1
��
1A

=

0B@ m 1 0

1 0 0

0 0 W
��
P
�
(��)

�1
���1�

1CA :

Using (14) we have P� =
�
P
�
(��)

�1
���1

which implies (15).

We now formulate a Theorem which relates the product of the matrices A(mn;jn) to

the product of the matrices A(mn;ln).

Theorem 2. Suppose E and L are compatible with J. Then for an arbitrary sequence

M = (mn)n2Z and arbitrary a < b we have�
A(ma;la) � � �A(mb;lb)

�t
= Q(�b)A(mb;jb) � � �A(ma;ja)Q

�1(�a�1): (16)

Proof. It follows from Proposition 4.6 and the compatibility of E ; L and J that for any n

Q(�n)A(mn;jn)Q
�1(�n�1) = eA(mn;ln):

Taking the product over a � n � b we get (16).

Remark. As we have seen above, the product of the matrices A(mn;jn) produces the

approximations corresponding to the d-dimensional Gauss transformation. Theorem 2

says that forward iteration of the d-dimensional Gauss transformation and backward

iteration produce the same matrix up to transposition and a change in the order of

the rows and the columns. Notice that Q�1(�a�1) = Q(�a�1). One can say that �a�1
determines the correct order of the rows and �b the correct order of the columns.

Let us give one more de�nition which we shall use below. Let N be an arbitrary subset

of Z. Denote EN = (�n)n2N , LN = (ln)n2N , TN = (�n)n2N .

De�nition 5. A con�guration EN (respectively LN ; TN) is said to be compatible with J if

there exists E (respectively L; T ) which is compatible with J and is such that EjN = EN
(respectively LjN = LN ; T jN = TN).
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4.3 Coordinates for the natural extension

The aim of this section is to de�ne new coordinates for the natural extension of the d-

dimensional Gauss transformation. Instead of using a two-sided sequence (mn; jn)n2Z, we

use a two-sided sequence M = (mn)n2Z and two one-sided sequences L� = (ln)n�0 and

J+ = (jn)n�1 where L� is a subsequence of the unique sequence L which is compatible

with J . We also use a discrete coordinate �0 2 Sd which is the 0th entry of the sequence E

which is compatible with J . As we have seen above, L� and �0 are uniquely determined

by J if J 2 D. The converse is also true: for arbitrary (L�; J+; �0) there exists a unique

J such that �0 and L� are compatible with J .

Let D+ (respectively D�) denote the set of one-sided sequences J+ = (jn)n�1 (respec-

tively L� = (ln)n�0) which contain in�nitely many entries equal to d.

Proposition 4.7. If L� 2 D� and J+ 2 D+ then for any �0 there exists a unique sequence

J = (jn)n2Z 2 D which coincides with J+ for n � 1 and is such that �0 and L� are

compatible with J.

Proof. It follows from Theorem 1 that

��1
n�1 = E(��1

n
; ln):

Applying this formula repeatedly to �0 and the sequence (l0; l�1; l�2; : : : ) we can de�ne

the sequence (��1; ��2; : : : ). Hence we can determine (j0; j�1; j�2; : : : ) using jn = ��1
n
(1).

Obviously, J is the only sequence that can be compatible with L�, J+ and �0. To see

that it is indeed compatible it is enough to show that J 2 D. This easily follows from the

argument used in Proposition 4.5.

Propositions 4.4, 4.5 and 4.7 imply that the mapping from f(M;J) : J 2 Dg into

f(M;L�; J+; �0) : L� 2 D�; J+ 2 D+g is a bijection. Let e��;+ denote the measure

on f(M;L�; J+; �0) : L� 2 D�; J+ 2 D+g which is the image of the natural extension's

invariant measure e� under this bijection. Denote the projection of e��;+ onto f(M;L�; J+) :

L� 2 D�; J+ 2 D+g by ���;+.

Next we associate two vectors x = (x1; : : : ; xd);y = (y1; : : : ; yd) 2 �d to the sequences

(M+; J+); (M�; L�) (where M� = (mn)n�0, M+ = (mn)n�1). We do this by regarding

the sequences as symbolic representations of y and x corresponding to the d-dimensional

Gauss transformation. More precisely,

y = [(m0; l0); (m�1; l�1); (m�2; l�2); : : : ]; x = [(m1; j1); (m2; j2); : : : ]:

We will show that this mapping from f(M;L�; J+) : L� 2 D�; J+ 2 D+g into f(y;x) :

y;x 2 �dg is well-de�ned on a set of full ���;+-measure. Let e� denote the inverse mapping

which associates ((M�; L�); (M+; J+)) = (M;L�; J+) to (y;x):

e�(y;x) = ((M�; L�); (M+; J+)) = (M;L�; J+):

Clearly, e� is well-de�ned if x and y and their orbits (T n
x)n�1, (T

n
y)n�1 under the Gauss

transformation do not belong to the boundary of �d.
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Proposition 4.8. e� is a bijection between a set of full Lebesgue measure in �d��d and

a set of full ���;+-measure in f(M;L�; J+) : L� 2 D�; J+ 2 D+g.

Proof. LetM denote the set of (M;L�; J+) for which there are in�nitely many positive

n's such that

(mn+s; jn+s) = (1; d); 0 � s � 2d� 1;

and in�nitely many negative n's such that

(mn+s; ln+s) = (1; d); 0 � s � 2d� 1:

Let Z = e��1(M), i.e. Z is the preimage ofM under e�. It follows from [6] that Z has

full Lebesgue measure and that e� is a bijection between Z and M. To show that M

has full ���;+ measure, consider a set N of sequences (M;J) such that for in�nitely many

positive and negative n's

(mn+s; jn+s) = (1; d); 0 � s � 3d� 1:

Clearly e�(N ) = 1. Notice that if (M;J) has a piece of length 3d consisting of (1; d)'s then

(M;L) has a corresponding piece of length 2d which consists of (1; d)'s. This implies that

���;+(M) � e�(N ) and hence ���;+(M) = 1.

We are now ready to de�ne an automorphism eT which is metrically isomorphic to

the natural extension of T . The de�nition below describes the unit shift on the space of

two-sided sequences in terms of the coordinates (y; �;x). For x;y 2 �d and � 2 Sd let

eT (y; �;x) = (y0; �0;x0)

where

(i) x0 = T (x),

(ii) �0 = E(�; j(x)),

(iii) y0 = T�1
(m(x);l)

(y) where l = �(1), i.e.

y
0 =

�
1

m(x) + yl
;

y1

m(x) + yl
; : : : ;

yl�1

m(x) + yl
;

yl+1

m(x) + yl
; : : : ;

yd

m(x) + yl

�
:

Although this de�nition appears to be a bit complicated, it does indeed correspond to the

forward and backward dynamics of the d-dimensional Gauss transformation.

We hope that the properties which we will describe in the next section will provide

ample motivation for our de�nition of eT .
Remarks. (i) The transformation eT is well-de�ned when x does not belong to the bound-

ary of �d.

(ii) In the one-dimensional case, the transformation eT coincides with the natural extension

de�ned in Section 2. In this one-dimensional setting, the discrete coordinate � is absent.

(iii) In the two-dimensional case, � can be only one of two permutations: (1,2) and (2,1).

We will say that � = 1 in the �rst case and � = 2 in the second case. With this notation,
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Lemma 4.2 can be simpli�ed. It is easy to see that �n = jn and ln = �n�1. Thus ln = jn�1,

i.e. the sequence of j's is just the unit shift of the sequence of l's. In this two-dimensional

case, it is especially easy to see that L�; J+ and �0 allow one to construct the whole

sequence of j 0s. Indeed j0 = �0 and jn = ln+1 for n � �1.

(iv) Let x(0) 2 �d and �0 2 Sd be arbitrary, and let y(0) = (0; : : : ; 0). De�ne

(y(n); �n;x
(n)) = eT n(y(0); �0;x

(0)):

Then

y
(n) =

�
q
(1)
n

q
(0)
n

; : : : ;
q
(d)
n

q
(0)
n

�
:

5 Properties of the d-dimensional Gauss transforma-

tion

In this section we formulate and prove the most important properties of eT .
Let us denote the cardinality of a set S by #(S). We de�ne a measure � on �d�Sd��

d

by

�(A1 � S � A2) =

�Z
A1

dy

��Z
A2

dx

�
(#(S))

for Borel subsets A1 and A2 of �
d and S � Sd, i.e. � is the direct product of Lebesgue

measure on each copy of �d and the counting measure on Sd.

Denote


d = fx 2 �d : T n
x 2 Int(�d) for all n � 0g:

Obviously, �(
d�Sd�

d) = �(�d�Sd��

d), i.e. 
d�Sd�

d is a set of full �-measure

in �d � Sd ��d.

Proposition 5.1. eT is a bijection from 
d � Sd � 
d to itself.

Proof. It is easy to see that y0 = Ty 2 Int�d whenever y 2 Int�d. Hence, eT maps


d � Sd�
d into itself. The invertibility of eT on 
d � Sd�
d follows immediately from

its de�nition. Indeed, given (y0; �0;x0) 2 
d�Sd�

d de�ne y = Ty0, � = (E ((�0)�1; l))

�1

and x = T�1
(m;j)

x
0 where l = j(y0), m = m(y0) and j = (�0)�1(1). Then it is easy to check

that (y; �;x) is the unique point in 
d � Sd � 
d such that eT (y; �;x) = (y0; �0;x0).

We now consider an invariant measure for eT . Let e� be the probability measure on

�d � Sd ��d which, with respect to �, has the density

de�
d�

(y; �;x) =
1

C

1

(1 +
P

d

i=1 xiy�(i))
d+1
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where C is a normalising constant:

C =

Z
�d�Sd��

d

1

(1 +
P

d

i=1 xiy�(i))
d+1

�(dy; d�; dx):

We will also use the notation

f�(y;x) =
1

(1 +
P

d

i=1 xiy�(i))
d+1

:

Theorem 3. e� is an invariant measure for eT .
Proof. Consider a set Ay � f�g � Ax where Ay; Ax � �d and � 2 Sd. Denote

Aj

x
= fx 2 Ax : j(x) = jg; 1 � j � d:

Then

e�(Ay � f�g � Ax) =
1

C

dX
j=1

ZZ
Ay�A

j

x

f�(y;x) dydx:

Let eT� : �d��d ! �d��d be the restriction of eT on to the variables (y;x) with � �xed.

Then the measure of eT (Ay � f�g � Ax) is given by

e��eT (Ay � f�g � Ax)
�
=

1

C

dX
j=1

ZZ
eT�(Ay�A

j

x)

f�0
j
(y0;x0) dy0dx0

=
1

C

dX
j=1

ZZ
Ay�A

j

x

f�0
j

�eT� (y;x)� j Jac�(y;x)j dydx
where �0

j
= E(�; j) and Jac� denotes the Jacobian of the transformation eT�. In order to

prove that e� is an invariant measure one has to show that

f�(y;x) = f�0
j

�eT� (y;x)� j Jac�(y;x)j
for all x such that j(x) = j. This can be shown directly. Indeed a simple calculation

shows that

j Jac�(y;x)j =

�
1

y�(1) +m(x)

1

x1

�d+1

:

Thus

f�0
j
(y0;x0)j Jac�0

j
(y;x)j =

1�
1 +

P
d

i=1 x
0
i
y0
�
0

j
(i)

�d+1 1��
y�(1) +m(x)

�
x1
�d+1
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where (y0;x0) = eT�(y;x). Since x0j = 1
x1
�m(x), �0

j
(j) = 1 and y01 =

1
y�(1)+m(x)

we have

1�
1 +

P
d

i=1 x
0
i
y0
�
0

j
(i)

�
d+1

1��
y�(1) +m(x)

�
x1
�
d+1

=

 
y�(1)x1 +m(x)x1 + x0

j
y0
�
0

j
(j)

�
y�(1) +m(x)

�
x1 +

dX
i=1
i6=j

x0
i
y0
�
0

j
(i)

�
y�(1) +m(x)

�
x1

!�(d+1)

=

 
y�(1)x1 +m(x)x1 +

�
1

x1
�m(x)

�
y01
�
y�(1) +m(x)

�
x1

+

dX
i=1
i 6=j

x0
i
y0
�
0

j
(i)

�
y�(1) +m(x)

�
x1

!�(d+1)

=

 
1 + x1y�(1) +

dX
i=1
i6=j

x0
i
y0
�0
j
(i)

�
y�(1) +m(x)

�
x1

!�(d+1)

:

Notice that for i < j

x0
i
=
xi+1

x1
and y0

�
0

j
(i) =

y�(i+1)

y�(1) +m(x)

and for i > j

x0
i
=
xi

x1
and y0

�
0

j
(i) =

y�(i)

y�(1) +m(x)
:

Hence 
1 + x1y�(1) +

dX
i=1
i6=j

x0
i
y0
�
0

j
(i)

�
y�(1) +m(x)

�
x1

!�(d+1)

=

 
1 +

dX
i=1

xiy�(i)

!�(d+1)

:

Remarks. (i) It is easy to see that for the probability measure e� the conditional distri-

butions on �d ��d under � �xed are given by

e�(dy; dxj�) = 1

C(�)

1

(1 +
P

d

i=1 xiy�(i))
d+1

dydx

where the C(�) are normalising constants:

C(�) =

ZZ
�d��d

1

(1 +
P

d

i=1 xiy�(i))
d+1

dydx:

Obviously, X
�2Sd

C(�) = C:
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(ii) Let � denote the marginal distribution of the measure e� on Sd, i.e. e�jSd = �. Then

�(�) =

ZZ
�d��d

1

C

1

(1 +
P

d

i=1 xiy�(i))
d+1

dydx =
C(�)

C
:

Theorem 4. (i) The automorphism (eT ; e�) on �d � Sd ��d is metrically isomorphic to

the natural extension of the d-dimensional Gauss transformation.

(ii) (eT ; e�) is a K-automorphism.

(iii) eT is reversible with respect to the involution S(y; �;x) = (x; ��1;y), i.e.eT�1 = S eTS:
Proof. (i) By Proposition 4.8, for Lebesgue almost all x;y 2 �d there exists a unique

symbolic representation of (y;x):

((M�; L�); (M+; J+)) = (M;L�; J+) = e�(y;x)
where L� 2 D� and J+ 2 D+. From Proposition 4.7, there exists a unique J 2 D such

that J+ is the restriction of J onto n � 1, and L�; �0 are compatible with J . Moreover,

the transformation of (L�; �0; J+) onto J 2 D is also one-to-one. Together these two facts

imply that there is a one-to-one transformation  from a set of (y; �;x) of full �-measure

onto the space of two-sided sequences (mn; jn)n2Z where J = (jn)n2Z 2 D. It follows

easily from the construction that eT is conjugated by  to the unit shift of the sequence

(mn; jn)n2Z.

Denote the image of e� under  by e�, i.e. e� =  e�. Obviously, e� is the measure

corresponding to the natural extension; indeed it is translation invariant and its projection

onto the space of one-sided sequences (mn; jn)n2N coincides with �, which proves (i).

(ii) T is an exact endomorphism with respect to the invariant measure � (see [9] or [15]).

Hence its natural extension is a K-automorphism [20].

(iii) The property of reversibility easily follows from (i) and Theorem 1. Indeed, the

unit shift of a two-sided sequence is always reversible with respect to the involution

corresponding to the reection n 7! �n. Using Theorem 1 it is easy to see that this

involution gives S in the coordinates (y; �;x). However, we will give another proof of

(iii) which is based on a direct calculation. Suppose x;y 2 Int(�d). Then eT (y; �;x) =
(y0; �0;x0) where y0 2 Int(�d), y = Ty0, j(y0) = l = �(1), m(y0) = m(x) = m and

�0 = ��(1) � � � �j = �l � � � �j. Hence

S eTS eT (y; �;x) = S eTS(y0; �0;x0)
= S eT (x0; (�0)�1;y0)
= S(T�1

(m;j)
(x0); �j � �

�1
j
� ��1 � ��1

l
� �l;y)

= S(x; ��1;y)

= (y; �;x):

Similarly, eTS eTS(y; �;x) = (y; �;x):

This proves (iii).
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Corollary 1. The involution S preserves the invariant measure e�.
Proof. It follows from the reversibility of eT that Se� is also an invariant measure for eT .
Since eT is ergodic and both e� and Se� are absolutely continuous with respect to � we get

that Se� = e�.
Consider the trajectory (T n

x)n�0 of an arbitrary x 2 �d under the endomorphism

T and the corresponding sequence of permutations �n(x). We have seen in Section 4

that, for almost all x, �n(x) is well-de�ned for n large enough. We shall show that the

stationary distribution for �n(x) is given by �.

Corollary 2. For any �0 2 Sd and Lebesgue almost every x 2 �d

#f1 � n � N : �n(x) = �0g

N
! �(�0) as N !1.

Proof. Consider an observable g�0(y; �;x) = Æ�0(�) =

(
1 if � = �0;

0 if � 6= �0.
For e�-almost all

(y; �;x) we have

1

N

N�1X
n=0

g�0(
eT n(y; �;x))!

Z
�d�Sd��

d

g�0 de� = �(�0):

Let ��0(�) denote the characteristic function of �0. Since for Lebesgue almost all x, the

sequence g�0(
eT n(y; �;x)) does not depend on y or � for N large enough, and is equal to

��0(�n(x)), we get the required result.

6 Conclusions

We have shown that the d-dimensional Gauss transformation and its natural extension

have many of the important ergodic and dynamic properties which are valid in the one-

dimensional situation. We summarise these similarities below:

(i) The invariant measures for both the d-dimensional Gauss transformation and its

natural extension are given by explicit formulae. It is quite obvious that the explicit

formula for the invariant measure of the natural extension is a generalisation of the

corresponding formula in the one-dimensional case.

(ii) The vectors �
n
=
�
q
(1)
n

q
(0)
n

; : : : ; q
(d)
n

q
(0)
n

�
are connected by the backwards d-dimensional

Gauss transformation, i.e. �
n�1 = T�1

�
n
.

(iii) The matrix Cn(x) = A(mn;jn) � � �A(m1;j1) gives the vertices of the simplex �n(x)

which is the nth approximation to x, and also after taking its transpose and a

suitable rearrangement of the rows and columns, the vertices of the simplex �n(�n
).
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Although there are many multidimensional generalisations of continued fractions, the

d-dimensional Gauss transformation is the only one we know which enjoys the properties

(i){(iii). We believe that there is a connection between the existence of explicit formulas

for the invariant density and the symmetry of the natural extension. These symmetries

are \hidden", i.e. non-obvious, in the d-dimensional case. One of the manifestations of

the symmetry is the existence of an \almost" �rst integral. De�ne F (y; �;x) = y�(1)+
1
x1
.

It is easy to see that

F (S eT (y; �;x)) = F (y; �;x):

Hence F is a �rst integral for S eT . In the one-dimensional case, the existence of F allows

one to construct an S-symmetric invariant absolutely continuous measure for S eT in the

regular way, which gives a unique absolutely invariant measure for eT (see [11]). We believe

that such a construction can be carried out in the d-dimensional case as well.

Despite the many similarities between one-dimensional continued fractions and the

d-dimensional Gauss algorithm, there do exist signi�cant di�erences. The main di�erence

is the presence of a discrete coordinate � in the natural extension and the non-trivial

dependence of the sequences L and J . The sequences E , J and L are completely absent

in the one-dimensional case. In fact the �rst really non-trivial case is d = 3. In the case

d = 2, � belongs to the commutative group Z2 and as a consequence the sequences J and

L are related in an elementary way: L is the unit shift of the sequence J .

Another beautiful and important aspect of the classical theory of continued fractions

is a deep connection between the one-dimensional Gauss automorphism and the geodesic

ow on a surface of constant negative curvature. This connection was studied by R. Adler

and L. Flatto [1], C. Series [24, 25] and recently by M. Kontsevich and Yu. Suhov [13]. It

would be very interesting to �nd a similar geometrical interpretation in the d-dimensional

case.

In this paper we have not discussed the convergence of the approximations provided

by the d-dimensional Gauss algorithm. In fact the explicit forms for the invariant measure

make it possible to give computer assisted proofs of almost everywhere strong convergence

in dimensions 2 and 3 [7, 4, 6]. However we hope that the hidden symmetries which we

have discussed here will eventually contribute to a conceptual proof of almost everywhere

strong convergence which is currently an open problem.
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